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In this paper, we investigate the pricing problems of European spread options with the floating interest rate. In this model,
uncertain differential equation and stochastic differential equation are used to describe the fluctuation of stock price and the
floating interest rate, respectively. We derive the pricing formulas for spread options including the European spread call option
and the European spread put option. Finally, numerical algorithms are provided to illustrate our results.

1. Introduction

Since financial derivatives have the function of hedging and
risk aversion, they are widely used in the financial market.
Options are special financial derivatives, and they are used
not only in the adjustment of the national debt but also in the
leveraged investment of enterprises and the hedging of
commodities. *e value of an option depends not only on
the price of its underlying asset but also on other factors such
as the interest rate. Since Black and Scholes [1] established
the B-S model, option pricing has become an important
issue in financial mathematical research.

However, the expected return of a stock is different from
the assumption of the B-S model in the financial market. In
order to better match with the real market, scholars have
improved the B-S model. Merton [2] proposed a jump-dif-
fusion model and gave the European option pricing formula.
Hull and White [3] studied the pricing problem for the Eu-
ropean option under stochastic volatility. Heston [4] investi-
gated the option pricing under stochastic interest rate and
studied the pricing problems of the bond and currency option.
Stock prices are easily affected by the social environment and
investor belief degrees, but the existing models and theories are
difficult to give a reasonable explanation. For dealing with the

uncertainty of human behavior, Liu [5] founded the uncer-
tainty theory based on normality, duality, subadditivity, and
product axioms. To describe uncertain dynamic systems, Liu
[6] introduced the concept of uncertain processes and pro-
posed uncertain differential equations driven by canonical Liu
process. Liu [7] proposed an uncertain stock model in which
stock price was described by an uncertain differential equation.
Subsequently, Chen [8] and Zhang and Liu [9] gave the pricing
formulas for the European option, American option, and
geometric Asian option, respectively. Considering the uncer-
tain fluctuations of the interest rate, Chen and Gao [10] firstly
studied the term structure of the uncertain interest rate. Yao
[11] proposed an uncertain stock model with floating interest
rate. Zhang et al. [12] derived the pricing formulas of interest
rate ceiling and interest rate floor. Sun and Su [13] studied the
pricing problems for the European andAmerican option under
the mean-reverting stock model. Gao et al. [14] discussed the
pricing formulas of lookback options based on the uncertain
exponential Ornstein–Uhlenbeckmodel.*e latest research on
the applications of uncertainty theory and probability theory
was given by Gao [15], Lu and Zhu [16], Li et al. [17], Yu et al.
[18, 19], and Zhang and Sun [20].

In this paper, we investigate the pricing problems for
European spread options. It is well known that spread
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options are path-dependent exotic options whose returns
depend on the spread of two or more assets. Although spread
options are widely traded in different financial markets, it is
still difficult to price such options. At present, there are
relatively few research studies on the pricing of spread op-
tions. It is well known that interest rate is an important factor
influencing the price of financial derivatives, and it is often
fluctuated by stochastic factors such as economy and policy.
Two stocks issued newly are considered in this paper, so the
lack of historical data leads to the unsuccessful investigation
on the price of spread options based on probability theory.
*us, basing uncertainty theory and probability theory (so-
called chance theory), we study the pricing of spread options
with a stochastic interest rate under uncertain environment.
We introduce some basic knowledge of uncertainty theory
and chance theory in Section 2. *en, we derive European
spread call option and put option pricing formulas with
stochastic interest rates and also give some numerical algo-
rithms to calculate the prices in Section 3. Finally, a brief
conclusion is given in Section 4.

2. Preliminaries

*is section mainly introduces uncertainty theory and
chance theory. Uncertainty theory is an effective tool for
dealing with reliability issues related to human uncertainty,
while chance theory is a basic tool to deal with complex
systems with randomness and uncertainty. *is section
provides some basic definitions and results on uncertainty
theory and chance theory. For more details, please see Liu’s
latest book [21].

2.1. Uncertainty 'eory

2.1.1. Uncertain Variable

Definition 1 (see Liu [5, 7]). Let L be a σ-algebra on a
nonempty set Γ. A set function M: L⟶ [0, 1] is called an
uncertain measure if it satisfies the following axioms:

Axiom 1 (normality axiom): M Γ{ } � 1 for the universal
set Γ.
Axiom 2 (duality axiom): M Λ{ } + M Λc{ } � 1 for any
event Λ.
Axiom 3 (subadditivity axiom): for every countable
sequence of events Λ1,Λ2, . . ., we have

M ∪
∞

i�1
Λi􏼨 􏼩≤ 􏽘

∞

i�1
M Λi􏼈 􏼉. (1)

Axiom 4 (product axiom): let (Γk, Lk, Mk) be uncer-
tainty spaces for k � 1, 2, . . .. *e product uncertain
measure M is an uncertain measure satisfying

M 􏽙
∞

k�1
Λk

⎧⎨

⎩

⎫⎬

⎭ � ∧
∞

k�1
Mk Λk􏼈 􏼉, (2)

where Λk are arbitrarily chosen events from Lk for
k � 1, 2, . . ., respectively.

Definition 2 (see Liu [5]). An uncertain variable is a function
from an uncertainty space (Γ, L, M) to the set of real
numbers; for any Borel set B of real numbers, the set

ξ ∈ B{ } � c ∈ Γ | ξ(c) ∈ B􏼈 􏼉, (3)

is an event.
*e uncertainty distribution Φ(x) of an uncertain

variable ξ is defined byΦ(x) � M ξ ≤ x{ } for any real number
x. An uncertainty distribution Φ(x) is said to be regular if it
is a continuous and strictly increasing function with respect
to x at which 0<Φ(x)< 1, and

lim
x⟶− ∞
Φ(x) � 0,

lim
x⟶+∞
Φ(x) � 1.

(4)

If ξ has a regular uncertainty distribution Φ(x), then the
inverse function Φ− 1(α) is called the inverse uncertainty
distribution of ξ.

Definition 3 (see Liu [7]). *e uncertain variables
ξ1, ξ2, . . . , ξm are said to be independent if

M ∩
m

i�1
ξi ∈ Bi􏼈 􏼉􏼨 􏼩 � ∧

m

i�1
M ξi ∈ Bi􏼈 􏼉, (5)

for any Borel sets B1, B2, . . . , Bm of real numbers.
Liu [22] proposed the operation law of uncertain vari-

ables and calculated the inverse uncertainty distribution of
strictly monotone function of uncertain variables.

Theorem 1 (see Liu [22]). Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with uncertainty distributions
Φ1,Φ2, . . . ,Φn. If the function f(x1, x2, . . . , xn) is strictly
increasing with respect to x1, x2, . . . , xm and strictly de-
creasing with xm+1, xm+2, . . . , xn, then

ξ � f ξ1, ξ2, . . . , ξm, ξm+1, ξm+2, . . . , ξn( 􏼁, (6)

is an uncertain variable with inverse uncertainty distribution

Ψ− 1
(α) � f Φ− 1

1 (α), . . . ,Φ− 1
m (α),Φ− 1

m+1(1 − α), . . . ,Φ− 1
n (1 − α)􏼐 􏼑.

(7)

Definition 4 (see Liu [5]).*e expected value of an uncertain
variable ξ is defined by

E[ξ] � 􏽚
+∞

0
M ξ ≥ x{ }dx − 􏽚

0

− ∞
M ξ ≤x{ }dx, (8)

provided that at least one of the two integrals exists.
For an uncertain variable ξ with an uncertainty distri-

bution Φ(x), if its expected value exists, Liu [5] showed that

E[ξ] � 􏽚
+∞

0
(1 − Φ(x))dx − 􏽚

0

− ∞
Φ(x)dx. (9)
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Theorem 2 (see Liu [22]). Assume the uncertain variable ξ
has a regular uncertainty distribution Φ; then,

E[ξ] � 􏽚
1

0
Φ− 1

(α)dα. (10)

2.1.2. Uncertain Differential Equations. Liu [6] proposed the
concept of uncertain process and defined the time integral of
uncertain process.

Definition 5 (see Liu [6]). Let T be an index set, and let
(Γ, L, M) be an uncertainty space. An uncertain process is a
measurable function from T × (Γ, L, M) to the set of real
numbers; for each t ∈ T and any Borel set B,

Xt ∈ B􏼈 􏼉 � c ∈ Γ | Xt(c) ∈ B􏼈 􏼉, (11)

is an event.
An uncertain process Xt is said to have independent

increments if Xt0
, Xt1

− Xt0
, Xt2

− Xt1
, . . . , Xtk

− Xtk− 1
are

independent uncertain variables, where t0 is the initial time
and t1, t2, . . . , tk are any times with t0 < t1 < · · · < tk. An
uncertain process Xt is said to have stationary increments if
for any given t> 0, the increments Xs+t − Xs are identically
distributed uncertain variables for all s> 0.

Definition 6 (see Liu [7]). An uncertain process Ct is said to
be a Liu process if

(i) Ct � 0, and almost all sample paths are Lipschitz
continuous.

(ii) Ct has stationary and independent increments.
(iii) Every increment Cs+t − Cs is a normal uncertain

variable with expected value 0 and variance t2,
whose uncertainty distribution is

Φt(x) � 1 + exp
− πx

�
3

√
t

􏼠 􏼡􏼠 􏼡

− 1

, x ∈ R. (12)

Definition 7 (see Liu [5]). Let Xt be an uncertain process,
and let Ct be a Liu process. For any partition of closed
interval [a, b] with a � t1 < t2 < · · · < tk+1 � b, the mesh is
written as

Δ � max
1≤i≤k

ti+1 − ti

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (13)

*en, Liu integral of Xt with respect to Ct is defined as

􏽚
b

a
XtdCt � lim

Δ⟶0
􏽘

k

i�1
Xt · Cti+1

− Cti
􏼐 􏼑, (14)

provided that the limit exists almost surely and is finite. In
this case, the uncertain process is said to be integrable.

Definition 8 (see Liu [6]). Suppose Ct is a Liu process, and f

and g are two functions. *en,

dXt � f t, Xt( 􏼁dt + g t, Xt( 􏼁dCt, (15)

is called an uncertain differential equation. A solution is an
uncertain process Xt that satisfies the equation identically in
t.

Definition 9 (see Yao and Chen [23]). Let α be a number
with 0< α< 1. An uncertain differential equation

dXt � f t, Xt( 􏼁dt + g t, Xt( 􏼁dCt, (16)

is said to have an α-path Xα
t if it solves the corresponding

ordinary differential equation:

dX
α
t � f t, X

α
t( 􏼁dt + g t, X

α
t( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Φ− 1

(α)dt, (17)

where Φ− 1(α) is the inverse uncertainty distribution of the
standard normal uncertain variable

Φ− 1
(α) �

�
3

√

π
ln

α
1 − α

. (18)

Theorem 3 (see Yao and Chen [23]). Let Xt and Xα
t be the

solution and α-path of the uncertain differential equation

dXt � f t, Xt( 􏼁dt + g t, Xt( 􏼁dCt, (19)

respectively. 'en,

M Xt ≤X
α
t ,∀t􏼈 􏼉 � α,

M Xt >X
α
t ,∀t􏼈 􏼉 � 1 − α.

(20)

2.2. Chance 'eory

Definition 10. Let (Γ, L, M) be an uncertainty space, and let
(Ω,F,P) be a probability space. *en, the product
(Γ, L, M) × (Ω,F, P) is called a chance space.

Definition 11 (see Liu [24]). Let (Γ, L, M) × (Ω,F, P) be a
chance space, and let Θ ∈ L × F be an event. *en, the
chance measure of Θ is defined as

Ch Θ{ } � 􏽚
1

0
P ω ∈ Ω|M c ∈ Γ|(c,ω) ∈ Θ􏼈 􏼉≥ x􏼈 􏼉dx. (21)

Theorem 4 (see Liu [24]). Let ξ be an uncertain random
variable on the chance space (Γ, L, M) × (Ω,F, P), and let B
be a Borel set of real numbers. 'en, ξ ∈ B{ } is an uncertain
random event with chance measure

Ch ξ ∈ B{ } � 􏽚
1

0
P ω ∈ Ω|M c ∈ Γ|(c,ω) ∈ B􏼈 􏼉≥x􏼈 􏼉dx.

(22)

Definition 12 (see Liu [24]). Let ξ be an uncertain random
variable. *en, its chance distribution is defined by

Φ(x) � Ch ξ ≤ x{ }, (23)

for any x ∈ R.
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Theorem 5 (see Liu [25]). Let η1, η2, . . . , ηm be independent
random variables with probability distributions
Ψ1,Ψ2, . . . ,Ψm, and let τ1, τ2, . . . , τn be independent un-
certain variables with uncertainty distributions
Υ1,Υ2, . . . ,Υn, respectively. If f is a measurable function, then
the uncertain random variable

ξ � f η1, η2, . . . , ηm, τ1, τ2, . . . , τn( 􏼁, (24)

has a chance distribution

Φ(x) � 􏽚
Rm

F x; y1, y2, . . . , ym( 􏼁dΨ1 y1( 􏼁dΨ2 y2( 􏼁 . . . dΨm ym( 􏼁,

(25)

where
F x; y1, y2, . . . , ym( 􏼁 � M f y1, y2, . . . , ym, τ1, τ2, . . . , τn( 􏼁≤x􏼈 􏼉

(26)

is the uncertainty distribution of f(y1, y2, . . . , ym, τ1,
τ2, . . . , τn) for any real numbers y1, y2, . . . , ym and is de-
termined by Υ1,Υ2, . . . ,Υn.

Definition 13 (see Liu [24]). Let ξ be an uncertain random
variable. *en, its expected value is defined by

E[ξ] � 􏽚
+∞

0
Ch ξ ≥ x{ }dx − 􏽚

0

− ∞
Ch ξ ≤x{ }dx, (27)

provided that at least one of the two integrals is finite.

Theorem 6 (see Liu [24]). Let ξ be an uncertain random
variable with chance distribution Φ. 'en,

E[ξ] � 􏽚
+∞

− ∞
xdΦ(x). (28)

Theorem 7 (see Liu [25]). Let η1, η2, . . . , ηm be independent
random variables with probability distributions
Ψ1,Ψ2, . . . ,Ψm, and let τ1, τ2, . . . , τn be independent un-
certain variables with uncertainty distributions
Υ1,Υ2, . . . ,Υn, respectively. If f is a measurable function, then
the uncertain random variable

ξ � f η1, η2, . . . , ηm, τ1, τ2, . . . , τn( 􏼁 (29)

has an expected value

E(ξ) � 􏽚
Rm

G y1, y2, . . . , ym( 􏼁dΨ1 y1( 􏼁dΨ2 y2( 􏼁 . . . dΨm ym( 􏼁,

(30)

where

G y1, y2, . . . , ym( 􏼁 � E f y1, y2, . . . , ym, τ1, τ2, . . . , τn( 􏼁􏼂 􏼃

(31)

is the uncertainty distribution of f(y1, y2, . . . , ym, τ1,
τ2, . . . , τn) for any real numbers y1, y2, . . . , ym and is de-
termined by Υ1,Υ2, . . . ,Υn.

Corollary 1. Let η1, η2, . . . , ηm be independent random
variables with probability distributions Ψ1,Ψ2, . . . ,Ψm, and

let τ1, τ2, . . . , τn be independent uncertain variables with
uncertainty distributions Υ1,Υ2, . . . ,Υn, respectively. If f and
g are measurable functions, then the uncertain random
variable

ξ � f η1, η2, . . . , ηm( 􏼁 × g τ1, τ2, . . . , τn( 􏼁, (32)

has an expected value

E(ξ) � E f η1, η2, . . . , ηm( 􏼁􏼂 􏼃 × E g τ1, τ2, . . . , τn( 􏼁􏼂 􏼃.

(33)

Proof. From *eorem 7, the expectation of the uncertain
random variable ξ can be given by the following equation:

E(ξ) � 􏽚
Rm

E f y1, y2, . . . , ym( 􏼁 × g τ1, τ2, . . . , τn( 􏼁􏼂 􏼃

dΨ1 y1( 􏼁dΨ2 y2( 􏼁 . . . dΨm ym( 􏼁

� 􏽚
Rm

f y1, y2, . . . , ym( 􏼁 × E g τ1, τ2, . . . , τn( 􏼁􏼂 􏼃

dΨ1 y1( 􏼁dΨ2 y2( 􏼁 . . . dΨm ym( 􏼁

� 􏽚
Rm

f y1, y2, . . . , ym( 􏼁dΨ1 y1( 􏼁dΨ2 y2( 􏼁 . . . dΨm ym( 􏼁

× E g τ1, τ2, . . . , τn( 􏼁􏼂 􏼃

� E f η1, η2, . . . , ηm( 􏼁􏼂 􏼃 × E g τ1, τ2, . . . , τn( 􏼁􏼂 􏼃.

(34)

□

3. European Spread Option Pricing Formulas

In this section, we discuss the pricing of spread options
under the stochastic interest rate environment where stock
prices follow uncertain exponential Ornstein–Uhlenbeck
process and uncertain log-normal process, respectively.
Firstly, we assume interest rate r, one stock price X, and
another stock price Y which satisfy the following differential
equation, respectively:

drt � a b − rt( 􏼁dt + σ0
��
rt

√ dWt,

dXt � μ1 1 − c lnXt( 􏼁Xtdt + σ1XtdC1t,

dYt � μ2Ytdt + σ2YtdC2t,

⎧⎪⎪⎨

⎪⎪⎩
(35)

where a, b, σ0, μ1, c, σ1, μ2, σ2 are some positive real numbers,
Wt is a Brownian motion, and C1t and C2t are independent
canonical Liu processes.

*en, the inverse uncertainty distribution of Xt, Yt is
given by Dai et al. [26] and Yao and Chen [23]. *e specific
form is as follows:

X
− 1
t (α) � exp exp − μ1ct( 􏼁lnX0 +

1 − exp − μ1ct( 􏼁

c
􏼠

1 +

�
3

√
σ1

μ1π
ln

α
1 − α

􏼠 􏼡􏼡,

(36)

Y
− 1
t (α) � Y0 exp μ2t +

�
3

√
σ2

π
t ln

α
1 − α

􏼠 􏼡. (37)
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In the next sections, the pricing formulas of the Euro-
pean spread call option and the European spread put option
are derived.

3.1.EuropeanSpreadCallOption. SupposeXt andYt are two
asset price processes. *en, the European spread call option
with maturity date T and strike price K is the contract that
pays

XT − YT − K( 􏼁
+
. (38)

Considering time value of the stock return, the present
value of the payoff is

exp − 􏽚
T

0
rtdt􏼠 􏼡 XT − YT − K( 􏼁

+
. (39)

European spread call option should be the expectation of
the discounted value of the stock return. So, the European
spread call option has a price

fEcall � E exp − 􏽚
T

0
rtdt􏼠 􏼡 XT − YT − K( 􏼁

+
􏼢 􏼣. (40)

Theorem 8. Suppose that the European spread call option for
the stock model (35) has a strike price K and an expiration
time T. 'en, the European spread call option pricing formula
is

fEcall � E exp − 􏽚
T

0
rtdt􏼠 􏼡􏼢 􏼣 􏽚

1

0
X

− 1
T (α) − Y

− 1
T (1 − α) − K􏼐 􏼑

+
dα.

(41)

Proof. According to Corollary 1, European spread call
option is given by the following form:

fEcall � E exp − 􏽚
T

0
rtdt􏼠 􏼡􏼢 􏼣E XT − YT − K( 􏼁

+
􏼂 􏼃. (42)

Since Xt, Yt are independent uncertain processes, their
α-path are, respectively, given by formulas (36) and (37).
According to *eorem 1, the value of investor’s return
difference at the maturity date T,

XT − YT − K( 􏼁
+
, (43)

has the α-path

X
− 1
T (α) − Y

− 1
T (1 − α) − K􏼐 􏼑

+
. (44)

So, the expectation of the uncertain variable
(XT − YT − K)+ can be derived easily:

E XT − YT − K( 􏼁
+

􏼂 􏼃 � 􏽚
1

0
X

− 1
T (α) − Y

− 1
T (1 − α) − K􏼐 􏼑

+
dα.

(45)

*us, the price of the European spread call option is

fEcall � E exp − 􏽚
T

0
rtdt􏼠 􏼡􏼢 􏼣 􏽚

1

0
X

− 1
T (α) − Y

− 1
T (1 − α) − K􏼐 􏼑

+
dα.

(46)

*epricing formula of the European spread call option is
derived.

From*eorem 8, the algorithm designed for calculating
European spread call option price is divided by two parts. In
the first procedure, E[exp(− 􏽒

T

0 rtdt)] is calculated by
Monte Carlo simulation. In the second procedure,
E[(XT − YT − K)+] can be calculated by using the property
of inverse distribution. In the final procedure, European
spread call option price is derived by virtue of *eorem 8.

In the first procedure, we will calculate
E[exp(− 􏽒

T

0 rtdt)]. We will first generate some sample
trajectories by stochastic simulations and calculate the av-
erage of the terminal trajectories.

Step 0: set tj � jT/M, k � 1, 2, . . . , L, j � 1, 2, . . . , M,
where L and M are two large numbers.
Step 1: set k � 0.
Step 2: set k⟵ k + 1.
Step 3: set j � 0.
Step 4: set j⟵ j + 1.
Step 5: calculate the value of the stochastic interest rate
at the time tj:

r
k
tj

� r
k
tj− 1

+ a b − r
k
tj− 1

􏼒 􏼓 tj − tj− 1􏼐 􏼑 + σ0
����
rk

tj− 1

􏽱 �������
tj − tj− 1

􏽱
εk

j ,

(47)

where εk
j ∼ N(0, 1) are generated by stochastic

simulations.
Step 6: calculate the discount rate:

exp − 􏽚
T

0
r

k
t dt􏼠 􏼡⟵ exp −

T

M
􏽘

M

j�1
r

k
tj

⎛⎝ ⎞⎠. (48)

Step 7: calculate the approximated value of
E[exp(− 􏽒

T

0 rtdt)]:

E exp − 􏽚
T

0
rtdt􏼠 􏼡􏼢 􏼣⟵

1
L

􏽘

L

k�1
exp −

T

M
􏽘

M

j�1
r

k
tj

⎛⎝ ⎞⎠. (49)

In the second procedure, we will calculate
E[(XT − YT − K)+].

Step 0: set αi � i/N, i � 1, 2, . . . , N − 1, where N is a
large number.
Step 1: set i � 0.
Step 2: set i⟵ i + 1.
Step 3: calculate the inverse uncertainty distribution of
the stock processes:

Mathematical Problems in Engineering 5



X
− 1
T αi( 􏼁 � exp exp − μ1cT( 􏼁lnX0 +

1
c

1 − exp − μ1cT( 􏼁( 􏼁􏼒

1 +

�
3

√
σ1

μ1π
ln

αi

1 − αi

􏼠 􏼡􏼡,

Y
− 1
T 1 − αi( 􏼁 � Y0 × exp μ2T +

�
3

√
σ2

π
T ln

1 − αi

αi

􏼠 􏼡.

(50)

Step 4: set

βαi ⟵ max X
− 1
T αi( 􏼁 − Y

− 1
T 1 − αi( 􏼁 − K, 0􏼐 􏼑. (51)

If i<N − 1, then return to Step 2.
Step 5: calculate the expectation of (XT − YT − K)+:

E XT − YT − K( 􏼁
+

􏼂 􏼃⟵
1

N − 1
􏽘

N− 1

i�1
βαi . (52)

In the final procedure, the price of the European spread
call option is derived by using *eorem 8.

□

Example 1. Assume that the parameters of interest rate are
r0 � 0.08, a � 0.05, σ0 � 0.04, b � 2, the parameters of stock
price X are X0 � 5, μ1 �

�
3

√
, σ1 � 0.3, c � 0.3, and the pa-

rameters of stock price Y are Y0 � 4, μ2 � 1, σ2 � 0.2. *en,
the price of the European spread call option with maturity
date T � 1 and strike price K � 1 is fEcall � 2.0372.

3.2. European Spread Put Option. Suppose Xt and Yt are two
asset price processes. *en, the European spread put option
withmaturity dateT and strike priceK is the contract that pays

K − XT − YT( 􏼁( 􏼁
+
. (53)

Considering time value of the stock return, the present
value of the payoff is

exp − 􏽚
T

0
rtdt􏼠 􏼡 K − XT − YT( 􏼁( 􏼁

+
. (54)

European spread put option should be the expectation of
the discounted value of the stock return. So, the European
spread put option has a price

fEput � E exp − 􏽚
T

0
rtdt􏼠 􏼡 K − XT − YT( 􏼁( 􏼁

+
􏼢 􏼣. (55)

Theorem 9. Suppose that the European spread put option for
the stock model (35) has a strike price K and an expiration
time T. 'en, the European spread put option pricing formula
is

fEput � E exp − 􏽚
T

0
rtdt􏼠 􏼡􏼢 􏼣 􏽚

1

0
K − X

− 1
T (1 − α) − Y

− 1
T (α)􏼐 􏼑􏼐 􏼑

+
dα.

(56)

Proof. According to Corollary 1, the European spread put
option can be given in the following form:

fEput � E exp − 􏽚
T

0
rtdt􏼠 􏼡􏼢 􏼣E K − XT − YT( 􏼁( 􏼁

+
􏼂 􏼃. (57)

Since Xt, Yt are independent uncertain processes, their
α-path are, respectively, given by formulas (36) and (37).
According to *eorem 1, the uncertain variable

K − XT − YT( 􏼁( 􏼁
+
, (58)

has the α-path

K − X
− 1
T (1 − α) − Y

− 1
T (α)􏼐 􏼑􏼐 􏼑

+
. (59)

So, the expectation of the uncertain variable
(K − (XT − YT))+ is given by the following equation:

E K − XT − YT( 􏼁( 􏼁
+

􏼂 􏼃 � 􏽚
1

0
K − X

− 1
T (1 − α) − Y

− 1
T (α)􏼐 􏼑􏼐 􏼑

+
dα.

(60)

*us, the price of the European spread put option is

fEput � E exp − 􏽚
T

0
rtdt􏼠 􏼡􏼢 􏼣 􏽚

1

0
K − X

− 1
T (1 − α) − Y

− 1
T (α)􏼐 􏼑􏼐 􏼑

+
dα.

(61)

*epricing formula of the European spread put option is
also derived.

From*eorem 9, the algorithm designed for calculating
European spread put option price is the same as the pro-
cedure for calculating European spread call option price.
Now, we will list the main procedures to calculate European
spread put option price. First, we will calculate the expec-
tation of exp(− 􏽒

T

0 rtdt).

Step 0: set tj � jT/M, k � 1, 2, . . . , L, j � 1, 2, . . . , M,
where L and M are two large numbers.
Step 1: set k � 0.
Step 2: set k⟵ k + 1.
Step 3: set j � 0.
Step 4: set j⟵ j + 1.
Step 5: calculate the value of the stochastic interest rate
at the time tj:

r
k
tj

� r
k
tj− 1

+ a b − r
k
tj− 1

􏼒 􏼓 tj − tj− 1􏼐 􏼑 + σ0
����
rk

tj− 1

􏽱 �������
tj − tj− 1

􏽱
εk

j ,

(62)

where εk
j ∼ N(0, 1) are generated by stochastic

simulations.
Step 6: calculate the discount rate:

exp − 􏽚
T

0
r

k
t dt􏼠 􏼡⟵ exp −

T

M
􏽘

M

j�1
r

k
tj

⎛⎝ ⎞⎠. (63)

Step 7: calculate the approximated value of
E[exp(− 􏽒

T

0 rtdt)]:
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E exp − 􏽚
T

0
rtdt􏼠 􏼡􏼢 􏼣⟵

1
L

􏽘

L

k�1
exp −

T

M
􏽘

M

j�1
r

k
tj

⎛⎝ ⎞⎠. (64)

Second, we will calculate E[(K − (XT − YT))+].

Step 0: set αi � i/N, i � 1, 2, . . . , N − 1, where N is a
large number.
Step 1: set i � 0.
Step 2: set i⟵ i + 1.
Step 3: calculate the inverse uncertainty distribution of
the stock processes:

X
− 1
T 1 − αi( 􏼁 � exp exp − μ1cT( 􏼁lnX0 +

1
c

1 − exp − μ1cT( 􏼁( 􏼁􏼒

1 +

�
3

√
σ1

μ1π
ln
1 − αi

αi

􏼠 􏼡􏼡,

Y
− 1
T αi( 􏼁 � Y0 exp μ2T +

�
3

√
σ2

π
T ln

αi

1 − αi

􏼠 􏼡.

(65)

Step 4: set

c
αi⟵ max K − X

− 1
T 1 − αi( 􏼁 − Y

− 1
T αi( 􏼁􏼐 􏼑, 0􏼐 􏼑. (66)

If i<N − 1, then return to Step 2.
Step 5: calculate the expectation of (K − (XT − YT))+:

E K − XT − YT( 􏼁( 􏼁
+

􏼂 􏼃⟵
1

N − 1
􏽘

N− 1

i�1
c
αi . (67)

In the final procedure, the price of the European spread
put option is derived by using *eorem 9.

□

Example 2. Assume that the parameters of interest rate are
r0 � 0.08, a � 0.05, σ0 � 0.04, b � 2, the parameters of stock
price X are X0 � 5, μ1 �

�
3

√
, σ1 � 0.3, c � 0.3, and the pa-

rameters of stock price Y are Y0 � 4, μ2 � 1, σ2 � 0.2. *en,
the price of the European spread put option with maturity
date T � 1 and strike price K � 1 is fEput � 1.9059.

4. Conclusions

In this paper, we discuss the pricing of European spread
options with the floating interest rate by chance theory.
Some numerical algorithms are designed to calculate the
price, and numerical simulations of spread options are given.
Future research can think about some other multiasset
option pricing problems.
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