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In this paper, we investigate the antisynchronization problem of a class of hyperchaotic systems with both model uncertainty and
external disturbance. Firstly, combining the dynamic feedback control method and the uncertainty and disturbance estimation
(UDE)-based control method, we propose a new UDE-based dynamic feedback control method. Secondly, we take the 4D
hyperchaotic system as an example and realize the antisynchronization problem of such system. Finally, the effectiveness and
correctness of the proposed method is verified by numerical simulation.

1. Introduction

Chaotic behavior has been extensively analyzed in many
fields, e.g., engineering, medicine, ecology, biology, and
economics, even in social science. In 1990, Pecora and Carroll
first discovered the phenomenon of chaotic synchronization
[1]. Many types of synchronization problems have been
proposed successively, including complete synchronization,
generalized synchronization, phase synchronization, lag
synchronization, and projective synchronization, see Refer-
ences [2–8]. Later, antisynchronization or antiphase syn-
chronization [9] was proposed. So far, many methods have
been proposed to realize chaotic antisynchronization, such as
active control, adaptive control, linear feedback control,
sliding mode control, and time-delay feedback approach, see
References [10–22] and the references therein. Among them,
the dynamic feedback control method [19] has a wide range of
applications because of its simple design and easy imple-
mentation. -us, this dynamic feedback control method is
used in this paper.

It should be pointed out that among the abovementioned
chaotic and hyperchaotic systems, model uncertainty and
external disturbance are not considered. Unfortunately, this

is not the case in practice. -e UDE-based control method
[23] is a goodmethod to deal with themodel uncertainty and
external disturbance, and it has the following two advan-
tages: one is that the system model or a disturbance model is
not known completely; the other is that both structured (or
unstructured) uncertainties and external disturbances are
robust against. Being an effective robust control strategy, the
UDE-based control has found widespread applications in
various systems. Naturally, it is of interest to apply the UDE-
based control to chaotic and hyperchaotic systems with both
model uncertainty and external disturbance. However, to the
best of the authors’ knowledge, this problem has not been
addressed in the existing literature. -erefore, the main goal
of this paper is to develop a new UDE-based dynamic
feedback control method to realize the antisynchronization
problem of the chaotic and hyperchaotic systems.

-is paper mainly studies the antisynchronization
problem of chaotic and hyperchaotic systems with both
model uncertainty and external disturbance. Combining the
dynamic dynamic feedback control method and the UDE-
based control method, a new UDE-based dynamic feedback
control method is proposed. -en, by the obtained new
method, the antisynchronization problem of the 4D
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hyperchaotic system is realized and the effectiveness of the
method is verified by the numerical simulation.

2. Preliminary

2.1.Dynamic FeedbackControlMethod forAntisynchronization.
Consider the following hyperchaotic system:

_w � G(w), (1)

where w ∈ Rn is the state and G(w) ∈ Rn is a continuous
vector function.

Let system (1) be the master system; then, the corre-
sponding slave system with v is given as

_v � G(v) + bu, (2)

where v ∈ Rn is the state, G(v) ∈ Rn is a continuous vector
function, b ∈ Rn×s is a constant matrix, and u ∈ Rs is the
designed controller, s≥ 1.

Set E � w + v; then, the sum system is described as
_E � G(w) + G(v) + bu, (3)

where E ∈ Rn is the state and b and u are given in (2).

Definition 1. Consider the sum system (3). If limt⟶∞
‖E(t)‖ � 0; then, we call the master system (1) and slave
system (2) achieve antisynchronization.

Remark 1. According to the results in [21], the anti-
synchronization of system (1) exists only and only if
G(− w) � − G(w).

At present, there are many methods for the anti-
synchronization problem. Among them, the dynamic
feedback control method has a wide range of applications
because of its simple design and easy implementation. Here
is a brief introduction.

According to the existing result in [19–22], we present
the following conclusion.

Lemma 1. Consider system (3), where b � (bij)n×r and bij �

0 or bij � 1, i � 1, 2, . . . , n, j � 1, 2, . . . r, where (E(t), b) is
controllable; then, the dynamic feedback controller is designed
as follows:

u � KE, (4)

where K � k(t)bT, K ∈ Rn×n, and the feedback gain k(t) is
updated by the following law:

_k(t) � − ‖E(t)‖
2
. (5)

2.2. UDE-Based Control Method. Consider the following
controlled systems with model uncertainty and disturbance:

_p � H(p) + ΔH(p) + bu + d(t), (6)

where p ∈ Rn is the state, H(p) is a continuous vector
function, b ∈ Rn×s, s≥ 1, ΔH(p) ∈ Rn represents the model
uncertainty, d(t) ∈ Rn is the external disturbance vector, u is
the controller to be designed, and (H(x), b) is assumed
controllable.

-e stable linear reference model is presented as follows:
_pm � Ampm + BmC, (7)

where pm ∈ Rn is the reference state, Am ∈ Rn×n is a Hurwitz
constant matrix, Bm ∈ Rn×s is a vector, and C ∈ Rs is a
command.

According to the existing results in [23], the UDE-based
control method is presented as follows.

Lemma 2 (see [23]). Consider system (6) and the reference
system (7). If the designed filter gf(t) satisfies the following
condition,

ud � ud − ud, (8)

where ud � ( _x − H(p) − bu)∗gf(t) and ud � △H(x)+

d(t), then UDE-based controller u is expressed as follows:

u � b
+

− H(p) + ℓ− 1 1
1 − Gf(s)

 ∗ Amp + BmC − Kq(   − b
+ ℓ− 1 sGf(s)

1 − Gf(s)
 ∗p(t) , (9)

where q � p − pm, b+ � (bTb)− 1bT, ℓ− 1 is the inverse Laplace
transform operator, ∗ is the convolution operator, and
Gf(s) � ℓ[gf(t)].

Remark 2. Since controller in equation (9) cancels H(p) in
system (6) directly, thus this controller is too complex to be
used in actual chaotic antisynchronization system.

Remark 3. According to the existing result in [23], two
kinds of filters are introduced. One is the first-order low-
pass filter:

Gf(s) �
1

τs + 1
, (10)

in general, τ � 0.001.

-e other is the secondary filter:

Gf(s) �
as + b − w2

0
s2 + as + b

, (11)

where w0 � 4π, a � 10w0, and b � 100w0.

3. Problem Formulation

Consider the following hyperchaotic system with both
model uncertainty and external disturbance:

_x � f(x) + Δf(x) + d(t), (12)

where x ∈ Rn is the state, f(x) ∈ Rn is a continuous vector
function, Δf(x) ∈ Rn denotes system model uncertainty,
and d(t) ∈ Rn stands for the external disturbance.
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Let system (12) be the master system; then, the slave
system with y is given as

_y � f(y) + Bu, (13)

where x ∈ Rn is the state, B ∈ Rn×r is a constant matrix, and
u ∈ Rr, r≥ 1 is the controller to be designed, and it is
assumed that (f(y) + f(x), B) is controllable.

Let e � x + y, then the sum system is described as
follows:

_e � f(x) + f(y) + +Δf(x) + d(t) + Bu. (14)

-e main goal of this paper is to design a controller u to
meet the following condition:

lim
t⟶∞

e(t) � lim
t⟶∞

[y(t) + x(t)] � 0. (15)

4. Main Results

In this section, we investigate the antisynchronization
problem of the hyperchaotic systems with both uncertainty
and external disturbance and present the following result.

Theorem 1 Consider system (14). If a filter gf(t) is designed
to satisfy the following condition,

ud � ud − ud⟶ 0, (16)

where ud � ( _x − f(x))∗gf(t) and ud � Δf(x) + d(t), then
the dynamic feedback UDE-based controller u is designed as
follows:

u � us + uude, (17)

where

us � K(t)e � k(t)B
T
e, (18)

k(t) is updated by the update law (5), and

uude � B
+

− ud ∗gf(t)  � B
+

− ( _x − f(x))∗gf(t) ,

(19)

where B+ � (BTB)− 1BT and ∗ stands for the convolution
operator.

Proof. Substituting controller (17) into system (14), we
obtain

_e � f(x) + f(y) + Bus + Buude + Δf(x) + d(t)

� F(x) + Buude + ud,
(20)

where F(x) � f(x) + f(y) + Bus and ud � Δf(x) + d(t).
According to Lemma 1, the system _e � F(x) is globally

asymptotically stable. Noting condition (16), we can obtain

Buude � − ud. (21)

-us, system (20) is rewritten as
_x � F(x) + ud, (22)

and this system is globally asymptotically stable, which
completes the proof.

5. An Illustrative Example with
Numerical Simulation

In this section, we take the new 4D hyperchaotic system as
an example to apply our theoretical results.

Example 1. -e new 4D hyperchaotic system with uncer-
tainty and disturbance is given as follows:

_x � f(x) + Δf(x) + d(t), (23)

where x ∈ R4, f(x) ∈ R4 is a continuous vector function,
Δf(x) ∈ R4 is the model uncertainty, and d(t) ∈ R4 is the
external disturbance, i.e.,

f(x) �

f1(x)

f2(x)

f3(x)

f4(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

35 x2 − x1(  + x2x3x4

10 x1 + x2(  − x1x3x4

− x3 + x1x2x4

− 10x4 + x1x2x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Δf(x) �

0

− 0.1x2
1

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

d(t) �

0

0.1 sin(t)

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(24)

Obviously, f(− x) � − f(x). -us, the antisynchroniza-
tion problem of the system _x � f(x) exists.

Let system (23) be the master system, then the corre-
sponding slave system with y is described as

_y � f(y) + Bu, (25)

where y ∈ R4, u � us + uude is the controller to be designed,
and

f(y) �

f1(y)

f2(y)

f3(y)

f4(y)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

35 y2 − y1(  + y2y3y4

10 y1 + y2(  − y1y3y4

− y3 + y1y2y4

− 10y4 + y1y2y3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B �

0 0

1 0

0 1

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(26)

Set e � x + y, then the sum system is given as follows:
_e � f(x) + f(y) + Bu + Δf(x) + d(t), (27)

where e ∈ R4.
-e controlled sum system without model uncertainty

and external disturbance is presented as
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_e � f(x) + f(y) + Bu. (28)

Our goal is to design a controller u � us + uude. to sta-
bilize the system (27), i.e., lim t⟶∞ ‖e(t)‖ � 0.

-e first step is to design controller us.
For system (28), it is obvious that if e2 � 0 and e3 � 0, we

can get that the following two-dimensional system
_e1 � − 35e1 + x2x3e4,

_e4 � − e4 + x2x3e1,
(29)

is globally asymptotically stable.
From Lemma 1, we can design controller us as follows:

us � k(t)B
T
e � k(t)

0 1 0 0

0 0 0 1
 e, (30)

where k(t) is updated by the update law (5).

For system (28), the numerical simulation is carried out
with the initial conditions: x(0) � [5, 4, − 2, 8], y(0) �

[− 5, 3, 6, − 4], k(0) � − 1. Figure 1 shows that under the
abovementioned controller, the sum system is asymptoti-
cally stable, i.e., the master-slave system achieves anti-
synchronization. Figure 2 shows that the feedback gain
converges to an appropriate constant. Figure 3 shows that
states of the master system: x1, x2, x3, andx4, anti-
synchronize, the states of the slave system: y1, y2, y3, andy4,
respectively.

-e second step is to design the UDE controller uude.
Let ud � Δf(x) + d(t) andF(x) � f(x) + f(y) + Bus;

the system (27) is rewritten as
_e � F(x) + Buude + ud. (31)
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According to -eorem 1, the controller uude is designed
as

uude � B
+

− ( _x − f(x)) ∗gf(t) , (32)

where B+ � (BTB)− 1BT and ∗ stands for the convolution
operator.

-us, u � us + uude is obtained.
For system (27), the numerical simulation is carried out

with the initial conditions: x(0) � [5, 4, − 2, 8], y(0) �

[− 5, 3, 6, − 4], and k(0) � − 1. Figure 3 shows that under the
abovementioned controller, the error system is asymptoti-
cally stable. Figure 4 shows that ud and ud after a certain time
tend to the same constant. Figure 5 shows that the feedback
gain k(t) converges to an appropriate constant. Figure 6
shows that the system achieves antisynchronization. -e
numerical simulation results show that the new 4D
hyperchaotic system achieves antisynchronization under the
abovementioned controller. Figure 7 shows that states of the

master system: x1, x2, x3, andx4 also antisynchronize the
states of the slave system: y1, y2, y3, andy4, respectively.

6. Conclusion

In this paper, the antisynchronization problem of the
hyperchaotic systems has been investigated. A new UDE-
based dynamic feedback control method has been proposed,
and the antisynchronization of the new 4D hyperchaotic
system has been realized by the obtained control method.
-e correctness and effectiveness of the abovementioned
theoretical methods have been verified by numerical
simulation.
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