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With the development of high-precision inertial navigation systems, the deflection of vertical (DOV), gravity disturbance, is still
one of the main error sources that restrict navigation accuracy. For the DOV compensation of the Strapdown Inertial Navigation
System (SINS) problem, the influences of the calculation degree of the spherical harmonic coefficient and the calculation error of
the DOV on the compensation effect were studied. Based on the SINS error model, the error propagation characteristics of the
DOV in SINS were analyzed. In addition, the high-precision global gravity field spherical harmonic model EIGEN-6C4 was
established and the influence comparative analysis of the calculation degree of the spherical harmonic coefficient on the DOV
compensation of SINS in different regions was carried out. Besides, the influence of the calculation error of the DOV on the
compensation was emphatically analyzed. Finally, the vehicle experiment verified the feasibility of compensation in SINS based on
the gravity field spherical harmonic model. 1e simulation and experiment results show that it is necessary to consider the
influence of the calculation degree and the calculation error of the DOV on the compensation for long-time high-precision SINS
with the position accuracy of 0.3 nm/h, while the SINS with general requirements for position accuracy can ignore the impact.

1. Introduction

Inertial navigation system (INS) is the position reckoning
system that uses its inertial measurement units (IMU) to
calculate the attitude, speed, and position information of the
carrier [1]. It is widely used in various military and civil fields
because of the independence without the external infor-
mation and high reliability. In order to facilitate the navi-
gation calculation, the normal gravity field defined in the
reference ellipsoid is typically used instead of the global true
gravity field for navigation calculation. 1at definitely ig-
nores the difference between the normal gravity vector and
the true gravity vector, which is the gravity disturbance
vector [2, 3]. With the continuous improvement of the
accuracy of inertial devices, the gravity disturbance com-
pensation on the INS is particularly significant [4].

1e deflection of vertical refers to the difference be-
tween the vertical line of the geoid and the normal line of
the reference ellipsoid, that is, the deviation of the true
gravity vector from the normal gravity vector [5]. 1e

horizontal component of the deflection of vertical (DOV)
directly determines the magnitude of the horizontal gravity
disturbance. According to the INS error analysis, the DOV
directly affects the initial alignment error and speed error
and thus affects the position error after integration [6].
Jekeli [7] and Jekeli et al. [8] firstly studied the problem of
gravity disturbance compensation for INS. Hanson [9]
analyzed the influence of the initial alignment of the DOV
compensation. Wang et al. [10] started with the error model
of the INS and focused on analyzing the error propagation
characteristics of the horizontal component of the gravity
disturbance vector in the navigation system. Jin and Bian
[11] simulated the INS position errors caused by three
kinds of different characteristics of gravity disturbances. In
recent years, some scholars had used the high-resolution
spherical harmonic model (SHM) of the gravity field to
compensate and analyze the DOV. Wang et al. [12] studied
the accuracy of the truncated spherical harmonic model for
real-time compensation of INS and proposed a simplified
two-dimensional second-order polynomial model for the
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spherical harmonic model of the gravity field. Chang et al.
[13] used the EIGEN-6C4 gravity field spherical harmonic
model to compensate for the initial alignment and navi-
gation calculation of the INS. Wu et al. [14] had researched
on the calculation of the minimum update rate of gravity
using the SHM in the shipboard INS. 1e above com-
pensation analysis basically uses the highest degree or any
degree of the spherical harmonic model for compensation
analysis [15–17], which greatly reduces the calculation
efficiency and does not consider the influence of the error in
the INS solution position on the compensation effect
during the compensation. For the INS with an accuracy of
less than 100 meters, the influence of the DOV on the INS
cannot be ignored, especially for the long-time INS. 1e
position error caused by DOV definitely reduces the per-
formance of INS. Consequently, it is necessary to analyze
and compensate the influence of DOV on INS.

Starting from the SINS error model and combining the
EIGEN-6C4 ultra-high-precision gravity field spherical
harmonic model, this paper analyzes the compensation
effect of the DOV calculated by the spherical harmonic
model of different degrees. 1e compensation accuracies of
the DOV at the true position and the INS solution position
are compared and analyzed. 1e proposed methodology can
be applied in long-time high-precision INS, for instance, the
land vehicle INS and the submarine vehicle.

1e contents are organized as follows: Section 1 presents
the introduction; the definition of the DOV and the ex-
pression of the gravity disturbance vector (GDV) are briefly
reviewed in Section 2; Section 3 describes the construction of
the spherical harmonic model in the gravity field and the
calculation of DOV; the analysis of DOV compensation
position error of INS and compensation process are de-
scribed in Section 4; in Section 5, compensation effects of
SHM in different degrees in the general area and abnormal
area are reported; the influence of calculation error of DOV
on SINS position error and vehicle experiment are presented
in Section 6; finally, conclusion is presented in Section 7.

2. The Deflection of Vertical and Gravity
Disturbance Vector

1e geoid is a model that describes the true shape of the Earth,
which reflects the information of the global true gravity field
[18–20]. Due to uneven mass distribution inside the Earth and
uneven surface, the geoid is extremely difficult to describe by a
mathematical model. To facilitate mathematical calculations, a
reference ellipsoid model close to the geoid has been established
[21]. 1e gravity field on the reference ellipsoid model is called
the normal gravity field, and the difference between the real
gravity vector and the normal gravity vector is called the gravity
disturbance vector [22]. 1e deflection of vertical refers to the
difference between the vertical line of the geoid and the normal
line on the reference ellipsoid, that is, the deviation of the true
gravity vector from the normal gravity vector, as shown in
Figure 1.1e component of the DOV in the east-west direction
is η, and the north-south component is ξ, expressed by
equations (1)–(3). 1e schematic diagram of the gravity dis-
turbance vector in space is shown in Figure 2.

gn
� γn

+ δgn
, (1)

γn
� 0 0 −c 

T
, (2)

δgn
� δgE δgN δgU 

T
� −ηc −ξc Δg 

T
, (3)

where c denotes the normal gravity value and Δg means the
gravity anomaly. δgE, δgN, and δgU are the eastward,
northward, and upward of GDV in navigation frame n,
respectively.

For coordinate system definition, i means the Geocentric
Inertial Coordinate System; e means the Earth-Centered
Earth-Fixed Frame; n denotes the Navigation Frame with
East-North-Up; select the local geographic coordinate frame;
b means the body frame with Right-Forward-Upward, three
axes toward the Right, Front, and Up, respectively, and the
diagram of coordinate frames is shown in Figure 3.

3. Gravity Field Spherical Harmonic Model

According to the law of universal gravitation, the gravity
potential of a point on the Earth’s surface is the sum of the
gravitational potential and the centripetal force potential,
as shown in equation (4). In the spherical coordinate
frame, the gravitational potential can be represented by
spherical harmonic functions, and the gravitational po-
tential and centripetal force can be represented by
equations (5) and (6), respectively. U is the gravity po-
tential of the point; W is the gravitational potential
calculated by spherical harmonic function; Q is the
centripetal force potential:

U � W + Q, (4)

W �
GM

r


N

n�2

Re

r
 

n



n

m�0
Cnm cosmλ + Snm sinmλ( 

· Pnm(cos θ),

(5)

Q �
ω2
ier

2sin2 θ
2

, (6)

where G represents the gravitational constant;M represents the
mass of the Earth; θ denotes the extra latitude of the calculation
point, also known as the polar distance; λ denotes the longitude;
r represents the distance between the calculation point and the
center of the reference ellipsoid; Re is the Earth’s radius; N
represents the maximum degree in the spherical harmonic
model; Cnm and Snm are the harmonic geopotential coefficients
with degree n order m; ωie is the rotation angular velocity of
Earth; Pnm(cos θ) are the normalized Legendre associated
functions, which can be calculated by equations (14)–(17).

Gravity is the first-order derivative of the gravity po-
tential, as shown in the following formula:

gradU �
1
r

zU

zθ
eθ +

1
r sin θ

zU

zλ
eλ +

zU

zr
er, (7)

where er, eθ, and eλ denote the unit vectors along the radial,
epicenter, and longitude directions, respectively,
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corresponding to the up, south, and east directions on the
ellipsoid, where the upward is the center of the ellipsoid
pointing to the mass point direction rather than up of
geographic direction.

In the spherical coordinate frame, taking derivatives of
equation (4) with respect to θ, λ, and r, we can obtain
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From the relationship between the spherical coordinates
and the Cartesian coordinate frame, it can be calculated that
the components of true gravity in the “East-North-Up”
coordinate system at the mass point are shown in equations
(11)–(13). 1e aforementioned process is the spherical
harmonic model (SHM). It is obvious that the gravity can be
calculated by gravity field SHM as long as the position in-
formation was given.

gE
′ �

1
r sin θ

zU

zλ
, (11)

gN
′ � −

1
r
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zθ
, (12)

gU
′ �

zU
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, (13)

where gE
′ , gN
′ , and gU

′ are the gravity components in the
frame, where the upward direction is from the center of the
sphere points to the unit particle.

In the INS, the gravity components in the geographic
coordinate frame were usually used in navigation

calculation.1e difference between the geographic latitude L
and the geocentric latitude Lc is δL � L − Lc, shown in
Figure 4. 1en the horizontal component of the true gravity
in the geographic coordinate system can be obtained by the
rotary transformation, which is the horizontal gravity dis-
turbance vector. Consequently, the DOV can be calculated
by formulas (14) and (15).

δgE � gE � gE
′ ,

δgN � gN � gN
′ cos δL − gU

′ sin δL,

⎧⎨

⎩ (14)

where gE, gN, and gU are the gravity components in the
navigation frame n.
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Normal
Vertical

Geoid

Reference
ellipsoidP

P′

Deflection of vertical

µ

Figure 1: Deflection of vertical.
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3.1. Legendre Recursive Calculation

(1) Initial value is

P0,0(cos θ) � 1,

P1,1(cos θ) �
�
3

√
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(16)

(2) When m � n, n≥ 2,
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From the northward component calculation formula (8),
it can be seen that solving the northward gravity disturbance
requires normalizing the derivative of the Legendre func-
tion. From [15], the recursive formula for the derivative of
the Legendre function is as follows.

3.2. Legendre Derivatives Recursive Calculation

(1) When m � n,

dPnm(cos θ)

dθ
� n cot θPnm(cos θ). (20)

(2) When 0<m< n,
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1
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. (21b)

4. Analysis of DOV Compensation Position
Error of INS

As we all know, the SINS specific force equation describes
the relationship between the motion acceleration of carrier
and the specific force, which is shown as follows:
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Figure 2: Gravity disturbance vector.
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_v
n

� Cn
bf

b
− 2ωn

ie + ωn
en(  × vn

+ gn
, (22)

where _vn is the motion acceleration of carrier; fb is the
specific force of carrier measured by accelerometer; ωn

ie
represents the component of the Earth rotation angular
velocity in the navigation coordinate frame; ωn

en is the an-
gular velocity of the navigation frame relative to the Earth
coordinate frame; gn is the gravity acceleration in navigation
coordinate frame.

Differentiate the specific force equation above to obtain
the velocity error equation as follows:

δ _v
n

� φn
× Cn

bf
b

− 2ωn
ie + ωn

en(  × δ _v
n

+ _v
n

× δωn
ie + δωn

en(  + Cn
b∇

b
+ δgn

,

(23)

where φn is the attitude error angle; δωn
ie and δωn

en are the Earth
rotation angular velocity error and navigation coordinate sys-
tem update error affected by the position error and velocity
error, which can be calculated by equations (24) and (25),
respectively;∇b is the zero bias error of the accelerometer; δvn �

δvE δvN δvU 
T is the velocity error in navigation frame.
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1e velocity error equation can be sorted into the form of
a matrix:
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1e matrices involved in (26) are given by
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1e attitude error equation of SINS is as follows:

_φ � −ωn
in × φ + δωn
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1e attitude error equation can be sorted into the form of
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where (ωn
in×) denotes the antisymmetric matrix of ωn
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1e position error equation can be expressed as follows:
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.

(32)

Equations (26), (28a), (28b), and (31) are the SINS error
equations when the gravity disturbance error is considered.
From the equations, it can be seen that the DOV first enters
the velocity error channel and affects the velocity error of the
horizontal channel, thereby affecting the SINS position error
and body attitude error after integration. 1e schematic
figure of the influence of the DOV on the SINS is shown in
Figure 5. In the pure inertial navigation system, the height
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channel is divergent, so the coupling errors of the height
channel can be ignored. 1is study is mainly about the
compensation analysis of the DOV to the horizontal position
error of SINS and the position error equation (31) is re-
written into the form of the horizontal channel as (33). 1e
process of DOV compensation is shown in Figure 6.

δ _L �
δvN

RM + h
,

δ _λ �
δvEsec L

RN + h
+
vE tan L sec LδL

RN + h
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(33)

5. Compensation Effects of SHM in
Different Degrees

Equations (8)–(10) are the recursive spherical harmonic
series of the SHM to calculate the DOV. 1is study utilizes
the latest EIGEN-6C4 high-precision SHM of gravity field
published by the German Geoscience Center in 2012. 1e
degree of the model can reach up to 2190. It can be known
from (5) that the degree N of spherical harmonic coefficients
Cnm and Snmwill directly affect the accuracy of DOV cal-
culation. 1is section focuses on analyzing the influence of
the horizontal position error of the DOV compensation
calculated by the SHM of different degrees.

5.1. DOV of the Two Areas. In order to clearly indicate the
influences of the different model degrees, the coefficients of the
360-degree, 900-degree, and 2190-degree SHMs are selected to
calculate the DOV for the general area and the abnormal area,
where the DOV changes sharply. 1e general area is selected in
North China province, N 34°18′45′′∼38°18′45″, E
109°7′30″–113°7′30″, and the abnormal area is selected in the
Himalayas, N 26°18′45″–30°18′45″, E 89°7′30′′∼93°7′30′′. 1e
calculation resolution of DOV is set to 5′× 5′.

It can be seen from Figure 7 that the sizes of the DOV
component η and ξ are basically similar in the selected
general area. As the degree of the SHM increases, the cal-
culated value of the DOV component in the region shows a
certain increasing trend. 1e calculation result of the DOV
in 2190-degree model is more obvious than that in the 360-
degree model. It can be seen from Figure 8 that the size of ξ
has a larger value than the component η in the selected
abnormal area. As the degree of the SHM increases, the
calculated value of the DOV increases more obviously. It can
be known from the analysis that the calculation accuracy of
the 2190-degree model is higher than that of the 360-degree
model, but as the calculation accuracy increases, its calcu-
lation speed will decrease sharply. 1e calculation efficiency
will be greatly reduced when there is plenty of points in a
certain area. 1erefore, it is necessary to analyze the in-
fluence of the spherical harmonic coefficients of different
degrees to calculate the DOV to compensate for the SINS
position error.

5.2. Simulation Analysis of DOV Compensation of SINS Po-
sitionError. It can be known from the analysis in Section 4 that
the DOV enters the SINS speed channel first which affects the
horizontal speed error and thus the position error after inte-
gration. 1is section mainly analyzes the influence of the DOV
compensation SINS position error calculated by the SHM of
three different degrees, and the compensation process is shown
in Figure 6. Firstly, utilize the EIGEN-6C4 SHMof 360, 900, and
2190 degrees to calculate the DOV on the carrier’s trajectory,
respectively. 1en, the interpolated 2190-degree calculated data
was accumulated in the normal gravity field to simulate the true
gravity field data and generate the inertial measurement unit
(IMU) data by simulation. Finally, DOV calculation data of the
360, 900, and 2190 degrees are used to compensate for the SINS
position error.

1e simulation conditions were set as follows: the speed was
40m/s; the trajectories were set to N 34°18′45″–38°12′45″, E
109°7′30″, and N 26°18′45″–30°12′45″, E 89°7′30″, in general
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Figure 5: Inertial navigation system schematic.
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and abnormal areas, respectively. 1e gyroscope constant drift
was set as 0.001°/h, and the random walk coefficient was
0.0002°/h1/2; accelerometer constant zero bias was 10µg, and the
zero bias white noise was 5µg.1e data sampling interval of the
IMU was 0.01 s. 1e trajectory was calculated by fourth-degree
Runge Kuta, and the calculation period was 0.005 s.1e attitude
and speed update of the INS were solved by the optimized twin-
sample algorithm, the solution period was 0.02 s, and the
simulation time was 10800 s.

1e DOV of the trajectory in the two areas are shown in
Figures 9 and 10, respectively. It can be seen from Figures 9 and
10 that the calculated value of 2190 degrees is basically con-
sistent with the calculated value of 360 degrees and 900 degrees,
and the difference between the calculated values is nomore than
52″. Compared with the trajectory in the abnormal area, the
2190-degree calculated data is quite different from the 900-
degree and 360-degree calculated DOVdata, and themaximum
difference can reach nearly 30’’.
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Figure 7: DOV in the general area. (a) 360-degree η, (b) 900-degree η, (c) 2190-degree η, (d) 360-degree ξ, (e) 900-degree ξ, and (f) 2190-
degree ξ.

Initialize WGS-84
ellipsoid

Start

Load Spherical
harmonic coefficient

Enter longitude latitude
and elevation

Recursive calculation of normalized
legendre function

Calculation components
of DOV

Compensation to navigation
speed updating

Static base initial
alignment

Output the final
position

End

Start

Recursive calculation of derivative
of normalized legendre function

Compensation to navigation
position updating

Figure 6: Process of DOV compensation.

Mathematical Problems in Engineering 7



1e DOV data calculated by the 360-degree, 900-degree,
and 2190-degree spherical harmonic coefficients are super-
imposed into the normal gravity field, respectively, as the real
gravity field for navigation calculation.1e position error curves
after 3 sets of DOV compensation are shown in Figure 11. 1e
SINS position error after DOV compensation is significantly
reduced compared to the case without compensated state, es-
pecially in the abnormal area, as shown in Figure 11. In the
general area, the compensation effects of the three sets of DOV

data are basically similar, and the maximum longitude error
difference is only 130m. In the abnormal area, the compen-
sation effects of the three sets of DOV data are generally similar
in latitude error and have a large difference in longitude error,
with a maximum difference of nearly 300m. 1e total maxi-
mum statistical data after compensation are shown in Table 1.

1e simulation compensation results and statistical data
show that, for long-endurance high-precision INS with a
position accuracy of 0.2 nm/h, the influence of the calculation
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Figure 8: DOV in the abnormal area. (a) 360-degree η, (b) 900-degreeη, (c) 2190-degreeη, (d) 360-degree ξ, (e) 900-degree ξ, and (f) 2190-
degree ξ.
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Figure 11: Position error after compensation in two areas. (a) General area and (b) abnormal area.

Table 1: Maximum statistical position error data.

Without
compensation (m)

360-degree
compensation (m)

900-degree
compensation (m)

2190-degree
compensation (m)

General area δL 4831 4289 4297 4295
δλ −3039 −2871 −2765 −2729

Abnormal area δL 5353 4532 4457 4238
δλ −3921 −3158 −3371 −2878
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degree of the SHM on the position accuracy of the DOV
compensation needs to be considered. 1e vertical deviation
data calculated by the 2190-degree spherical harmonic coef-
ficient are required for compensation. For the INS with general
position accuracy requirements, the DOV data compensation
of 360-degree calculation can satisfy the accuracy requirements.

6. The Influence of Calculation Error of
DOV on SINS Position Error

In the real SINS working process, the calculated position
information by SINS contains errors. In the preliminary
studies, all methods of calculating the DOV based on SHM
are basically the real position calculations. During practical
engineering applications, the DOV data can only be cal-
culated from the position output by SINS, so it is necessary
to consider the influence of the DOV calculation error
caused by the position error on the SINS compensation
effect. 1is section mainly analyzed the effect of compen-
sating the SINS position error by the actual position and the
DOV calculated by the SINS calculated position through
simulation experiments.

6.1. Simulation Analysis. 1e simulation condition settings
in this section are consistent with Section 5.2. 1e true
position on the trajectory in the general area and the ab-
normal area and the DOV data calculated by the SINS
calculated position are shown in Figures 12 and 13, re-
spectively. It can be seen from Figures 12 and 13 that the
trends of the DOV calculated at the two positions are ba-
sically the same. In the general area, the calculation results of
the two positions are generally the same, and the maximum
difference is only about 2”. While, in the abnormal area, the
calculated position of SINS was different greatly from the
calculated value at the true position, the ξ value is more
obvious than η. 1e maximum difference can reach nearly
10”.

Compensate the DOV data calculated at the true
position and the DOV data calculated at the SINS cal-
culated position into the SINS navigation calculations,
respectively. Figures 14 and 15 can be obtained; Figure 14
shows the speed error curve after compensation in the
two areas. As can be seen from the figure, after the DOV
has been compensated, the speed error during the
movement is significantly reduced, especially in the ab-
normal area. 1e speed error compensation effect at the
true position is mainly the same as the calculated posi-
tion. Figure 15 shows the compensated position error
curves in the two areas. It can be seen from Figure 15 that
the position error is definitely reduced after the DOV is
compensated. In the general area, the compensation effect
at the real position was basically the same as the calcu-
lated position. Meanwhile, in the abnormal area, the
compensation at the two positions has basically the same
effect in the latitude error channel. In the longitude error
channel, the compensation at the true position is smaller
than the compensation at the calculated position, and the
position error is smaller. 1e maximum difference in

compensation error between the two positions is close to
130 m. 1e maximum statistics position errors are shown
in Table 2.

Consequently, in the general area where the DOV
changes gently, the influence of the calculation error of the
DOV caused by the SINS calculated position error on the
position error compensation effect can be ignored. Mean-
while, in the area where the DOV changes abnormally, the
INS that requires a position accuracy of 0.3 nm/h needs to
consider the influence of the calculation error of the DOV.

6.2. ExperimentAnalysis. To further verify the reliability of
the calculated DOV compensation SINS method based on
the SHM of the gravity field, this section mainly conducts
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experiments on the vehicle-mounted SINS and performs
the compensation analysis. SINS was fixedly installed on
the experimental vehicle, as shown in Figure 16. 1e
vehicle was equipped with a GPS receiver and used GPS
navigation position and speed information as the refer-
ence. INS/GPS integrated navigation attitude information
was regarded as the attitude reference, and SINS sampling
frequency was 200 Hz. GPS provided 1 Hz speed and
position reference. 1e gyroscope constant drifts were

0.0050, 0.0048, and 0.0045°/h and the corresponding
random walk coefficients were 0.00046, 0.00044, and
0.00047°/h1/2, respectively. 1e accelerometer constant
biases were 47, 51, and 37 μg. 1e starting point position
was N 34°18′48″, E 109°7′4″ and the ending point was N
35°28′42″, E 110°27′42″, 1e true GPS navigation tra-
jectory and SINS calculated trajectory are shown in
Figure 17(a), and the attitude error during the movement
is shown in Figure 17(b).
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1e EIGEN-6C4 SHM is used to calculate the DOV on
the motion trajectory and compensated for the SINS nav-
igation calculation. 1e northward speed error and eastward
speed error before and after compensation are shown in
Figure 18. It can be seen from Figure 18 that, after the DOV
is compensated, the northward speed error is definitely
reduced, while the eastward speed error is not significantly
improved. 1e position error and the maximum statistical
data before and after compensation are shown in Figure 19
and Table 3, respectively. After the DOV is compensated, the
latitude position error is definitely reduced, and the longi-
tude position error is not significantly improved. 1is is

because of the coupling effect between the gravity distur-
bance and the accelerometer drift error that is not eliminated
after calibration. When the accelerometer drift and the
horizontal gravity disturbance have opposite signs, the
position accuracy may be reduced after DOV compensation.
However, with the development of rotation modulation
technology, the error of IMU can be modulated and com-
pensated. At this time, DOV compensation is more obvious
to improve the position accuracy of SINS.

1e land vehicle experiment with different SHM degrees
compensation was carried out in this part. 1e DOV data
calculated by the 360-degree, 900-degree, and 2190-degree

Table 2: Maximum position error data.

Without compensation (m) True position compensation (m) Calculated position compensation (m)

General area δL 4831 4294 4293
δλ −3039 −2729 −2730

Abnormal area δL 5359 4243 4267
δλ −3921 −2877 −3002

Figure 16: SINS in-vehicle experiment.
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Figure 17: Vehicle trajectory and attitude error curve. (a) Vehicle trajectory; (b) attitude error curve.
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SHM were compensated in navigation. 1e results of po-
sition errors with compensation are shown in Figure 20 and
the maximum position errors are listed in Table 4.

It is apparent that the compensation effect of 2190 de-
grees is relatively better than that of the 360 degrees and that

of the 900 degrees. 1e 2190-degree SHM is the optimal
choice to compensate, if the calculation time is not necessary
to consider in the offline compensation experiment; oth-
erwise, the 900-degree SHM is also enough for the DOV
compensation in navigation.
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Figure 18: Velocity error during the movement. (a) 1e east component; (b) the north component.
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Figure 19: Position error after compensation. (a) 1e latitude error; (b) the longitude error.

Table 3: Maximum experimental data after compensation.

Errors Before compensation After compensation
δVE (m/s) 1.0893 0.7257
δVN (m/s) 1.4807 1.3854
δL (m) −4069.9 −3762.4
δλ (m) 1215.9 1290.8
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7. Conclusions

(1) 1e propagation characteristics of the influence of the
DOV on the SINS are embodied as follows: the DOV
first enters the speed error channel, affecting the speed
error of the horizontal channel, and thus affects the
SINS position error and carrier attitude error after
integration.

(2) In the area where the DOV changes abnormally, the
SHM calculation degree has a greater impact on the
compensation effect, especially in the longitude error.
For long-endurance high-precision SINS with a posi-
tion accuracy requirement of 0.2nm/h, it is necessary to
consider the influence of the calculation degree on
DOV compensation.

(3) In the general area, the influence of the calculation error
of the DOV on the position accuracy after compen-
sation can be ignored.Meanwhile, in the abnormal area,
for inertial navigation systems that require a position
accuracy of 0.3nm/h, the influence of the calculation
error of the vertical deviation needs to be considered.
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