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)is paper studies a class of cooperative games, called graphical cooperative games, where the internal topology of the coalition
depends on a prescribed communication graph among players. First, using the semitensor product of matrices, the value function
of graphical cooperative games can be expressed as a pseudo-Boolean function. )en, a simple matrix formula is provided to
calculate the Shapley value of graphical cooperative games. Finally, some practical examples are presented to illustrate the
application of graphical cooperative games in communication-based coalitions and establish the significance of the Shapley value
in different communication networks.

1. Introduction

Game theory provides a formal mathematical formation to
describe the complex interactions among rational players
[1]. In general, game theory can be divided into two
branches: noncooperative games and cooperative games. In
noncooperative game theory, the fundamental unit of study
is the individual player, and the theory studies the strategic
choices in the interactions among competing players. By
contrast, the fundamental unit in cooperative game theory is
the set of players or coalition, and the theory studies the
behaviour of rational players when they cooperate. )e
fundamental problem in cooperative game theory is how to
allocate the profit or value of a coalition to its individual
players in such a way that players are encouraged to co-
operate. A fair allocation that has been widely used is the
Shapley value [2].

In recent years, there has been an increasing amount of
research on using graph theory to cooperative games, where
the players are interconnected and communicate with others
in a network graph. For modelling the communication
graph, cooperative games in the graph form, called graphical

cooperative games or graphical coalitional games, are in-
troduced by Myerson in [3]. )ese are games where the
internal structure of the coalition is described by a network.
In the network, nodes represent players and two players are
interpreted to have an edge between them if and only if they
can communicate with each other. In such games, unlike the
value of a coalition depending solely on the members of that
coalition in canonical cooperative games, the value function
will be dependent of how the players are interconnected
within the coalition. In [4–6], the formation and stability of
coalitions given an underlying communication graph are
studied, and its applications to communication networks
have been investigated. In [7], the graphical coalitional
games are studied with applications to economic and social
networks, and the authors have analyzed the stability of
networks when players can choose to form and maintain the
links between them. )is game model is also used to study
biologic networks [8] and so on.

It is pointed out in [3] that the Shapley value is the only
possible function that provides a fair allocation in graphical
coalitional games. However, its computational complexity
becomes an obstacle both in practical applications and
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theoretical deductions [9]; a remark is also presented in [6]
to state that “the Shaple value is computationally expensive,
but for fairly large structures one time computation is still
affordable. For such a graph that even one time computation
is not affordable, approximations can be used for its com-
putation.” In our recent work [10], a simple matrix formula
is obtained to calculate the Shapley value and the basic
mathematical method is the semitensor product of matrices
(STP), which is a generalization of the traditional matrix
product [11]. )is method has been successfully applied in
the analysis and control problems of logical networks
[12–25], and then it has been used in finite game theory
[26–30], evolutionary games [31–38], finite automata
[39, 40], graph theory [41], etc. Unlike the canonical co-
operative games being considered in [10], this paper studies
a new class of cooperative games, called graphical cooper-
ative games. Wang et al. [10] have provided the matrix
formulas to calculate the symmetric and weighted Shapley
values for canonical cooperative n-person games. However,
this paper proposes a simple formula to calculate the Shapley
value of graphical cooperative games, and it is more com-
putationally complex than the formulas in [10].

)e paper is organized as follows. A brief review for the
STPmethod and graphical cooperative games is presented in
Section 2. In Section 3, the matrix formula of the Shapley
value in graphical cooperative games is presented. Section 4
discusses the practical applications of graphical cooperative
games to some communication networks. Section 5 is a brief
conclusion.

Before ending this section, we present some notations
used in this paper. D : � 0, 1{ }. Δn : � δi

n | i � 1, . . . , n ,
where δi

n is the ith column of the identity matrix In.Rn is the
n dimensional Euclidean space.Mm×n denotes the set of m ×

n real matrices. Col(M) (Row(M)) is the set of columns
(rows) of M and Coli(M) (Rowi(M)) is the ith column
(row) of M. 1ℓ � (1, 1, . . . , 1)√√√√√√√√√√

ℓ

T. Amatrix L ∈Mm×n is called

a logical matrix if the columns of L are of the form of δk
m, that

is, Col(L) ⊂ Δm. Denote by Lm×n the set of m × n logical
matrixes.

2. Preliminaries

2.1.SemitensorProductofMatrices. )ebasic technique used
in this paper is the STP of matrices. We can refer to [11] for
details.

Definition 1. Let M ∈Mm×n, N ∈Mp×q, and t � lcm n, p 

be the least common multiple of n and p. )e STP of M

and N is defined as

M∝ N ≔ M ⊗ It/n(  N ⊗ It/p  ∈Mmt/n×qt/p, (1)

where ⊗ is the Kronecker product. As a generalization of the
conventional matrix product, the STP of matrices keeps the
useful properties of the conventional matrix product
available. For convenience, the symbol ”∝ ” may be omitted
without confusion.

Next, we present some properties of the STP used in this
paper.

Proposition 1. Let X ∈ Rm be a column and M be a matrix.
3en,

X∝M � Im ⊗ M( X. (2)

The STP has pseudocommutative properties, and the
swap matrix is defined as follows.

Definition 2 )e matrix W[m,n] ∈Mmn×mn, defined by

W[m,n] � δmn[1, m + 1, . . . , (n − 1)m + 1; 2, m

+ 2, . . . , (n − 1)m + 2; . . . ; m, 2m, . . . , nm],

(3)

is called the (m, n)th dimensional swap matrix.

Proposition 2. Let X ∈ Rm and Y ∈ Rn be two columns.
3en,

W[m,n]∝X∝Y � Y∝X. (4)

If x is a logical variable, then x ∈ D. To use vector
expression of logical values, we identify 1 ∼ δ12 ∈ Δ and
0 ∼ δ22 ∈ Δ. Now, a pseudological (or logical) function can be
expressed as an algebraic form.

Theorem 1. Let f : Dn⟶ R (or f : Dn⟶ D) be a
pseudological (or logical) function. 3en, there exists a unique
vector (or matrix) Mf ∈ R1×2n

(or Mf ∈L2×2n ), such that

f x1, x2,. . ., xn(  � Mf∝
n
i�1xi, (5)

where Mf is called the structure vector (or matrix) of f, which
can be calculated as

Colj Mf  � f δj

kn , j � 1, 2, . . . , k
n
. (6)

2.2. Graphical Cooperative Games. In essence, a canonical
cooperative game involves a set of players, denoted by
N � 1, 2, . . . , n{ }, who seek to form cooperative groups in
order to strengthen their positions in the game. Any subset
of N is called a coalition, and N is called the grand coalition.
)e second fundamental concept of the canonical cooper-
ative game is the characteristic function or value function,
denoted by υ: 2N⟶ Rwith υ(∅) � 0, which quantifies the
worth of a coalition in a game. )erefore, a canonical co-
operative game can be denoted by a pair (N, υ) [4]. In
general, we can identify a cooperative game (N, υ) with its
value function υ, since for every υ a different game may be
defined.

Next, we give the definition of graphical cooperative
games.

Definition 3 (see [6]). A graphical cooperative game is
denoted by Γ � (G, υ), where

(1) G � (V, E) is an undirected graph with
V � 1, 2, . . . , n{ } a finite nonempty set of players and
E ⊆ V × V a set of edges. )e elements of V are also
called nodes or vertices. )e number of elements in
V is called the order or size of G and is denoted as

2 Mathematical Problems in Engineering



|G| � n. In this paper, we only consider that G is a
simple graph, that is, G does not contain self-loops
and multiple edges. Let S � (V′, E′) be a graph such
that V′ ⊆ V and E′ ⊆ E; then, S is called a subgraph
of G. If E′ contains all the edges e � i, j  ∈ E with
i, j ∈ V′, then S is called an induced subgraph of G

and denoted as S ⊆ G.
(2) υ: 2G⟶ R is called the value function or charac-

teristic function with υ(∅) � 0, where 2G is the
collection of all the induced subgraphs of G. It should
be noted that υ is required to satisfy four axioms of
value [6].

For every induced subgraph S ⊆ G, that is, S ∈ 2G, the
value function υ(S) can be expressed as a pseudological
function υ: Dn⟶ R by using the logical variables; then, we
have

υ(S) � v x
S
1, x

S
2,

. . . , x
S
n , S ∈ 2G

, (7)

where xS
i ∈ D is a logical variable and

x
S
i �

1, i ∈ S,

0, i ∉ S.
 (8)

Define a lexicographic order as

T ≺ S⟷ d(T)>d(S), (9)

where d(R) � 
n
i�1 2

n− ixR
i is a decimal number corre-

sponding to each induced subgraph R ∈ 2G, and its binary
number is b(R) � xR

1 xR
2 · · · xR

n . )at is, we can describe
b(R1) � 1 1 . . . 1 1, b(R2) � 1 1 . . . 1 0, b(R3) � 1 1 . . . 0 1,
· · ·, b(R2n ) � 0 0 . . . 0 0.

Using )eorem 1, for every pseudological function υ, we
can find its structure vector Cv ∈ R2n

, such that equation (7)
can be expressed into its matrix form as

υ(S) � Cvx
S
, (10)

where xS � ∝ n
i�1x

S
i ∈ Δ2n and Cv : � [υ(b(R1)),

υ(b(R2)), . . . , υ(b(R2n ))]. Because of υ(∅) � 0, the last el-
ement of Cv is 0, that is, υ(b(R2n )) � 0.

3. Matrix Formula of the Shapley Value in
Graphical Cooperative Games

In this section, we give a matrix formula to calculate the
Shapley value in graphical cooperative games in order to
reduce the computational complexity. First, we define the
Shapley value of player i in graphical cooperative games.

Definition 4 (see [6]). Consider a graphical cooperative
game Γ � (G, υ); the Shapley value of player i is defined as

φG
υ (i) �

1
|G|


S⊆G\ i{ }

(υ(S ∪ i{ }) − υ(S))

| G| − 1
|S|

 

, i � 1, 2, . . . , n,

(11)

where S ⊆ G\ i{ } means S is an induced subgraph of G\ i{ },
and S ∪ i{ } is an induced subgraph of G that contains all the
players in S and player i.

Since |G| � n, then we have
|G| − 1

|S|
  � C

|S|
n− 1 �

(n − 1)!

|S|!(n − 1 − |S|)!
. (12)

Plugging it into (11) yields

φG
υ (i) � 

S⊆G\ i{ }

|S|!(n − 1 − |S|)!

n(n − 1)!
[υ(S ∪ i{ }) − υ(S)]

� 
S⊆G\ i{ }

|S|!(n − 1 − |S|)!

n!
[υ(S ∪ i{ }) − υ(S)].

(13)

According to (10), we have the matrix expression as

υ(S ∪ i{ }) − υ(S) � Cv x
S
1 · · · x

S
i− 1

1

0
⎡⎢⎣ ⎤⎥⎦x

S
i+1 · · · x

S
n − x

S
1 · · · x

S
i− 1

0

1
⎡⎢⎣ ⎤⎥⎦x

S
i+1 · · · x

S
n

⎛⎝ ⎞⎠

� Cv W 2,2i− 1[ ]

1

0
⎡⎢⎣ ⎤⎥⎦x

S
1 · · · x

S
i− 1x

S
i+1 · · · x

S
n − W 2,2i− 1[ ]

0

1
⎡⎢⎣ ⎤⎥⎦x

S
1 · · · x

S
i− 1x

S
i+1 · · · x

S
n

⎛⎝ ⎞⎠

� Cv W 2,2i− 1[ ]

1

− 1
⎡⎢⎣ ⎤⎥⎦x

S
1 · · · x

S
i− 1x

S
i+1 · · · x

S
n

⎛⎝ ⎞⎠,

(14)
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where ⋉nj�1
j≠ix

S
j ∈ Δ2n− 1 , and in vector form,

x
S
j �

δ12, j ∈ S,

δ22, j ∉ S.

⎧⎨

⎩ (15)

It follows that

x
S
1 · · · x

S
i− 1x

S
i+1 · · · x

S
n � δj

2n− 1 , j � 1, 2, . . . , 2n− 1
. (16)

According to Definition 2, we have

W 2,2i− 1[ ]

1

− 1
  � diag

1

− 1
 , . . . ,

1

− 1
 

√√√√√√√√√√√√√√
2i− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈M2i×2i− 1 .

(17)

)en, we obtain that

W 2,2i− 1[ ]

1

− 1
 δj

2n− 1 � W 2,2i− 1[ ]

1

− 1
  ⊗ I2n− i δj

2n− 1 � Colj Ti( ,

(18)

where

Ti � W 2,2i− 1[ ]

1

− 1
   ⊗ I2n− i

� diag
I2n− i

− I2n− i

 , . . . ,
I2n− i

− I2n− i

 

√√√√√√√√√√√√√√√√√√√√
2i− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈M2n×2n− 1 .

(19)

Similar to the construction in [10], we construct a vector
ℓj as follows:

ℓ1 �
1

0
⎡⎢⎣ ⎤⎥⎦,

ℓk+1 �
ℓk + 12k

ℓk

⎡⎢⎣ ⎤⎥⎦ ∈ R2k+1
, k � 1, 2, 3, . . . .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

Let |S| � |δα2n− 1 | � ℓαn− 1, α � 1, 2, . . . , 2n− 1, where ℓαn− 1
denotes the αth element of ℓn− 1. Use ℓn− 1 to construct a new
column vector ηn− 1 � [η1n− 1, η

2
n− 1,

. . . , η2n− 1

n− 1 ]T, where

ηαn− 1 � ℓαn− 1( ! n − 1 − ℓαn− 1( ! , α � 1, 2, . . . , 2n− 1
. (21)

Set ξ � ηn− 1, and we divide ξ into k equal blocks as
follows:

ξ � ξ1k, ξ2k, . . . , ξk
k 

T
, k � 1, 2, 22, . . . , 2n− 1

. (22)

)at is, when k � 2, then ξ can be divided into two equal

blocks ξ �
ξ12
ξ22

 , . . ., and when k � 2n− 1, then

ξ � [ξ12n− 1 , ξ22n− 1 , . . . , ξ2
n− 1

2n− 1]
T.

Based on the abovementioned derivation, the Shapley
value (13) can be written as

φG
υ (i) �

1
n!



2n− 1

j�1
Cvη

j
n− 1W 2,2i− 1[ ]

1

− 1
⎡⎣ ⎤⎦δj

2n− 1

�
1
n!

Cv · 
2n− 1

j�1
ηj

n− 1Colj Ti( 

�
1
n!

Cv ·

ξ12i− 1

− ξ12i− 1

ξ22i− 1

− ξ22i− 1

⋮,

ξ2
i− 1

2i− 1

− ξ2
i− 1

2i− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i � 1, 2, . . . , n.

(23)

)en, we have the following result for calculating the
Shapley value in graphical cooperative games.

Theorem 2. Consider a graphical cooperative game
Γ � (G, υ), its Shapley value can be calculated by the fol-
lowing matrix formula:
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φG
υ � φG

υ (1)φG
υ (2) . . . φG

υ (n)  �
1
n!

Cv · Ξ, (24)

where

Ξ �

ξ12n− 1

− ξ12n− 1

ξ12 ξ22n− 1

ξ11 − ξ12 · · · − ξ22n− 1

− ξ11 ξ22 ⋮

− ξ22 ξ2
n− 1

2n− 1

− ξ2
n− 1

2n− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈M2n×n. (25)

Remark 1. In the conversional formula of the Shapley value
(13), the computational complexity is O(n!2). Using the STP
method, a simple matrix form of the Shapley value is
provided in)eorem 2. Observing (24), in order to calculate
the Shapley value, we just need to discuss the computational
complexity of matrix Ξ. Obviously, the dimension of Ξ is
2n × n and with the help of MATLAB, the matrix Ξ can be
easily obtained by using the recursive algorithm, which is the
major advantage of )eorem 2.

4. Practical Examples of Graphical
Cooperative Games

In this section, we consider some practical examples of
graphical cooperative games, which are presented in [6].
)ese examples show the applications of graphical coop-
erative games to communication network of sensor nodes.
Nodes communicate with each other through links.

Example 1. Assume that the value of a communication
network is the number of nodes pairs which can commu-
nicate with each other; then, the value function for a con-
nected graph of size n is

υn �
C2

n, n> 1,

0, n � 1.
 (26)

)ree different communication networks between six
nodes are shown in Figure 1.

Using (10), the value function of graph Ga shown in
Figure 1(a) can be expressed as

υGa
(S) � C

Ga

v ∝
6
i�1x

S
i , (27)

where C
Ga
v ∈ R26 is a row vector; using (26), it is easy to

calculate that

C
Ga

v � [6 4 4 3 4 3 3 3 4 2 2 1 2 1 1 1 3 1 1 0 1 0 0 0 3 1 1 0 1 0 0 0

4 2 2 1 2 1 1 1 3 1 1 0 1 0 0 0 3 1 1 0 1 0 0 0 3 1 1 0 1 0 0 0] .

(28)

)en, we construct a column vector ℓ5 ∈ R25 as

ℓ5 � [ 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0]
T
.

(29)

According to (21), a new column vector ξ can be cal-
culated as

ξ � [120 24 24 12 24 12 12 12 24 12 12 12 12 12 12 24

24 12 12 12 12 12 12 24 12 12 12 24 12 24 24 120 ]
T

.
(30)

Now, we divide ξ into k equal blocks, where
k � 1, 2, 22, 23, 24, 25.

Using )eorem 2, we have

Ξ �

120 120 120 120 120 120

24 24 24 24 24 − 120

24 24 24 24 − 120 24

12 12 12 12 − 24 − 24

24 24 24 − 120 24 24

12 12 12 − 24 12 − 24

12 12 12 − 24 − 24 12

12 12 12 − 12 − 12 − 12

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

− 12 − 12 − 12 12 12 12

− 12 − 12 − 12 24 24 − 12

− 12 − 12 − 12 24 − 12 24

− 24 − 24 − 24 120 − 24 − 24

− 12 − 12 − 12 − 12 24 24

− 24 − 24 − 24 − 24 120 − 24

− 24 − 24 − 24 − 24 − 24 120

− 120 − 120 − 120 − 120 − 120 − 120

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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∈M26×6.

(31)

According to (24), we can easily obtain its Shapley value by
using MATLAB software, which is presented as

φGa

υ �
1
6!

C
Ga

v · Ξ � [0.833 1.333 0.833 1 1 1]. (32)

Similarly, the Shapley value of each node in Figures 1(b)
and 1(c) can also be given by
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φGb

υ �
1
6!

C
Gb

v · Ξ � [1.667 4.167 1.667 3.833 1.833 1.833],

φGc

υ �
1
6!

C
Gc

v · Ξ � [ 2.35 3.683 1.75 2.65 2.517 2.05],

(33)

where

C
Gb
v � [15 10 10 6 4 3 3 3 10 6 6 3 2 1 1 1 3 1 1 0 1 0 0 0

3 1 1 0 1 0 0 0 10 6 6 3 2 1 1 1 6 3 3 1 1 0 0 0

3 1 1 0 1 0 0 0 3 1 1 0 1 0 0 0],

C
Gc
v � [15 10 10 6 10 6 3 3 10 6 6 3 6 3 1 1 6 3 1 0 3 1 0 0

6 3 1 0 3 1 0 0 10 6 6 3 2 1 1 1 6 3 3 1 1 0 0 0

3 1 1 0 1 0 0 0 3 1 1 0 1 0 0 0].

(34)

It is shown that, in three network graphs, the only
difference is the structure vector of value function, which is
dependent of its corresponding communication graph.
)erefore, for a communication network with the same
number of nodes, the matrix Ξ is the same. Besides, it is to be
noted that our computational results coincide with the
values presented in [6].

Based on the above calculated Shapley values, it can be
seen that the more a node is involved in the communication
network, the more is its Shapley value. For example, in
Figure 1(a), node 2 is more vital than any of the nodes 4, 5,
and 6, since node 2 exclusively supports the communication
between nodes 1 and 3. Comparing Figures 1(b) and 1(c), the
addition of new link between nodes 1 and 5 in Figure 1(c)
can support the communication between nodes 1 and 5,
which is exclusively supported by the link between nodes 2
and 4 in Figure 1(b); hence, it assigns more Shapley values to
nodes 2 and 4 in Figure 1(b).

)e following example presented in [6] shows that, for
some communication networks with special structure to-
pologies, the Shapley value can be simple to calculate re-
gardless of the number of players.

Example 2. Consider a network with n nodes, the structure
topology between them is a star graph with node 1 as the star
point. In [6], a simple formula to compute the Shapley value
of each node is given and this formula holds for any number
n of nodes. Using our matrix formula (24) in)eorem 2, it is
also easy to calculate the Shapley value, and it is shown that,
for the star graph between n nodes, the computational
complexity between the formula in [6] and our matrix
formula (24) is the same. Moreover, it is obvious that, in a
star graph for the structure vector Cv of value function in
(10), the last R2n− 1

elements of Cv are all 0, since xS
1 � 0. For

example, when n � 6, the network graph is described in
Figure 2, and its structure vector can be calculated that

Cv � [15, 10, 10, 6, 10, 6, 6, 3, 10, 6, 6, 3, 6, 3, 3, 1, 10, 6, 6, 3, 6, 3, 3, 1, 6, 3, 3, 1, 3, 1, 1, 0, 0, . . . , 0] ∈ R26
. (35)

Using (24), where Ξ is the same as in example 1, we have
its Shapley value as

φG
υ (1) � 5.833,

φG
υ (i) � 1.833, i � 2, . . . , 6.

⎧⎨

⎩ (36)

1 3

2

4

65

(a)

1 3

2

4

65

(b)

1 3

2

4

65

(c)

Figure 1: Communication network graphs.

6 Mathematical Problems in Engineering



It is established that node 1 is the most vital node in this
communication graph.

From these two simple examples, it is worth noting the
advantage of our result in )eorem 2. Regardless of the
structure topology for communication networks, we only
need to calculate the matrix Ξ, which is easily obtained by
using recursive algorithm with the help of MATLAB.
However, it is pointed in [6] that the Shapey value is
computationally expensive and for a fairly large graph even
one time computation is not affordable.

5. Conclusion

)is paper considers a new class of cooperative games, called
graphical cooperate games. Using the STP method, the value
function is presented as a pseudo-Boolean function, and a
corresponding formula is obtained to calculate the Shapley
value for graphical cooperate games.)en, the worth of each
player in a coalition based on its connectivity in commu-
nication network can be explored. Some examples are given
to demonstrate the theoretical results. In our future work, we
will study more useful properties of graphical cooperative
games based on the Shapley value.

With the rapid development of science, the game-the-
oretic approach will be a promising new method for
studying more control problems in the future, such as
synchronization [42–49], and consensus problems [50–53].
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