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This paper studies the stabilization design scheme with H, performance for a large class of nonlinear discrete-time systems. The
system under study is modeled by Takagi-Sugeno (T-S) model with local nonlinearity and state delay. First, the model is changed
into an equivalent fuzzy switching model. And then, according to projection theorem and piecewise Lyapunov function (PLF),
two new H, control methods are proposed for fuzzy switched systems, which consider the time delay information of the system.
Finally, the relationship among all fuzzy subsystems is considered. Because the results are only expressed by a series of linear

matrix inequalities (LMIs), the controller can be directly designed by the linear matrix inequalities toolbox of MATLAB.

1. Introduction

As we all know, the T-S fuzzy method is a kind of common
and very effective tool for approaching the discrete-time
nonlinear complex system [1]. For instance, in [2, 3], it was
shown that coupled chaotic systems are a special class of
complex systems, which can be processed by the T-S method
[4, 5]. In addition, nonlinear neutral differential equations
have numerous applications in engineering and natural
sciences [6]. By using the T-S method, Pu et al. [7] studied
BP neural network and RBF neural network. Bharathi et al.
[8] investigated numerical solutions for sophistication single
neutrality differential equations with time delay. As shown
in [9], asymptotic suboptimality property of the decen-
tralized methods for the linear-quadratic games is proposed.
A game-control method based on the fuzzy linearity qua-
dratic adjuster was presented by Ji et al. [10] for emergency
collision avoidance. Therefore, it is very important to study
the asymptotic stability and controller design of the T-S
fuzzy model [11-13]. However, many papers, such as
[11-13], depend on a single common positive-definite
symmetric matrix P, which needs to satisfy many LMIs. In
reality, such a matrix may not exist, especially for systems
with high nonlinearity [14]. Therefore, it is conservative to
use the common Lyapunov function method to consider the

controller design of the T-S model, and its application scope
is limited. In order to increase the feasible region of matrix
inequalities, a piecewise Lyapunov function (PLF) is pro-
posed in [15, 16], which studied the filter problem for the T-S
model with delay. In references [17-19], the fuzzy Lyapunov
function (FLF) method was used to study the controller
design approaches for the T-S model.

Recently, the T-S fuzzy system with a local nonlinear
model (FSWLNM) has received considerable research (see,
for instance, [20-30] and references therein). As shown in
[20, 21], T-S FSWLNM requires less fuzzy rules, which can
reduce the computational complexity. It can also decrease
modeling error compared with conventional T-S fuzzy
systems. For a class of T-S FSWLNM, Yang and Wang [22]
investigated the problem of fault detection, Klug et al. [23]
proposed a convex way to study an output feedback con-
troller, and Chang and Hsu [24] investigated the sliding
mode control problem with multiple performance indexes
for stochastic nonlinear systems. Nguyen et al. [25] proposed
a new method to design a limited controller, which has
different fuzzy rules from the system. Zhai et al. [26] ob-
served the problems of network-based fault detection and
isolation observer design. Huang and Yang [27] investigated
the problem of fault estimation. In [28, 29], the fuzzy
polynomial system was studied, and the subsequent part of
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fuzzy rules was represented by polynomial function.
Compared with the general T-S fuzzy system, the fuzzy
polynomial system can express the complex nonlinear
system more accurately with fewer fuzzy rules.

Based on the above considerations, we will study the
delay-dependent controller design method with H, per-
formance index for discrete-time T-S FSWLNM. Adopting
PLF and the fuzzy switching model [30], two new design
methods of H_, controller are derived. These two methods
consider the time-delay information of the system, so they
are less conservative. By using projection theorem and in-
troducing relaxation matrix variables, there is no product
term of Lyapunov matrices and system dynamic matrices in
LMIs constraints. Because the derived condition only
contains LMIs, the controller gain matrix can be directly
designed by the LMIs toolbox of MATLAB.

Notations. This part briefly describes the symbols used in this
paper. Symbol R” stands for Euclidean space with n di-
mension. Symbol R™™ means the set of real nxm di-
mensional matrices. Matrices I and O with appropriate
dimensions represent unit matrices and zero matrices.
Matrix P is strictly greater than 0, which shows that P is a
positive definite symmetric matrix (PDSM). The symbol
diag{A, A,,...,A,} denotes block diagonal matrix. The
symbol sym{S} indicates S+ S”. Elements of symmetric
position of symmetric matrix are represented by *.

2. Preliminaries and Problem Formulation

2.1. Preliminaries. Before giving the main conclusions of this
paper, we first present some very important lemmas, which
are very important in the process of proving the important
conclusions of this paper.

Lemma 1 (see [31]). Given an m x m-dimensional sym-
metric real matrix & and three matrices £, X, and Y of
proper dimensions, the two sets of inequalities shown as
follows are equivalent:

Z +sym{2T Z, Y} <0,
LTFX, <0, (1)
Y.ZTY . <0,

where two matrices ' | and Y |, whose columns are full rank,
satisfy the equalities XX | =0 and Y Y |, = 0, respectively.

Lemma2 (see [32]). Let o be a given positive integer, x;, € R"
be a vector, and M € R™" be a semi-PDSM; we have

—QixZ/%xhs —(ixi)/%(ixh) (2)
h=1 h=1

h=1
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Lemma 3 (see [31]). Given the proper dimension matrices
M, F, and @, the following two sets of inequalities are

equivalent:
(/A
1 <0,
* X (3)
)7 <0,@- M7 A" <0.
In this case, we say that the matrix product

Q- M "M is Schur complement of matrix .

2.2. Problem Formulation. In order to improve the ap-
proximation effect of the fuzzy system and reduce the
number of rules, we consider T-S FSWLNM as follows:

Fuzzy rule m: if 9, is v,y - - > Oy 1S Uy then

Xyl = Amxt + Aromxtf‘rU + Gm¢t + G‘rum(ptfru + Blmwt + BZmut’
Zy = met + Cromxt—ro + sz(pt + Gz10m¢t—r” + Dlmwt + DZm”t’

X, =6 —Ty<t<0,

(4)

where m € {1,2,...,1}. 7y, Uy and 9, are the rule
number, fuzzy sets, and premise variables (usually the state
or output of the system), respectively. x, € R", z, € R™, ¢,,
and u, € R’ represent the system state variables, the system
output variables to be estimated, the initial conditions, and
the controller to be designed, respectively. Positive integer 7,
represents the constant delay. Disturbance w, €[, [0, 00).
¢, € R" satisfies

¢elo<6l<], o> (5)

Similar to [33], we define open subspace O; (I = 1,...,k)
in state space. The symbol Q)] represents the closed subspace
and satisfies

Q;, NQ; =00Q,",

i€ {1,k

(6)

where 0Q% ={91h,, (9) =1,0<h,, (9+8)<1,|8| <1, |8]+0}.
v, is the face indexes set of the polyhedron 0Q),, =U0Q,".
hm (‘9) = (wm (St)/ Z:rz:l wm (St))’ wm (St) = Hﬁil .umn (Snt)’
and 9; = [9y, 955, ]

Then, we will rewrite system (4) as an equivalent
switched fuzzy model according to the idea of [30], as
follows:

Global rule n: if x, € Q,, then there are the following
local rules:

if 9y, is v

m¥Enmmn=1,...

nqlts -+ Vpt 18 Vygpy then

X1 = Anqxt + A‘ronqxtf‘r[, + Gnq¢t + GTunq¢t—ro + Blnqwt + Banut’

Z = quxt + Crunqxtﬂ'u + Gznq(pr + Gzrunq¢t—rn + Dlnqwt + Danut’

X =6, -T,<t<0,g=1,...,A,n=1,...,k

(7)
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where « is the number of subspaces divided. (), represents
the nth subspace. A, is the rule number in the nth subspace.

By using the fuzzy method to deal with system (7), we
can achieve

| X, =¢, -T3<t<0,x(t) € Q,,

where By =y (9) = ([T2% 0, (9 302y TT2% U (9))):
In each subspace Q),,, we design independent controllers,
that is

Ay
Zy = Z hnq{cnqxt + Cronqxt—ro + Gznq¢t + szonq¢t—ro + Dlnqwt + Danut}’
q=1

Ay
Xyl = Z hnq{Anqxt + Aronqxt—ro + Gnq(/)t + Gronq(pt—rn + Blnqwt + Banut}’
q=1

(8)

Using fuzzy reasoning technology, fuzzy controller (9)
can be written in the following compact form:

/"Yl
Global rule n: if x, € Q,, then there are the following u, = Z hnl{ FoaXy + Fo Xy e, + Epy + Fbronl¢t—ro}'
controllers: I=1
if 9y, is Vyyps - > Yy 18 Uy, then (10)
u,=F_x,+F__x,__+F +F, ., 1=1,2,...,A. o .
t anl™t atynl™t-1, bnl(»bt br{,nl(pt 7, n Comblnlng (8) with (10), we have
9)
Xyl = Anqlxt + Aronqlxt—ro + Blnqwt + Gnql¢t + Gronql¢t—ro’ (ll)
Z = qulxt + Cronqlxt—‘ro + Dlnqwt + Gznql(/)t + Gzronql¢t—‘ro’
- - - - ~ A -~ - - -
Anql Aronql Blnq Gnql G‘ronql } _ e hoh Anql A‘ronql Blnq Gnql GT(,nql (12)
~ ~ = ~ ~ - ng''nl | ~ P - >
qul Cfonql Dlnq Gznql Gzronql q=11=1 qul Cronql Dlnq Gznql Gz‘ronql
with (2) When the initial condition ¢, =0, the following
R norm inequalities hold:
Ag=A4A,+B, K.,
gl = Fng T angad lzel, < vl Ve #o. (14)
A‘ronql = Aronq + BanKm’Onl’
Gnql = Gy + Byyg K> 3. Main Results
E;Tonql = Gy i+ Boyg Ko The set Q = {(m,n) | x, € Q,,, x,,; € Q,,} indicates that the
(13)  system state jumps from subspace ,, to subspace Q,. Of
qul = Cpyy + Doy Ko course, the system state may stay in a certain subspace all the
time. Next, we can prove the result in Theorem 1.
Cronql = C‘rnnq + DanKu‘ronl’ . .
Theorem 1. Given a positive real number y, the H, control
Gugt = Gang + Dong K> problems of controlled system (11) are solved, if there are
P, W
= symmetric ositive  definite  matrices nooln
Gzrﬁnql = Gzronq + DanKbronl' ) P ﬁ * Wzn :|

where x(t) € Q;.

Given the upper bound y of H_, index, where y >0, the
purpose is to design independent controllers (10) for system
(8) in each subspace Q j» 80 that the following two conditions
are met:

(1) When the disturbance w, = 0, the equilibrium state
x, = 0 of system (11) is asymptotically stable.

[ n Qo ] R, the nonsingular matrix F, and matrices

'/Vns (S = 1’ cee 7)’ Kanl’ Km’onl’ Kbnl’ and Kb‘r[,ql’
n=12,...,61=12,...,A, such that

g <0, g = L,2,...,A,, (n,m) € Q, (15)

g + Mg <0, 0<g <<, (n,m) € Q, (16)

where



mnkl =

*

*

*

*

I, =P, - sym{Kn},

I, =W+, + A, K, + By K
O =Hp =Wy, +A
Hy=N;z3+W

1m>

H15 = Kn‘/Vn4 + KnBlnq’

1_Il6 = '/Vn5 + Gann + B2anbnl’
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1_113 I—[14 HIS 1_Il6 1_Il7 ‘/Vn7 0 7
q)Z (D3 _Kn‘/Vn4 _‘/VnS _‘/Vn6 q)4 H{
D, D 0 0 0o -7 mk
D, 0 0 0o -4 o
T L 0 0 =y D
oo * -0 - T
* * * * = H4T
. . ' " N
. e ‘ . . S
anl>
ongln + BangKaryn»

(17)

1—117 = ‘/Vn6 + Groann + B2anb‘rOnl’

T

Hl = quKn + D2ananl’
Hg = Croann + DanKaTOnl’
HZ; = Gzann + DanKbnl’
HZ = Gzroann + DanKbronb

®, = 0L + R—sym{W )} + W,, + 150, — @), — P
DO, =0l+ @y, — N, — W,

T
Oy =Wy, - N,z - @12 -Wy,

2 T
O, =7Q, - N, — Ny
O;=W,,, —R-Qy,

T
Qg = @), — Wy,

O, =W, — @, - W,,,

Qg = 73@22 = sym{/¥/,;}.

Moreover, the controllers are given by

-1
F = Kaann >

anl

-1
F KuTDann 4

atynl

-1
Fy = KpuK,,

-1
Fbronl = KbTOann :

(18)

n

Proof. Let %, =K, and % = diag{%,,, %, %,,%,,1,%,,
U,,U,,I}. On left side of inequalities (15) and (16), post-
multiplying %" and premultiplying %, respectively, one has

Q. <0, A (n,m) € Q, (19)

— q=12,...

Qg + Qg <0, 0<q<I<A,, (n,m) € Q, (20)

mnlq

where
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(21)

Tongl

(23)

—Qll QIZ Ql?’ Ql4 QIS Ql6 Ql7 ‘/Vn7 0
. = = = — — T
(Dl CDZ (D3 _‘/Vn4 ‘/VnS _‘/Vné 4 qul
* * Y Y T ~T
cDS c1)6 0 0 0 _‘/Vnz C'mql
— —T
o ®, 0 0 0 -Hy 0
= * * * * —T
‘anql - —)/21 0 0 _‘/Vn4 Djlwnq
* * * * * T i ~T
-1 0 _‘/VnS Gznql
* * * ® * * T =T
-1 n6 Mt zngl
* * * * * * * 68 0
L * * * * * * * _I ]
and X represents UTXU,, Q= P —sym{%,}, Oy, = wher =[%;,0,0,0,0,0,0,0,0,], Q, = [-[,A
T = —
+ -/V + % Anql’ 13 = ./Vn2 1m + U Awa, 014 = lnq’ G GT ongl 0 0] and
'/Vn3 + Wlm’ le =Ny + B Qs ‘/VnS + % 2G> and
17_‘/Vn6+% Grnql
Based on (19) and (20), we have
n M Ay
2
Q= hnkhlemnkl = Z hnk‘anqq
k=1I=1 g=1
& (22)
+ Z hnqhnl{ mngl + ‘anlq}
g<l
= Qy +sym{Q] O, } <0
-Fm Wlm + Wnl WnZ - Wlm Wn.’) + Wlm ‘/Vn4 WnS Wn6 Wrﬁ 0
. — — — — — — ~T
(DI (D2 q)S ‘/Vn4 ‘/VnS _'/Vn6 (D4 qul
* * T T T =T
(O (O 0 0 0o - w2 Cmql
s 5 * N —I
, 0 0 0 Ay 0
= * * * * —T =T
0 = -y 0 0 -H, Dy,
* * * * * T i =T
-1 0 _‘/VHS Gznql
* * * * * * T s =T
-1 _‘/Vn6 Grgznql
* * * * * * * 68 0
| * * * * * * * * -1
Anql’ Aronql’ lnq’ Gnql’ Gronql’
Let Q,, = diagd T I , which rank matrix. Then, based on Lemma 1 and inequality (22),
& m we obtain
ocks

satisfies Q,Q,, = 0. Moreover, [Q],Q,,] is a column full-
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r =T 7 Applying the Schur complement described by Lemma 3
Ay Ay Ay Ay A A Ay C
e N ngl to the above inequality, we can obtain
T Ay Ay Dy Dys Dy By Crpy 3 i
T Ay Ay Ags Ay Ay, 0 Ay A Az Ay Ays Ay g
~T
R Ay Ay Ay A D;. *
o Q,Q,, = w Tas Bas D7 T <o, Dy Doz Dy Bos Dyg Dy
Ass Asg As; Gy TN Az Ay Ass Asg Ay
~T
.., s zrong! Songl = Ay Ags Dy Dy
A, 0
(24) * * * * * A66 A67
where Lt T Ay
T — ~ _ — \T~ _
A11 = AnqlPiAnql + He{(Wlm + ‘/an) Anql} + q)l’ r CTI ar CTZ 1T (26)
~T — ng nq
A12 - AnqleArgnql + Anql(‘/VnZ Wlm) -T -T
+(W1m + Wm) A, g + Dy Conat || Crona
T
Ay = Anql(‘/‘/n3 + Wlm) + @3, 0 0
T T =T ~T
Ay = Ay PrBiyg +(W1m + M) Bing + Apg N ns = N s +| Dy Dy, | <O.
. \T~
AIS = AnqleGnql +(‘/an + Wln) Gnql + Anql‘/Vn5’ =T ~T
— Gznql Gznql
A16 - AnqlP GT nql +(‘/V + Wlm) Gronql + Anql‘/VHG '/Vn6’ . .
~T — J— o~ ~
Ay = Anql‘/Vrﬁ + @y, Gzronql Gzronql
T ~ —
A, = A,anlp A g+ H {(/V,,z Wi,) AW,} + @, L o Il o
Ay = anl(ﬂ/ st W, ) + @, Based on (26), we will prove that Theorem 1 is correct.
—_ T., _ N . 43 3
A,, = Az:,nql P, B ( +(F,, - Wlm) . AZ st Vot Construct a discrete-time PLF as follows:
~T — ~ J—
Ay = Ar nq P Gnql +(‘/Vn2 -W, ) Gnql + Ar nkl'/V %t = %lt + %21‘ + %3t’
T — = —
A26 - Ar nq PmGT onql +('/Vn2 Wlm) G‘r onql + AT nql‘/Vn6’ —
—T _
Ay = Aronql‘/’/w N 7 l tZT X Rx,,
0

Ayy =Dy Ay = (_ + ‘/Vn3) 1ng>

— — T V)
(T ) oy o S
— I

Asg _( m T ‘/Vn3) Tongh O=-my I=t+0 TGy llm
—T

Dyy = =N s x, r W Xy
A44 = Blan B + H {‘/VMBlnq} -y 1, %3t =| t-1 [ " lnjl -1 R

T — = Y x =W X
Ays = Bl quGnql + '/Vn4Gnql + Blnq‘/VnS’ v=t=T, ! o v=t-T, !

~T — =~
A = flnqiﬂcwﬂ; /‘/n4GTonql * Blnq‘/Vnﬁ’ where x, € Q,, n=1,2,...,k and 7, = X, — X,.
Ay = Blnq'/Vn7 - N Let A7, =7;,, — 7, we can get
Ass =G PG + H {/VnSGnql} I, A7\ = x Rx, — xifoﬁxt_%, (28)
A57 - Gnql‘/Vn7 ‘/V _— o
A56 = GnqlP G‘r onql + ‘/VnSGT ongl + Gnql‘/Vné’ A%Zt = TS[ Xt :| |: @11 ?12 ] [ Xt :|
A =® s

77 8 . B ! (29)

Ags = Gronqlp Gr ongl T H {‘/V GTonql} I, -1, Z [ ] [ @11 le ] [ ]
A67 = Gfonql‘/Vrﬁ - ‘/Vné' i i @22

(25) Using Lemma 2, we can obtain
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_ Tr= —
— 1, ti‘ [xv] [@*11 ?uj“xv]
v=t-T, T[V QZZ T[V

-1 7F t-1

2 x Y x
v=t-T, Y @11 @12 :| I=t-1, !
< - _
t—1 * t-1
S T IS
v=t—1, § v=t—1,
rot-1 T _ (30)
_ Xy -@Q, _@12:| Z Xy
=1 v=t-1, N 5 v=t—T,
Xe =X gy | 2 Xt = Xt
- T
X, _ X,
_@22 @22 @12
| e _ T Xi-1,
N 0y Q) -1 ’
2 %, : G, 1l X
v=t-1, v=t-1,
Xt+1 5 T Xer1
A%_@,t t |: Pm Klm t
Y x| Lt Wy, DI
v=t+1-1, v=t+1-1,
X T X
t B Ta7r t
_| t=1 [ P, Yln ] t-1
x| L Wyl X ox
v=t—T1, v=t—1,
P, W P, W
W2m W2n
(31)
c5 = =~ = T
0, = Anql ATanl Blnq Gnql Gronql 0 0:|
"“1l'1 -1 T 0o 0 00
r T
1000000
0, = (32)
(0010000

T T T T T
¢ = xf xt'r[, < Z xl)“)t ¢ b, ”t]

V=t—T1,
where
Observing system (11) and inequality (5), one has
— = — — — — T
‘/V = ZET[JVM ‘/VnZ ‘/Vn3 %Z'/V;M ‘/VnS ‘/Vnﬁ ‘/Vn7
x [(Anql - I)xt + Aronql'xt—ro + Elnqwt
+ E‘;nql(lst + Grnnql(/st—‘ro - ﬂt] =0,
(33)
Ox Uy U x, — ${ Uy U by 2 0, (34)
G‘xt T % %n t—1, ¢?—TO%Z%n¢t—TOZO' (35)

Then, from (28)-(35) and considering system (11), one
can obtain

T
AV + 2z, 2z, -
+A"73t+/l/+ztzt—

y w w, =AY, + AV,
T
Y Wy Wy
SAY + AV 5y + AV 3+ N + thzt -
+ exZ%Z%nxt - ¢?%Z%n¢t + exZ—TO%Z%nxt—T
T o,T
- ¢t—ro %n %n(/’t—ro

T
S Et ‘:mnqlft'

2T
Y @@
(36)

Based on (26), we have
A7, + thzt - yzthwt <0. (37)
Therefore, when the disturbance is assumed to be zero,
the following can be obtained from (28)-(35):
AV N oo =(AY | + AV 5 + AV 5 + /V)|wt:0

T
x x
t t
Ay Ap Az Ay
x x
t—=7 * t—7,
! By Ay Ay !
<| t-1 . . -1 .
> ox, Azz As; > ox,
v=t—1, « « « A v=t—1,
77
Ty T

(38)

Using Schur complement, inequality (26) means that
AV],_o <0. Therefore, when w(t) = 0, we can easily obtain
the asymptotically stability of system (11). Let

3= Y[lal: - vlel:] (39)
1=0

Under the condition that the initial conditions are zero
and  inequality = (37) holds, we can obtain
J<S YAV ) =~V o+ Vg =~ o <0. That is,
Izl < pllel,.

In order to increase the feasible range of the results
obtained in Theorem 1, the relationship between the sub-
systems in each subspace is considered. In addition, the
introduced relaxation matrix M, (q<I<A\,) may not be
symmetric matrices. Consequently, we can give and prove
the following improved results. O

Theorem 2. Designing fuzzy controller (10) for system (8),
the controlled system (11) is asymptotically stable and has
H property upper bound y(y>0), if there exist matrices

Iz" Wi ] >0, [ @*“ Cr ] >0, R>0, the nonsingular
Wa, Q,,
matrix F,, matrices N, (1=1,2,...,

T
Kbrgnl’ and Mn anl’

Wongg <Mpgqr 4=

7), K, K Ky
such that the following are feasible:

Ay (n,m) € Q, (40)

anl> N arynb

I, + 11

g <M, 1+M O<k<lI<A, (n,m) e Q,

(41)

mnlq nql>



8
Mnll Man ' MnlAn
M M - M
M, =| ™ whilco, n=12...x
Mn/lnl Mn/l,,Z e Nn/\nln
(42)
The feedback matrices of the controller can be designed as
-1
Funl = Kuann >
-1
Fa'ronl = Kargann ’

o (43)
Fyu = KpuK,,

~1
Fbronl = Kbroann :

Proof. If inequalities (40)-(42) hold, then

Ay Ay
2 T T
Hmnkl < Z honnqq + Z hnqhnl(anl + anl) = Hn Man <0,
q=1 q<l

(44)

Where Hn = [hnll hﬂZI e hn/\HI]T'
If inequality (44) has a feasible solution, we can obtain

AV + 7 z, - ] w, <0. (45)

The next proof process is roughly the same as that of
Theorem 2, so it is omitted here. This completes the
proof. O

4. Conclusion

By using the fuzzy switched system, PLF, and state move-
ment from one subspace to another, two new H_, control
schemes with time delay information are derived. The ad-
vantages of the proposed method include that the fuzzy
posterior contains nonlinear functions, the Lyapunov
function is piecewise, and the condition is expressed by
linear matrix inequality. In addition, Theorem 2 considers
the relationship between fuzzy subsystems. The disadvantage
of the proposed method is the introduction of relaxation
variables, which increases the computational complexity.
However, in order to expand the feasible region of the result
and obtain more feasible solutions at the same time, we
sometimes need to introduce the relaxation variables. If the
conditions have a feasible solution, the controller feedback
matrices can be calculated according to the feasible solutions
of a set of LMIs. Since fractional-order systems have more
dynamic behaviors than integral-order systems [3], we will
consider extending the results of this paper to fractional-
order T-S fuzzy systems.

Data Availability

The key point of our paper is theoretical derivation. The
result simulation can be done with the linear matrix in-
equality toolbox provided by MATLAB.
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