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,e accurate prediction of the remaining useful life (RUL) of rolling bearings is of great significance for a rational formulation of
maintenance strategies and the reduction of maintenance costs. According to the two-stage nonlinear degradation characteristics
of rolling bearing operation, this paper proposes a prognosis model based on modified stochastic filtering. First, multiple features
reextracted from the time domain, frequency domain, and complexity angles, and the baseline Gaussian mixture model (GMM) is
established using the normal operating data after spectral regression. ,e Bayesian-inferred distance (BID) is used as a
quantitative indicator to reflect the bearing performance degradation degree. ,en, taking multiparameter fusion results as input,
the relationship between BID and remaining life is established by the two-stage stochastic filteringmodel to realize online dynamic
remaining useful life prediction. ,e method in this paper overcomes the difficulty of accurately defining the failure threshold of
rolling bearing. At the same time, it reduces the computational burden, avoiding the need of calculating the joint probability
distribution for high-dimensional data. Finally, the proposed method has been verified experimentally to have high precision and
engineering application value.

1. Introduction

As key components of rotating equipment, the performance
degradation and failure of rolling bearings affect the per-
formance of the machine and even may lead to unplanned
equipment shutdown. However, due to the uncertainty of
the working environment and conditions of rolling bearings,
the randomness of the development of fatigue damage and
the diversity of failure modes lead to the large discrete life of
rolling bearing, and regular maintenance often results in
“undermaintenance” or “overmaintenance”. In order to
ensure the safety, prognostic and health management
(PHM) of the rolling bearing can maximize the bearing
useful life and reduce the maintenance cost. ,e accurate
acquisition of bearing status information is a prerequisite to
realize the PHM of rolling bearings and a reliable and

effective method for predicting the remaining useful life is an
important means.

In terms of state information acquisition, the electro-
static monitoring technology provides a high-sensitivity
online monitoring method for rolling bearings. Physical and
chemical changes accompany the rolling bearing wear
process. At the same time, it generates a large number of
abrasive particles that cause electrostatic induction. Moni-
toring the change in the total amount of electrostatic charge
in the wear zone can accurately reflect the state of bearing
degradation [1, 2]. Unlike vibration and temperature, which
are secondary effects of degradation, electrostatic moni-
toring is direct monitoring of contact degradation to provide
support for accurate acquisition of bearing status infor-
mation [3]. In the research of electrostatic induction
mechanism, Tasbaz et al. [4] used a region wear electrostatic
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sensor and a friction coefficient to monitor and study point
contact sliding friction gluing failure on a pin-on-disc and a
reciprocating laboratory wear rig. ,e research results
showed that the electrostatic sensor detects abnormality
before the fault, which is better than the friction coefficient
and more suitable for the online monitoring of wear faults.
Morris et al. [5] studied the sliding friction electrostatic
monitoring experiment under nonlubricated conditions.
,e research results showed that the electrostatic signal
amplitude is consistent with the change in the amount of
wear and the change in the friction coefficient. Wang et al.
[6] conducted an online monitoring experiment on the point
contact sliding friction of silicon nitride and various bearing
steels for the friction and wear problems of composite
materials that may be used in the new type of bearings and
compared and analyzed the relationship between the wear
amount, charge generation, friction coefficient, contact
temperature, and surface roughness. Wang et al. [7] per-
formed sliding friction experiments of point contact under
different conditions for the wear of ceramics and bearing
steels.,e research results showed that there is a relationship
between the volume loss of ceramic balls and the RMS value
of electrostatic signals in the normal wear stage.

According to the current literature, the RUL prediction
can be mainly divided into three categories: model-based life
prediction technology, artificial intelligence, and statistical-
based life prediction [8]. ,e model-based life prediction
technology relies on the degradation mechanism of the
system. In order to predict the RUL of rolling bearings, by
using the Paris formula, Qian et al. [9] established a physical
prediction model for describing the crack propagation
process. Kacprzynski et al. [10] extended the fracture me-
chanics model and the crack initiation model based on the
data fusion algorithm and parameter adjustment and veri-
fied the prediction experimentally. Liu and Mahadevan [11]
applied the fatigue life prediction model to the crack
propagation stage for predicting the fatigue life in the crack
initiation stage by the equivalent initial crack size method.
Also, they established a remaining life prediction model for
the uniform crack initiation and expansion stage. Artificial
intelligence-based life prediction methods use machine
learning methods to fit the degradation process of the system
and then predict the RUL. Neural network and its many
derivative algorithms [12, 13] are important technologies in
the field of artificial intelligence. ,ey can be applied not
only to classification problems [14], but also to prediction of
remaining useful life. Yang et al. [15] proposed a prediction
model based on the double-layer convolutional neural
network (CNN) to predict the remaining useful life of the
bearing. Carrol et al. [16] used ANN, support vector ma-
chine (SVM), and logistic regression to predict the
remaining life of a gearbox and found that the ANNmethod
has the highest prediction accuracy. Li et al. [17] established
a RUL prediction model for lithium batteries based on
Elman neural network and verified the feasibility of the
model in prediction. Ordonez et al. [18] proposed a pre-
diction model based on kernel principal component analysis
(KPCA) and gated recursive unit (GRU) suitable for the life
prediction of complex systems and verified the accuracy of

the method through aeronautical propulsion system simu-
lation data. Wang et al. [19] proposed a two-dimensional
CNN for predicting the RUL of rolling bearings and proved
the high accuracy and fast calculation speed of the method
by experiments. ,e statistical-based life prediction method
models the data with a stochastic model to achieve RUL
prediction. Mishra and Vanli [20] proposed a prediction
model based on the principal component regression and
Wiener process degradation model to predict the remaining
life of a sensor. In order to avoid the need for subjective
selection of degradation indicator and first prediction time
in the Wiener process, Aisong et al. [21] proposed a Wiener
process model for earthquake prediction based on optimal
degradation indicator. Particle filtering [22–24], stochastic
filtering [25], Kalman filter [26], and other filtering algo-
rithms can also be used to predict the remaining useful life.
Wang et al. [22] established a spherical cubic particle filter
(SCPF) model to predict the remaining life of lithium-ion
batteries and verified the effectiveness of the method. Lei
et al. [23] used the maximum likelihood estimation algo-
rithm to initialize the model parameters and proposed a
particle filter-based algorithm to predict the remaining life of
rolling bearings. Catterson et al. [24] predicted the
remaining life of a transformer through a particle filter
model.

However, for rolling bearings, due to the difficulty in
obtaining an accurate failure threshold and the absence of a
standard to follow, the final failure state can be observed.
,at is, life data is available. Life prediction methods that
require the identification of a failure threshold, such as time
series prediction, gray prediction theory, and particle fil-
tering, are difficult to apply. ,e hidden Markov model does
not need a failure threshold, but the training of the model
requires artificially dividing the life cycle of the rolling
bearing into several stages, which is subjective and difficult
to grasp. ,e stochastic filtering model does not need a
default failure threshold [25], and it can synthesize the
current and historical state monitoring information to
predict the RUL and calculate the probability density dis-
tribution of the RUL. ,is model is then more suitable for
decision making of maintenance, and it requires single-
dimensional input data. If the input data is multidimen-
sional, the calculation amount of joint probability density
distribution is large, and it is difficult to realize the online
real-time residual prediction. However, a single parameter
such as RMS may not describe easily the state of the rolling
bearing with accuracy. In our previous research [27], a
multiparameter fusion performance evaluation model based
on the spectral regression-Gaussian mixture model (SR-
GMM) was proposed to overcome the insensitivity or in-
consistency of the single characteristic parameter to the
bearing performance degradation. ,e proposed method
integrates multiple characteristic parameters of electrostatic
monitoring and can detect the occurrence of bearing deg-
radation earlier.

,e life of bearings includes two stages: normal oper-
ating stage and defective operating stage. In the second stage,
equipment defect is launched, with the continuous work of
equipment into a fault. It is important to obtain the starting
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point of the defective operating stage and predict its RUL.
Wang [25] divided the operation of the equipment into two
stages by using the concept of delay time. ,e transition
between states was constructed by using the hidden Markov
model, and the relationship between state information and
device state was constructed by using the stochastic filtering
theory. Wang et al. [28] used μ + 3σ to segment the two
stages of the bearing degradation process, taking 14 time-
domain characteristic parameters as inputs and using the
prediction stage based on Kalman filtering to estimate the
remaining useful life of the bearing. Wang and Tsui [29]
established a statistical two-stage model of bearing degra-
dation signal based on the seven harmonics of a bearing fault
characteristic frequency. ,e statistical model of normal
working stage is used to obtain the point at which the
bearing begins to degenerate, and the statistical model of
failure delay stage is used to predict the RUL of the bearing.

Based on single parameter random filter life prediction
model [25], this paper proposes a remaining useful life
prediction method of rolling bearings using electrostatic
monitoring based on two-stage information fusion sto-
chastic filtering. ,is method establishes a multiparameter
fused health factor as a quantitative index reflecting bearing
performance degradation. Based on this, the time of defect
occurrence is obtained using the kernel density estimation
(KDE) method, that is, the time point of distinguishing
between two stages. Subsequently, based on stochastic fil-
tering theory, the quantitative index of multiparameter
fusion is taken as an input, and the relationship between the
bearing monitoring index and the remaining life with two-
stage characteristic is established, so as to realize the online
dynamic remaining life prediction. ,e method overcomes
the difficulty of identifying a failure threshold, the absence of
a standard to follow, the need of single-dimensional input
data, and the high calculation cost of multidimensional
input data. Finally, the validity and accuracy of the proposed
method are verified by experiments.

2. Description of Rolling Bearing Useful
Life Prediction

2.1. Stages and Characteristics of Rolling Bearing Operation.
,e operating process of the bearing has two stages. ,e
rolling bearing operation can be generally divided into
normal operating condition and defective operating con-
dition. ,e defective operating condition spans from the
beginning of the early degradation to the severe degradation
until the final complete failure. Figure 1 shows the result of a
multiparameter fusion related to a lifetime test bearing [27].
,emonitoring indicator of the bearing in normal operating
condition is relatively stable and fluctuates randomly within
a certain range. When entering the defective operating stage,
the monitoring indicator changes (rises or decreases), and
abnormal fluctuation accompanies the transition. ,e var-
iation increases as the deterioration of bearing performance
increases. ,is phenomenon has similar characteristics with
conventional indicators such as RMS and kurtosis.

,emeasured signal is random. Due to the complexity of
the working environment, bearing failure mechanism, and

the interference of noise, the monitoring indicators are also
random. ,erefore, especially in the defect operating stage,
the value of the current monitoring indicator cannot simply
reflect the degradation degree of bearing performance, and
historical monitoring data should be considered. In Figure 1,
it can be observed that the monitoring indicator has a strong
randomness. In the first stage, the fluctuation is stable. In the
second stage, it rises while fluctuating. ,e real-time
monitoring signal of the bearing contains not only health-
stage information but also measurement noise [30]. ,e
existence of these noises (deviations) is unavoidable, and
some methods can be adopted to reduce the impact of the
deviations on the monitoring results, such as using particle
filtering (PF) to reduce the random errors in the stochastic
process [31].

,e operating state of the bearing is hidden. During the
operation of bearings, only the fault state of the bearing can
be directly observed, while the normal operating state and
defect operating state of the bearing cannot be directly
observed. ,ough the degradation state of the bearing
performance is unobservable, it can be inferred from the
monitoring indicator. ,at is, there is observability of the
monitoring data and an unobservability of the actual state.

2.2. Remaining Useful Life Prediction. In industrial pro-
duction, the operator needs to know both the current
degradation degree of the equipment and the equipment-
estimated RUL to arrange a repair. ,e two stages of the
rolling bearings operating state result in an inconsistent
relationship between monitoring indicators and RUL in
different operating states. In normal operating conditions,
the monitoring indicator fluctuates randomly within a
certain range, and the RUL decreases with the increase of
running time. It is not easy to determine the relationship
between the monitoring indicator and RUL. In the defect
operating stage, although there are some fluctuations, the
monitoring indicator has obvious trends. For example, the
multiparameter fusion indicator BID has an upward trend in
the defect operating stage while the RUL decreases with the
increase of running time. By establishing the relationship
between monitoring indicator and remaining life, the RUL
can be obtained through the current time and historical
monitoring data. ,erefore, to predict the RUL, the oc-
currence time point of the defect (u) and the relationship
between monitoring data and lifetime are necessary.,ere is
serious nonlinearity in the degradation process of bearings.
,e traditional parameter estimationmethod cannot be used
to estimate it. However, KDE does not need to know the
prior knowledge of data distribution and does not attach any
assumptions to the data distribution. It is a nonparametric
estimation method to study the characteristics of data dis-
tribution from the data sample itself, so this paper uses KDE
to calculate the control limit. When the bearing is in the
normal state, the BID value of the health factor fluctuates
steadily. In this paper, it is set that the bearing begins to
degrade when it exceeds the confidence interval of 99%.,is
research determines the time point u by the KDE method
[27] and trains the degradation stage model through the

Mathematical Problems in Engineering 3



defect occurrence and development stage data to predict the
remaining life of the defect stage.

From the monitoring indicators, especially in the defect
operating stage, the data have some random fluctuations
instead of a monotonous trend. ,erefore, current data
alone will cause misjudgment of the bearing performance
degradation state and affect the accuracy of remaining life
prediction. A given failure threshold is not essential in the
stochastic filtering model.,is model predicts the remaining
life by combining current and historical state monitoring
information and calculates the distribution of probability
density of remaining life. ,e results suggest that the model
is more suitable for maintenance decision making. However,
the stochastic filtering model requires single-dimensional
input data. If the input data is multidimensional, the cal-
culation amount of joint probability density distribution is
large, and it is difficult to realize the online real-time RUL
prediction. ,erefore, this paper proposes a two-stage RUL
prediction framework based on multiparameter fusion, that
is, the multiparameter fusion result BID is set as the input to
establish the relationship between the defect stage moni-
toring indicator and the remaining life, thereby realizing the
online dynamic RUL prediction.

3. Theoretical Basis

3.1. Construction of Health Indicators. Bearings play a key
role in rotating machinery, and its health status is worthy of
attention in practice. However, it is difficult to quantitatively
analyze the health status of bearing in many cases, and the
construction of health indicators can be used to evaluate the
current health [32]. In our previous work [27], conventional
time and frequency domain indicator for electrostatic
monitoring cannot sufficiently reflect the degradation of
rolling bearing performance. Since the random component
in the electrostatic signal changes continuously as the
performance of the rolling bearing deteriorates, the com-
plexity measurement method is introduced to describe this
process. To overcome the insensitivity and inconsistency of a

single characteristic parameter with the bearing perfor-
mance degradation, we introduced a multiparameter fusion
performance evaluation model based on SR-GMM.

Firstly, 15 conventional time domain and frequency
domain indicators and 3 complexity metrics indicators
(approximate entropy, sample entropy, and arrangement
entropy) were extracted as characteristic parameters to de-
scribe the degradation process of bearing from normal state to
fault state. Time and frequency domain indexes are as follows:

3.1.1. Time-Domain Indicators
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where x(n) represents the amplitude of the signal.
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Figure 1: Estimate value of BID for bearing 1.
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3.1.2. Frequency Domain Indicators
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s(k) represents the amplitude of the signal, k � 1, 2, . . . , K,K
is the number of spectral lines, and fk is the frequency of
spectral line k.

3.1.3. Health Index Construction. ,en, spectral regression
is used to reduce the dimension of the characteristic pa-
rameter data. ,e baseline GMM model is established with
the normal operating condition data after spectral regres-
sion, and the BID index between the test data and the
baseline GMM model is used as a quantitative indicator
reflecting the degree of degradation of bearing performance.

,e health indicator construction of multiparameter
fusion consists of offline modeling and online evaluation.
,e details of the process are as follows (Figure 2):

(1) Offline

(1) Signal Denoising. ,e denoising process of normal
operating condition data is performed by the joint
denoising method based on spectral interpolation
and singular value difference spectrum.

(2) ,e characteristic parameters are extracted, and the
dimension of the original characteristic space is reduced
by SR.

(3) Select the normal state data to establish a baseline
GMM model and obtain the parameters of the model.

(4) Calculate BID. ,e moving average method is used
to smooth the indicator to improve the sensitivity
and reliability of the indicator:

y(i) �
1

M
􏽘

M−1

j�0
x(i + j), (3)

where x(i) is input signal, y(i) is the output signal,
and M is the moving average point set to 5 in this
paper.

(5) Establish the control line. KDE is used to establish
the control limits of the indicator to trigger the alarm
at a slight degradation:

􏽢f(x, H) �
1
n

􏽘

n

i�1
K H

− 1/2
x − xi( 􏼁􏼐 􏼑. (4)

(2) Online

(1) ,e data to be tested are first denoised. ,en, the
characteristic parameters are extracted (Step 1 in
offline modeling), and the dimension is reduced
(Step 2).

(2) ,e distance BID between the test data and the
normal operating condition baseline the GMM
model is calculated as a quantitative health indicator
for the rolling bearing state.

(3) By comparing the relationship between the BID and
the control line, the time when the bearing enters the
degrading state is determined, and the bearing
performance state can be quantitatively evaluated.

3.2. RUL Prediction Method Based on Stochastic Filtering

3.2.1. Stochastic Filtering. Stochastic filtering has the ad-
vantage of solving the randomness of measured information.

Training data Test data

Feature extraction

Spectral
regression

Feature
dimension
reduction

Establish a
baseline
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GMM

BID

Figure 2: Multiparameter fusion process.
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Consider a stochastic dynamic system, which can be
described by a state space model:

xt+1 � φ xt, t( 􏼁 + Γ xt, t( 􏼁wt+1, (5)

yt � h xt, t( 􏼁 + vt. (6)

Equation (5) is the state equation, where xt is the n-
dimensional state vector of the system at time t, φ(xt, t) is
the n-dimensional vector function, Γ(xt, t) is the n × r-di-
mensional vector, and wt+1 is the r-dimensional stochastic
state noise vector, which satisfies wt+1∼N(0, Q(t + 1)), and
Q(t + 1) is the covariance matrix of wt+1, that is, wt+1 is a
Gaussian white noise sequence. Under normal circum-
stances, the state of the system cannot be directly observed.

Equation (6) is the observation equation, where yt is the
m-dimensional observation vector of the system at time t,
h(xt, t) is the m-dimensional vector function, vt is the m-
dimensional stochastic observation noise vector, which
satisfies vt∼N(0, R(t)), and R(t) is the covariance matrix of
vt, that is, vt is a Gaussian white noise sequence.

Suppose the distribution of the initial state x0 of the
monitored system is known, and x0, wt, and vt are inde-
pendent of each other. ,en, under the abovementioned
conditions, the filtering problem of the stochastic dynamic
system is to determine the optimal estimated value 􏽢xt of the
latent state xt based on a given observation sequence
Yt � y1, y2, . . . , yt􏼈 􏼉. When solving the filtering problem,
the most important thing is to determine the conditional
probability density function p(xt | Yt). Because once

p(xt | Yt) is known, it is easy to determine the optimal
estimate 􏽢xt of xt.

,e method to solve the randomness of observation
information can be obtained from [25].

3.2.2. Modeling Assumptions. ,is paper assumes that the
working state of the rolling bearing is divided into a normal
operating stage and defective operating stage. l1 and l2 are the
duration of the two stages, respectively. ,e stages are as-
sumed to be statistically independent.

Also assume the defect occurrence point u can be
identified, the rolling bearing has no maintenance in-
tervention during operation, and during the defect op-
erating stage, p(yi|ri) describes the relationship between
current and historical monitoring data yi and remaining
life ri.

3.2.3. Modeling Method. ,ere is a negative correlation in
the defect operating stages, while there is no definite re-
lationship between the monitoring data and the life span in
the normal operating condition. ,erefore, the modeling
for remaining life prediction is performed for the defective
operating stage. A probability density function f(yi, α, β),
α> 0, β> 0, characterizes the monitoring data yi obeying
the two-parameter distribution, where α and β are scale
and shape parameter, respectively. ,e relationship be-
tween current monitoring data yi and remaining life ri is
given by

p yi ri

􏼌􏼌􏼌􏼌􏼐 􏼑 �

p yi( 􏼁 � f yi; α, β( 􏼁, normal operating stage,

p yj
′ rj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � f yj
′; α′, β′􏼐 􏼑, defective operating stage.

⎧⎪⎨

⎪⎩
(7)

,e distribution form of p(yi|ri) can be chosen freely.
Weibull distribution, Gamma distribution, and Lognormal
distribution are all optional distribution forms. Research
[33] showed that the difference between different distri-
bution forms is not much. Weibull distribution is probably
the most widely used form of failure time distribution. ,e
closed form of the Weibull survivor function and the variety
of shapes exhibited by the Weibull probability density
function make it particularly convenient for generalizing
exponential distribution [34]. ,erefore, this paper uses the
two-parameter Weibull distribution.

Secondly, the relationship p(rj
′ | yj
′) between the mon-

itoring data yj
′ and the remaining life ri is established from

the defect start time to the current time. For the remaining
life, the relationship is as follows:

ri �
ri−1 − ti − ti−1( 􏼁, ri−1 > ti − ti−1,

0, ri−1 ≤ ti − ti−1.
􏼨 (8)

,e stochastic filtering theory is used to establish the
model p(rj

′ | yj
′), as shown below.

Since yj
′ � y1′, . . . , yj

′􏽮 􏽯, p(rj
′ | yj
′) can be expressed as

p(rj
′ | yj
′, yj−1′ ).

From the conditional probability formula, the model can
be obtained as

p rj
′ yj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � p rj
′ yj
′, yj−1′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 �
p rj
′, yj
′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

p yj yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

,

p rj
′, yj
′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � p yj

′ rj
′, yj−1′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓p yj yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

p yj
′ rj
′, yj−1′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � p yj
′ rj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓.

(9)

that is, when rj
′ and yj−1′ are given at the same time, yi only

depends on rj
′, so

p rj
′, yj
′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � p yj

′ rj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓p rj
′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓. (10)

From the full probability formula,
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p yj
′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � 􏽚

∞

0
p yj
′ rj
′, yj−1′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓p rj
′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓drj,

� 􏽚
∞

0
p yj
′ rj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓p rj
′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓drj

′ .
(11)

According to the determination rules of the distribution
of random variable functions, the following expression can
be established:

p rj
′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � p rj−1 rj−1′ > tj

′, yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

zrj−1′

zrj
′

. (12)

As rj−1′ � rj
′ + tj
′ − tj−1′ , zrj−1′ /zrj

′ � 1. ,en, the flowing
equation can be obtained:

p rj−1 rj−1′ > tj
′, yj−1′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 �
p rj−1′ yj−1′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

􏽒
tj
′ −tj−1′

∞

p rj−1′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓drj−1′ ,

(13)

p rj
′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 �

p rj−1′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

􏽒
tj
′ −tj−1′

∞

p rj−1′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓drj−1′

�
p rj−1′ � rj

′ + tj
′ − tj−1′ yj−1′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

􏽒
tj
′ −tj−1′

∞

p rj−1′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓drj−1′ .

(14)

,erefore, if the distribution of initial conditions p(r0′)
and p(yi | ri) � f(yi; α1; β1) are known, p(rj

′ | yj
′) can be

obtained by recursive calculation of the stochastic filtering
equation:

p rj
′ yj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 �
p yj
′ rj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓p rj−1′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

􏽒
∞
0 p yj
′ rj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓p rj
′ + tj
′ − tj−1′ yj−1′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓drj
′
,

�
p yj
′ rj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓p rj
′ + tj
′ − tj−1′ yj−1′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

􏽒
∞
0 p yj
′ rj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓p rj
′ + tj
′ − tj−1′ yj−1′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓drj
′
.

(15)

For general conditions

p rj
′ yj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 �
p yj
′ rj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓p rj−1′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

􏽒
∞
0 p yj
′ rj
′

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓p rj−1′ yj−1′
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓drj

′
,

�
􏽑

j
i�1p yj
′ ri
′

􏼌􏼌􏼌􏼌􏼐 􏼑p rj
′ + tj
′ − t0′􏼐 􏼑

􏽒
∞
0 􏽑

j
i�1p yj
′ ri
′

􏼌􏼌􏼌􏼌􏼐 􏼑p rj
′ + tj
′ − t0′􏼐 􏼑drj

′
.

(16)

Equation (14) is the RUL prediction model. In the
defective operating stage, the remaining life can be
predicted from the beginning of deterioration to cur-
rent monitoring data, thus supporting maintenance
decisions.

3.2.4. Parameter Estimation. Here, the maximum likelihood
estimation method is selected to estimate the relevant param-
eters. In practical applications, there are many state monitoring
data and fewer failure data or life data. Since there are multiple
parameters to be estimated, it is difficult to process. ,e model
estimates the unknown parameters in the following three steps.

(1) Estimation of the unknown parameters in a given
distribution f1(l1) and f2(l2) with the life data of
normal operating stage and defective operating stage.

(2) Estimation of unknown parameters in p(yi | ri) �

f(yi; α1; β1) that requires the historical monitoring
data of normal operating stage.

(3) Estimation of unknown parameters in p(yi
′ | ri
′) �

f(yi
′; α′(rj
′); β′) that requires the life data of de-

fective operating stage and the historical data of state
monitoring for estimating by the maximum likeli-
hood method.

3.3. Two Stage Multiparameter Fusion Stochastic Filtering
Prediction Method. ,is paper proposes a two-stage sto-
chastic filtering model for RUL prediction with multipa-
rameter fusion. Multifeatures are extracted from the time
domain, frequency domain, and complexity angle. ,en,
spectral regression is used to reduce the dimension and find
the internal structure of the data. Based on the normal
operating condition data, the baseline GMM is established.
,e distance BID based on Bayesian inference between the
test data and the established GMM is calculated as the global
monitoring indicator of bearing performance degradation.
,e control limit at the normal operating state is established
by KDE. ,e absence of an overlimit means that the bearing
is still running normally, and the monitoring and calculation
of its global monitoring indicators work continuously. An
overlimit indicates that the bearing enters the defective
operating stage, and the stochastic filtering model predicts
the remaining life dynamically. Figure 3 gives the flow di-
agram of the proposed prediction process.

4. Experimental Results

4.1. Prognosis Based on the Method Proposed in @is Paper.
A characteristic parameter alone cannot reflect the state change
of the rolling bearing comprehensively, and for the same rolling
bearing, different characteristic parameters have different
change trends. However, the multiparameter fusion can
overcome these problems because it can characterize the state
of the bearing comprehensively and sensitively and detects the
symptoms of the defect earlier. ,erefore, to obtain the
quantitative indicator BID as the input of the model, this paper
uses multicharacteristic parameters for fusion.

In order to verify the effectiveness of themethod proposed
in this paper, the rolling bearing accelerated fatigue life ex-
periment was carried out on an ABLT-1A tester.,e test rig is
shown in Figure 4. ,e experimental setup and structure of
electrostatic sensors are shown in the literature [27]. In this
experiment, six bearings were tested. ,e bearing failure
modes in this experiment include rolling ball fault, inner race

Mathematical Problems in Engineering 7



fault, and outer race fault. Among the 6 bearing experiments,
four bearings had inner ring fault, one bearing had outer ring
fault, and one bearing had rolling ball fault.

Taking bearing B1 and B2 as examples, RMS, kurtosis, and
permutation entropy were extracted as feature parameters [27].
It can be seen that single feature parameter is not sensitive or
consistent to the degradation of bearing performance in
Figures 5(a)–5(c). SR-GMM-BID was adopted to fuse multiple
features, and the results are shown in Figure 5(d). It can be seen
that the BID index proposed in this paper can integrate
multiple feature characteristics to find the occurrence of early
bearing degradation earlier. ,e specific process can be ob-
tained from our previous work [27].

Figure 6 shows the BID indicator for six rolling bearings.
Although the operating environment and conditions are the
same, the operational lifetime of the rolling bearing shows great
randomness. Moreover, in the early stage of rolling bearing
operation, the BID evaluation indicator is relatively stable.
With the generation and development of defects, the BID value
increases rapidly until the failure occurs, and the operation
process has two stages. ,e lifetime of a bearing in normal
operating condition ranges from 3,000 to 10,000 minutes. It
also shows great randomness. ,erefore, the first stage is
mainly monitored, and there is no need for life prediction.
Once the bearing enters the degeneration period (defective
operating stage), the calculation of the remaining life starts.

Firstly, select the distribution form of l1, l2, and yi. Using
the Weibull distribution, the probability density functions
are as follows:

f1 l1( 􏼁 � λ1η1 λ1l1( 􏼁
η1−1

e
− λ1l1( )

η1
,

f2 l2( 􏼁 � λ2η2 λ2l2( 􏼁
η2−1

e
− λ2l2( )

η2
,

p yi( 􏼁 � αβ αyi( 􏼁
β−1

e
− αyi( )

β

,

p yi
′ ri
′

􏼌􏼌􏼌􏼌􏼐 􏼑 � α′β′ α′yi
′( 􏼁
β′−1

e
− α′yi
′( )

β′
.

(17)

Secondly, establish the relationship between the monitoring
data yi
′ of the defect operating stage and the remaining life ri.

In normal operating stage, the measured data yi fluctuates
within a certain range, there is no overall change, and the
remaining life is decreasing. ,e measured data has no certain
relationship with the remaining life, which can be expressed as

E yi xi � 2
􏼌􏼌􏼌􏼌􏼐 􏼑∝

1
α2

�
1
α1

e
b ti− l1( )

c

. (18)

In the defect operating stage, the monitoring data has an
overall upward trend, and the remaining life is decreasing.
Assume that at the moment ti, the negative exponential
relationship describes the relationship of the increase of the
monitoring data yi

′with the decrease in remaining life ri. ,e
expected value of monitoring data at normal operating
condition should be approximately equal to the intercept of
the expected value of monitoring data at the defect operating
stage, which can be expressed as

E yi xi � 2
􏼌􏼌􏼌􏼌􏼐 􏼑∝

1
α2

�
1
α1

e
b ti− l1( )

c

, (19)

that is,

α2 �
α1

eb ti−l1( )
c . (20)

,e maximum likelihood estimation method is used to
estimate the unknown parameters in the model. Table 1 lists
the estimated values of each parameter. ,e Bearing 1
lifetime test is taken as an example of the analysis. Figure 7

Normal state data

Denoising Feature
extraction

Spectral
regression

Baseline
GMM
model

Spectral
regression BID

Continue to
monitor

Two stage
random filtering RUL prediction

Whether the
bearing enters the defect

operating stage?

Yes

Test data

No

Figure 3: Remaining useful life prediction framework based on multiparameter fusion.

Figure 4: Test rig.
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shows the results of RUL prediction based on multifeature
parameter fusion in different moments of the defective
operating stage. Red marks in the figure indicate the actual
remaining life at that moment.

From Figure 7, a relatively small change of abnormal signal
in the early stage of the defective operating stage leads to a large
predicted error (the difference between actual remaining life
and expected life expectancy value) of the remaining life, and
there is a wide distribution range of RUL and higher

uncertainty. However, as more signals are collected, the dis-
tribution of remaining life narrows, and the uncertainty and the
prediction error decrease. In particular, at the last state
monitoring point, the predicted remaining life of 180 minutes
is very close to its actual remaining life of 200 minutes.

4.2. Comparison andAnalysis. ,e prediction method based
on hidden semi-Markov model (HSMM) also does not need
to know the failure threshold [35].,is section compares the
method proposed in this paper with the prediction method
based on HSMM. ,e first three dimensional feature vector
extracted by spectral regression is used as the data input to
solve the life prediction problem of rolling bearing.

HSMM is trained with the life-cycle data of the second to
sixth experiments. Taking the first experiment data as the
test sample, the transition probabilities between three dif-
ferent states, as well as the mean and variance of the dwell
time of each state are estimated by life-cycle experiment
estimation (Tables 2 and 3).

Ten test samples are randomly selected from the samples
of the first life-cycle experiment (due to the large deviation of
the normal state, there is no significance in life prediction, so
samples of initial degradation state and severe degradation
state are selected). Table 4 lists the results of RUL prediction
of the 10 test samples using HSMM. In the 10 test samples,
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Figure 5: Trend charts of different indicators. (a) RMS. (b) Kurtosis. (c) Permutation entropy. (d) BID.
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Table 1: Estimated values of the stochastic filtering model parameters.

Parameters λ1
∧

η1
∧

λ2
∧

η2
∧

􏽢α 􏽢β β′
∧

􏽢B 􏽢C

Estimated values 4329.8 2.2849 716.9 0.7901 14.0403 1.1131 1.3339 197.1140 0.0657
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Figure 7: Probability density curve of RUL prediction for Bearing 1 at different times.

Table 2: State transition probabilities.

State 1: normal state State 2: initial degradation state State 3: severe degradation state
State 1: normal state 0.8853 0.1147 0
State 2: initial degradation state 0 0.7537 0.2463
State 3: severe degradation state 0 0 1

Table 3: Residence time for each state.

Type of state Normal state Initial degradation state Severe degradation state
Mean 4531 1048 438
Variance 1442 529 235

Table 4: RUL prediction results based on HSMM.

Sampling
points

Degradation
state

Identification of
degradation state

Mean of the
predicted result

Variance of the
predicted result

Interval of the
predicted result

Actual
RUL

Predicted
RUL

1 Initial
degradation Normal state 5238 1910 [3328, 7148] 910 Inaccurate

2 Initial
degradation Initial degradation 1227 633 [594, 1860] 805 Accurate

3 Initial
degradation Initial degradation 1227 633 [594, 1860] 785 Accurate

4 Initial
degradation Initial degradation 1227 633 [594, 1860] 753 Accurate

5 Initial
degradation Severe degradation 327 115 [212, 442] 717 Inaccurate

6 Initial
degradation Initial degradation 1227 633 [594, 1860] 648 Accurate

7 Initial
degradation Initial degradation 1227 633 [594, 1860] 599 Accurate

8 Severe
degradation Severe degradation 327 115 [212, 442] 303 Accurate

9 Severe
degradation Severe degradation 327 115 [212, 442] 210 Accurate

10 Severe
degradation Severe degradation 327 115 [212, 442] 116 Inaccurate
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two initial degradation states are identified incorrectly,
resulting in inaccurate life prediction, and one severe deg-
radation state is inaccurate. ,e remaining 7 test samples
have correct prediction results, which basically met the
needs of remaining life prediction.

By comparing the prediction method of RUL based on
HSMM and stochastic filtering, it can be seen that

(1) Both of the two methods need failure history data for
model training and parameter estimation.

(2) HSMM needs to divide the life cycle into several dif-
ferent degradation stages, which has the characteristics
of subjective factors and no definite rule to follow.

(3) HSMM supports the input of multidimensional
characteristic parameters, while stochastic filtering
generally supports the input of single-dimensional
characteristic parameters. ,e input of multidi-
mensional characteristic parameters needs calcula-
tion the joint probability distribution, which will
increase the calculation amount and is not suitable
for online learning. In this paper, the multidimen-
sional characteristic parameters are effectively inte-
grated into the quantitative indicator of reaction
performance degradation and used as the input of
the random filter model to solve this problem.

(4) It can be concluded from the prediction results that
RUL prediction results may be greatly deviated due
to the inaccurate state identification of HSMM. At
the same time, because the next state of HSMM is
only related to the current state and the hypothesis
that has nothing to do with the history data does not
conform to reality, the variance of the prediction
results is large, and the uncertainty is high. ,e
stochastic filtering model integrates the historical
observation data and establishes the relationship
between the observation value and RUL, so the
accuracy of the prediction results is relatively high,
especially in the stage of severe degradation.

5. Conclusion

In this paper, based on the electrostatic monitoring data, a
modified stochastic filtering remaining useful life prediction
method based on multifeature parameter fusion is proposed
for the two-stage nonlinear degradation of rolling bearing
operation. Monitoring is dominant at normal operating
conditions, while the life prediction starts when the defect
occurs. In the remaining life prediction, BID is constructed
as a quantitative indicator for the degradation degree of
bearing performance degradation degree. ,en, taking it as
input, the relationship between BID and RUL is established
by the two-stage stochastic filtering model to realize online
dynamic RUL prediction. ,is method solves the problem
that the failure threshold of the rolling bearing is difficult to
be accurately defined, and the problem that the joint
probability distribution of the stochastic filtering model
needs to be calculated when high-dimensional data is input.
,e experimental results show that the proposed method has

simple calculation process and high prediction accuracy and
engineering value.
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