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/is paper deals with issues concerning green subsidies of government and optimal decisions of a manufacture and dual-channel
retailers in a two-echelon dual-channel supply chain. Both a decentralized supply chain and a centralized supply chain are
considered. Sufficient and necessary conditions for guaranteeing that the two supply chains run normally under government
subsidies are proposed. For the decentralized supply chain, a three-layer model is constructed according to different priorities of
the four participants. Both Bertrand game and Stackelberg game are involved. For the centralized supply chain, a two-layer model
is given. Decision models of the government under a financial budget are developed for maximizing the green degree of each case.
It is shown that the green degree of the product of the centralized supply chain is always higher than that of the decentralized
supply chain. Meanwhile, the total profit of the centralized supply is also higher. Finally, a numerical illustration is presented to
visualize the discussed models and make some supplements.

1. Introduction

Environmental consciousness has become increasingly
important in everyday life and business practice [1]. Raising
the consumer’s demand for environmentally friendlier
products with less harmful environmental effects is an
important measure to protect the environment and save
energies [2]. However, both manufacturers and consumers
prefer old-fashioned production because of its low cost [3].
Hence, governments introduce environmentally friendly
regulations so as to enhance the positivity of both manu-
facturers and consumers for green products [4].

In recent years, because of the high practicability, pro-
duction and pricing strategies on green products attract
much attention and a growing body of the literature focuses
on production and pricing strategies of green products in
green supply chains. Swami and Shah [1] addressed some
interesting questions such as extent of effort in greening of
operations by the manufacturer or retailer, level of coop-
eration between the two parties, and how to coordinate their

operations in a supply chain. Zhang et al. [5] investigated
energy efficiency level and pricing policies in a single
manufacturer-retailer setup, in which the production cost is
affected by both cost learning and operational inefficiency
effects. With a game-theoretic approach, Zhu and He [6]
investigated the green product design issues of how supply
chains’ decisions on the greenness of products are affected by
supply chain structures. Song and Gao [7] focused on dif-
ferent revenue-sharing contracts of the whole green supply
chain and compared the results of the common centralized
model and the decentralized decision model.

In practice, government subsidies always play a crucial
role in pricing and the choice of performance levels of green
products [8]. For example, in China, the energy-saving
subsidies have significantly promoted the production and
sales of energy-saving electric appliances and new energy
automobiles. Some literature studies focus on this aspect
when dealing with production and pricing issues. Zhang
et al. [9] analyzed subsidy policies of the government to
provide greater incentives for industry manufactures. Yu
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et al. [10] discussed the decision-making issue faced by
manufacturers to determine the levels of green products to
produce and production quantities at each green level.
Hafezalkotob [11] compared six different policies in price-
energy saving and used these policies to study the two
structures of centralized and decentralized green supply
chains. Safarzadeh and Rasti-Barzoki [12] studied a sus-
tainable supply chain which involves an energy-saving
manufacturer, inefficient manufacturer, and energy supplier
and constructed a multistage game model under govern-
ment policies of tax deduction and subsidy scheme. Nielsen
et al. [13, 14] analyzed optimal decision strategies under
different subsidized objects and proposed twelve analytical
models by considering the impact of different game
structures.

With the development of internet techniques, more and
more people prefer to purchase through e-commerce plat-
form. Owing to this, many manufacturers redesign their
traditional channel structures by engaging in direct sales
[15]. /e selling channel brought by the internet endows the
manufacturers with more opportunities for cost savings,
revenue growth, and expansion to new market segments
[16]. Owing to the above reasons, some literature studies
considered dual channels while discussing production and
pricing issues of green products. Li et al. [17] considered a
dual-channel green supply chain and discussed the pricing
and greening policies for both centralized and decentralized
situations by adopting the Stackelberg game. Javadi et al. [18]
discussed government intervention policies of energy-sav-
ing, revenue-seeking, social welfare, and sustainable devel-
opment in a dual-channel supply chain.

Our study is motivated by the above literature. /e basic
setting of this study is that a manufacturer produces green
products under government subsidies and dual-channel
retailers sell them to consumers. Similar to Liu and Yi [19],
the manufacturer determines the green degree level of the
product and the government offers subsidies to him.
Stimulated by Saha et al. [20], both centralized and
decentralized cases are studied. For the decentralized case, a
three-layer decision model is developed according to the
decision order of each decision maker. Both Bertrand game
and Stackelberg game are conducted to obtain optimal
decision strategies. For the centralized case, the manufac-
turer and the two retailers jointly determine the green degree
and sales prices. In this scenario, we pay no attention to the
wholesale price because it does not make any impact on
optimal decision. /e differences on the green degree
subsidies and the total profit between the two cases are
compared. /e sensitivity of each supply chain with regard
to the coefficient of the extra production cost is shown by a
curve graph.

Our research yields some theoretical and practical re-
sults. First, the existence and uniqueness of each solution of
the two supply chains is shown. Second, a sufficient con-
dition for guaranteeing that each manufacturer of the two
supply chains has a unique and reasonable solution under
government subsidies is shown./ird, at the point of view of
the government, an approach is developed to make policies
of green-product subsidies under a finite financial budget.

Finally, we demonstrate that the green degree of the product
of the centralized supply chain is always higher than the one
of the decentralized supply chain.

/e remainder of this paper is organized as follows:
necessary notations and assumptions are given in Section 2;
Section 3 conducts the decentralized decision model in-
volving a Bertrand game and a Stackelberg game, aiming to
discuss the theoretical and practical meanings of the model
and acquire optimal solutions for all the participants; in
Section 4, a centralized supply chain model is presented; a
numerical illustration is shown in Section 5 to make some
supplements; Section 6 summarizes the whole paper and
shows the future research prospects.

2. Notations and Assumptions

/is paper considers green product selling issues involving a
monopolistic manufacturer, an online retailer, and a tra-
ditional entity retailer. In addition, the government makes
subsidy policies under a finite financial budget to maximize
the green degree of products. Given the above, the con-
sidered problem can be formulated as a three-layer decision
model.

Necessary notations used in the following discussion are
given as follows:

a: the potential product demands of the market for the
product.
φ: the coefficient of the extra production cost related to
the green degree, φ> 0.
τ: the green degree of the product, τ > 0.
λ: the purchasing preference proportion for the tra-
ditional retailer; thus, 1− λ measures the purchasing
preference proportion for the platform channel.
Clearly, 0< λ< 1.
δ: the marginal demand with respect to the sales price,
δ > 0.
θ: the demand shift between the two channels with
respect to the price, θ> 0.
β: the marginal demand with respect to the green
degree, β> 0.
qb: the wholesale price given by the manufacturer for
the physical store.
qe: the wholesale price given by the manufacturer for
the online store.
pb: the sales price determined by the physical store.
pe: the sales price determined by the online store.
Db: the sales (demand) quantity of the physical store
during the given sales period, Db � λa – δpb+ θpe+ βτ.
De: the sales (demand) quantity of the online store
during the given sales period, De � (1− λ)
a – δpe+ θpb+ βτ.
g: the financial budget of the government to motivate
green production for the manufacturer, g> 0.
k: the per-unit green degree subsidy given by the
government, k> 0.

2 Mathematical Problems in Engineering



M: the total revenue of the manufacturer.
Rb: the total revenue of the physical store.
Re: the total revenue of the online store.

Some explanations are given for the above formulae. In
almost all the related literature, the subsidy threshold value
of the green degree is always a constant. /us, the green
degree in this paper can be regarded as the value of the green
degree determined by the manufacturer minus the subsidy
threshold value.

Without loss of generality, we assume that the physical
store attracts more purchasing preferences when the two
sales prices are the same, i.e., λ> 1/2. It is acknowledged that
one channel’s own price effect is greater than the cross-price
effect, namely, δ > θ. Furthermore, similar to the assump-
tions of Li et al. [17] and Hafezalkotob [21] with regard to the
relationships of coefficients of the demand function, we
assume that δ > θ> β. Generally speaking, the market de-
mand is more sensitive to prices than to the green degree,
which is reasonable and is usually the case [4].

Following Ghosh and Shah [22] and Li et al. [17], the
extra cost for the manufacturer to produce the green product
is denoted by

1
2

􏼒 􏼓φτ2. (1)

For the sake of the following discussion, some premises
are given as follows:

(1) /is paper considers a monopolistic manufacturer
who produces irreplaceable products; i.e., no other
substitutable product exists.

(2) All of them, the manufacturer, two retailers, and the
government, are able to acquire complete informa-
tion about the market and the revenue function.

(3) /e production capacity of the manufacturer is as-
sumed to be sufficient to meet the market demand.

(4) Both the physical store retailer and the e-commerce
retailer can only price the product for one time
throughout the whole sales period. Namely, once the
price of each channel is determined at the beginning
of the period, it cannot be changed.

(5) Different demand rates seriously affect the stock-
holding cost, yet this paper only considers demand
quantity instead of demand rate. Hence, we assume
that the stock-holding cost is a constant so that it
does not affect the decision of each participant.

3. Three-Layer Model

In this section, we construct a decentralized decision-
making two-echelon green supply chain model which in-
volves a Stackelberg game between the manufacturer and the
two retailers and a Bertrand game between the two retailers.
In addition to the supply chain, the government offers
subsidies for the green degree of products under a finite

financial budget. Hence, the discussed issue is a three-layer
problem which involves four participants.

/e contrary recurrence approach is adopted to handle
this model. Before analyzing solutions, we present the ob-
jective of each participant.

On the premise that the financial budget for motivating
green production is g, the government aims to determine
the green degree subsidy k to maximize the green degree
level τ.

/e objective function of the monopolistic manufacturer
is given as follows:

M � qbDb + qeDe −
1
2

􏼒 􏼓φτ2 + kτ, (2)

where k is uncertain by now. Decision variables of the
manufacturer are qb, qe, and τ.

/e objective function of the brick and mortar store with
pb as its variable is

Rb � pb − qb( 􏼁 λa − δpb + θpe + βτ( 􏼁. (3)

Similarly, the objective function of the e-commerce store
with pe as its variable is

Re � pe − qe( 􏼁 (1 − λ)a − δpe + θpb + βτ􏼂 􏼃. (4)

Objective functions (2), (3), and (4) compose a Stack-
elberg game, in which the manufacturer is the leader and the
two retailers are followers. Besides, the two retailers, the
brick and mortar store, and the e-commerce store form a
Bertrand game. First, we deal with the Bertrand game on the
premise that qb, qe, and τ are fixed.

By differentiating Rb, we obtain the following equation:

zRb

zpb

� −2δpb + θpe + λa + βτ + δqb � 0. (5)

Examining the second-order derivative of Rb, we have

z2Rb

zpb
2 � −2δ < 0, (6)

which means that the solution of equation (5) is the unique
solution of max Rb.

Similarly, the corresponding equation of Re is

zRe

zpe

� −2δpe + θpb +(1 − λ)a + βτ + δqe � 0. (7)

Examining the second-order derivative of Re, we have

z2Re

zpe
2 � −2δ < 0. (8)

/us, the solution of equation (7) is the unique solution
of max Re.

We denote by p
∗

b and p
∗

e the solution of equations (5) and
(7). Handling equations (5) and (7) by the elimination
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method, the unique equilibrium solution of the Bertrand
game is acquired as follows:

p∗b �
2δλa + θ(1 − λ)a + 2δ2qb + δθqe +(2δ + θ)βτ

4δ2 − θ2
,

p∗e �
2δ(1 − λ)a + θλa + δθqb + 2δ2qe +(2δ + θ)βτ

4δ2 − θ2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

By solution (9), we focus on dealing with the Stackelberg
game. Objective function (2) is transformed to

M �
1

4δ2 − θ2
− 2δ3 − δθ2􏼐 􏼑q

2
b + 2δ2λaqb􏽨

+ δθ(1 − λ)aqb + 2δ2 + δθ􏼐 􏼑βτqb􏽩

+
1

4δ2 − θ2
− 2δ3 − δθ2􏼐 􏼑q

2
e + 2δ2(1 − λ)aqe􏽨

+ δθλaqe + 2δ2 + δθ􏼐 􏼑βτqe􏽩

+
2δ2θ

4δ2 − θ2
qbqe −

1
2
φτ2 + kτ.

(10)

Before handling the solution of max M, we first present
the following proposition:

Lemma 1. Under δ > θ> 0, the following inequality

Det �

−
4δ3 − 2δθ2

4δ2 − θ2
2δ2θ

4δ2 − θ2
2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2θ
4δ2 − θ2

−
4δ3 − 2δθ2

4δ2 − θ2
2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

−φ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

< 0, (11)

is equivalent to

4δ2 − 2θ2􏼐 􏼑
2
φ − 4δ2θ2φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2 > 0. (12)

Proof. Handling the above determinant by the reduced-
order method, we have

−
4δ3 − 2δθ2

4δ2 − θ2
2δ2θ

4δ2 − θ2
2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2θ
4δ2 − θ2

−
4δ3 − 2δθ2

4δ2 − θ2
2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

−φ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� −
4δ3 − 2δθ2

4δ2 − θ2

−
4δ3 − 2δθ2

4δ2 − θ2
2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

−φ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
2δ2θ

4δ2 − θ2

2δ2θ
4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

−φ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2θ
4δ2 − θ2

−
4δ3 − 2δθ2

4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
− 4δ2 − θ2􏼐 􏼑 4δ3 − 2δθ2􏼐 􏼑

2
φ + 8δ3 + 4δ2θ − 4δθ2􏼐 􏼑 2δ2 + δθ􏼐 􏼑

2
β2 + 4 4δ2 − θ2􏼐 􏼑δ4θ2φ􏼔 􏼕

4δ2 − θ2􏼐 􏼑
3 .

(13)

Because δ > θ> 0, (11) is equivalent to

4δ2 − θ2􏼐 􏼑 4δ2 − 2θ2􏼐 􏼑
2
δ2φ − 8δ3 + 4δ2θ − 4δθ2􏼐 􏼑 2δ2 + δθ􏼐 􏼑

2
β2 − 4 4δ2 − θ2􏼐 􏼑δ4θ2φ> 0, (14)

4δ2 − θ2􏼐 􏼑δ2 > 0, (15)
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we find that (11) is also equivalent to

4δ2 − 2θ2􏼐 􏼑
2
φ −

8δ3 + 4δ2θ − 4δθ2􏼐 􏼑 2δ2 + δθ􏼐 􏼑

4(δ + θ) 4δ2 − θ2􏼐 􏼑δ2
4(δ + θ) 2δ2 + δθ􏼐 􏼑β2 − 4δ2θ2φ> 0. (16)

Because

8δ3 + 4δ2θ − 4δθ2􏼐 􏼑 2δ2 + δθ􏼐 􏼑 � 4δ2(δ + θ)(2δ − θ)(2δ + θ) � 4(δ + θ) 4δ2 − θ2􏼐 􏼑δ2, (17)

(16) is equal to (12).
According to the transitivity of the equivalence relation,

(11) is equivalent to (12). □

For the solution of max M, we show the following
conclusion:

Theorem 1. (11) is a sufficient condition for guaranteeing
that max M has a unique and reasonable solution.

Proof. All first-order partial derivatives of M are

zM

zqb

� −
4δ3 − 2δθ2

4δ2 − θ2
qb +

2δ2θ
4δ2 − θ2

qe +
2δ2λa + δθ(1 − λ)a + 2δ2 + δθ􏼐 􏼑βτ

4δ2 − θ2
,

zM

zqe

� −
4δ3 − 2δθ2

4δ2 − θ2
qe +

2δ2θ
4δ2 − θ2

qb +
2δ2(1 − λ)a + δθλa + 2δ2 + δθ􏼐 􏼑βτ

4δ2 − θ2
,

zM

zτ
�

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

qb +
2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

qe − φτ + k.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

By deriving second-order derivatives of M, we have the
corresponding Hessian matrix as follows:

H �

z2M

zq2b

z2M

zqbzqe

z2M

zqbzτ

z2M

zqezqb

z2M

zq2e

z2M

zqezτ

z2M

zτzqb

z2M

zτzqe

z2M

zτ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

−
4δ3 − 2δθ2

4δ2 − θ2
2δ2θ

4δ2 − θ2
2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2θ
4δ2 − θ2

−
4δ3 − 2δθ2

4δ2 − θ2
2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

−φ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Because δ > θ, by examining each order determinant of
H, we find that

−
4δ3 − 2δθ2

4δ2 − θ2
< 0, (20)

−
4δ3 − 2δθ2

4δ2 − θ2
2δ2θ

4δ2 − θ2

2δ2θ
4δ2 − θ2

−
4δ3 − 2δθ2

4δ2 − θ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
4δ3 − 2δθ2􏼐 􏼑

2

4δ2 − θ2􏼐 􏼑
2 −

4δ4θ2

4δ2 − θ2􏼐 􏼑
2 >

4δ6 − 4δ4θ2

4δ2 − θ2􏼐 􏼑
2 > 0. (21)
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Hence, inequality (11) guarantees that H is negative
definite. Consider the following equation set derived from
(18):

−
4δ3 − 2δθ2

4δ2 − θ2
qb +

2δ2θ
4δ2 − θ2

qe +
2δ2λa + δθ(1 − λ)a + 2δ2 + δθ􏼐 􏼑βτ

4δ2 − θ2
� 0,

−
4δ3 − 2δθ2

4δ2 − θ2
qe +

2δ2θ
4δ2 − θ2

qb +
2δ2(1 − λ)a + δθλa + 2δ2 + δθ􏼐 􏼑βτ

4δ2 − θ2
� 0,

2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

qb +
2δ2 + δθ􏼐 􏼑β
4δ2 − θ2

qe − φτ + k � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

By equation (22), we obtain expressions of qb and qe as
follows:

qb �
8δ3λa + 8δ2θ(1 − λ)a − 2δθ2λa − 2θ3(1 − λ)a + 8δ3 + 8δ2θ − 2δθ2 − 2θ3􏼐 􏼑βτ

4δ2 − 2θ2􏼐 􏼑
2

− 4δ2θ2
,

qe �
8δ3(1 − λ)a + 8δ2θλa − 2δθ2(1 − λ)a − 2θ3λa + 8δ3 + 8δ2θ − 2δθ2 − 2θ3􏼐 􏼑βτ

4δ2 − 2θ2􏼐 􏼑
2

− 4δ2θ2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

/en, equation (22) is transformed to

β 2δ2 + δθ􏼐 􏼑[2δa + 2θa + 4(δ + θ)βτ]

4δ2 − 2θ2􏼐 􏼑
2

− 4δ2θ2
− φτ + k � 0, (24)

by which we have

τ∗ �
2β 2δ2 + δθ􏼐 􏼑(δa + θa) + 4δ2 − 2θ2􏼐 􏼑

2
k − 4δ2θ2k

4δ2 − 2θ2􏼐 􏼑
2
φ − 4δ2θ2φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2􏼔 􏼕

,

(25)

where τ∗ is the solution of (24).

/en, q∗b and q∗e are acquired by substituting (25) into
(23):

q∗b �
8δ3λa + 8δ2θ(1 − λ)a − 2δθ2λa − 2θ3(1 − λ)a

4δ2 − 2θ2􏼐 􏼑
2

− 4δ2θ2
+ C,

q∗e �
8δ3(1 − λ)a + 8δ2θλa − 2δθ2(1 − λ)a − 2θ3λa

4δ2 − 2θ2􏼐 􏼑
2

− 4δ2θ2
+ C,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where C is a constant given as follows:

C �
8δ3 + 8δ2θ − 2δθ2 − 2θ3􏼐 􏼑 2β 2δ2 + δθ􏼐 􏼑(δa + θa) + 4δ2 − 2θ2􏼐 􏼑

2
k − 4δ2θ2k􏼔 􏼕β

4δ2 − 2θ2􏼐 􏼑
2

− 4δ2θ2􏼔 􏼕 4δ2 − 2θ2􏼐 􏼑
2
φ − 4δ2θ2φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2􏼔 􏼕

. (27)

By Lemma 1, we know that (11) is equivalent to (12).
Besides, by δ > θ, we have

4δ2 − 2θ2􏼐 􏼑
2
k − 4δ2θ2k> 4δ4k − 4δ2θ2k> 0. (28)

Hence, τ∗ > 0 under (11), i.e., (11) is a sufficient con-
dition for guaranteeing that max M has a unique and rea-
sonable solution. □

After the manufacturer declares q∗b , q∗e , and τ∗, values of
p∗b and p∗e are then obtained simultaneously by substituting
(25) and (26) into (9).

We briefly analyze the reason why all the coefficients
should meet (11) (or (12)) so as to guarantee that maxM has
a unique and reasonable solution.

If (11) (or (12)) does not hold, the unique extreme point of
M given by (25) and (26) is not the solution of maxM. By (23),

6 Mathematical Problems in Engineering



M is transformed to a one-variable function of τ, which we
denote by M (τ). According to the properties of differentiable
functions,M (τ) must be a monotonic function on the domain
of definition (0, +∞), which suggests that the green degree of
the product should be zero or infinity (or a given upper limit)
when maximizing the total revenue of the manufacturer.
Usually, it is impractical for a green-product supply chain.

Given the above, (11) is also a necessary condition for
guaranteeing thatmaxM has a unique and reasonable solution.

Furthermore, we also have the following conclusion.

Proposition 1. A two-echelon dual-channel supply chain
under government subsidies runs normally, if and only if all
the parameters meet (11) (or (12)).

By this result, the government is able to make decisions
of whether green-production subsidies should be offered to
the manufacturer or not by analyzing all the parameters.

Next, the relation between the coefficient of the extra
production cost and other parameters is examined.

By transforming (12), we have

φ>
4(δ + θ) 2δ2 + δθ􏼐 􏼑β2

4δ2 − 2θ2􏼐 􏼑
2

− 4δ2θ2
, (29)

which implies that the coefficient of the extra production
cost is often higher than a certain value. Otherwise, the
manufacturer will enhance the green degree to the upper
limit under a coefficient of the extra production cost that
does not meet (29). Hence, (29) always holds in practical
cases.

Finally, we consider the per-unit green degree subsidy of
the government. Regarding τ∗ as a function of k: τ∗(k), the
first-order derivative of τ∗(k) is obtained as follows:

zτ∗

zk
�

4δ2 − 2θ2􏼐 􏼑
2

− 4δ2θ2

4δ2 − 2θ2􏼐 􏼑
2
φ − 4δ2θ2φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2􏼔 􏼕

> 0.

(30)

which means that τ∗ is strictly monotonically increasing
with the increase of k.

Under a financial budget g, we consider the following
model:
max k

s.t.
2β 2δ2 + δθ􏼐 􏼑(δa + θa)k + 4δ2 − 2θ2􏼐 􏼑

2
− 4δ2θ2􏼔 􏼕k2

4δ2 − 2θ2􏼐 􏼑
2
φ − 4δ2θ2φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2􏼔 􏼕

≤g.

(31)

In practice, the quadratic formula is adopted to acquire
the maximum value of k with regard to the inequality in
model (31).

4. Two-Layer Model

/is section deals with a two-layer decision model in which
the manufacturer and the two retailers jointly make

decisions. /e government declares the per-unit green de-
gree subsidy first, and then, the two-echelon supply chain
determines the green degree and the sales prices. In practice,
this case can be regarded that a monopolistic manufacturer
possesses two channels to sell products, just like Amrouche
and Yan [23] considered.

By the given notations, the profit function S of a cen-
tralized supply chain with dual-sales channels is obtained as
follows:
S � λa − δpb + θpe + βτ( 􏼁pb + (1 − λ)a − δpe + θpb + βτ􏼂 􏼃pe

−
1
2
φτ2 + kτ.

(32)

Similarly, before handling the solution of max S, we
present the following proposition.

Lemma 2. Under δ > θ> 0, the following inequality

Det �

−2δ 2θ β

2θ −2δ β

β β −φ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

< 0, (33)

is equivalent to

2(δ − θ)φ − 2β2 > 0. (34)

Proof. Handling the above determinant by the reduced-
order method, we have

−2δ 2θ β

2θ −2δ β

β β −φ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� β
2θ β

−2δ β

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− β

−2δ β

2θ β

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− φ

−2δ 2θ

2θ −2δ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 4θβ2 + 4δβ2 − 4δ2 − 4θ2􏼐 􏼑φ

� 2(δ + θ) 2β2 − 2(δ − θ)φ􏽨 􏽩.

(35)

Hence, the above proposition holds. □

For the solution of max S, we present the following
conclusion.

Theorem 2. (33) is a sufficient condition for guaranteeing
that max S has a unique and reasonable solution.

Proof. All first-order partial derivatives of S are
zS

zqb

� λa − 2δpb + 2θpe + βτ,

zS

zqe

� (1 − λ)a − 2δpe + 2θpb + βτ,

zS

zτ
� βpb + βpe + k − φτ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)
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By deriving second-order derivatives of S, we have the
corresponding Hessian matrix as follows:

H′ �

z2S

zq2b

z2S

zqbzqe

z2S

zqbzτ

z2S

zqezqb

z2S

zq2e

z2S

zqezτ

z2S

zτzqb

z2S

zτzqe

z2S

zτ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

−2δ 2θ β

2θ −2δ β

β β −φ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (37)

Because δ > θ> 0, by examining each order determinant
of H′, we find that−2δ < 0 and

4δ2 − 4θ2 > 0. (38)

Hence, inequality (33) guarantees that H′ is negative
definite.

Consider the following equation set derived from (36):
λa − 2δpb + 2θpe + βτ � 0,

(1 − λ)a − 2δpe + 2θpb + βτ � 0,

βpb + βpe + k − φτ � 0.

⎧⎪⎪⎨

⎪⎪⎩
(39)

By dealing with (39), we obtain

pb �
λδa +(1 − λ)θa +(δ + θ)βτ

2δ2 − 2θ2
,

pe �
(1 − λ)δa + λθa +(δ + θ)βτ

2δ2 − 2θ2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)

By substituting (40) into (39), the value of τ is then
acquired (which we denote as τ′):

τ′ �
βa + 2(δ − θ)k

2(δ − θ)φ − 2β2
. (41)

By substituting (41) into (40), values of pb
′ and pe

′ are
obtained.

Apparently, max S has a unique and reasonable solution
under inequality (33). □

Similar to the previous section, when inequality (33)
does not hold, S (τ) must be a monotonic function on the
domain of definition (0, +∞), which suggests that the green
degree of the product should be zero or infinity (or a given
upper limit) when maximizing the total revenue of the
manufacturer.

On the premise that both (11) and (33) hold, we intend to
compare values of τ′ and τ∗ (determined by (25)):

τ∗ �
2β 2δ2 + δθ􏼐 􏼑(δa + θa) + 4δ2 − 2θ2􏼐 􏼑

2
k − 4δ2θ2k

4δ2 − 2θ2􏼐 􏼑
2
φ − 4δ2θ2φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2

.

(42)

Transforming (41) as

τ′ �
βa + 2(δ − θ)k

2(δ − θ)φ − 2β2
�
2β 2δ2 + δθ􏼐 􏼑(δa + θa) + 4 δ2 − θ2􏼐 􏼑 2δ2 + δθ􏼐 􏼑k

4 δ2 − θ2􏼐 􏼑 2δ2 + δθ􏼐 􏼑φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2
, (43)

we notice that

4δ2 − 2θ2􏼐 􏼑
2
φ − 4δ2θ2φ − 4 δ2 − θ2􏼐 􏼑 2δ2 + δθ􏼐 􏼑φ

� 16δ4 − 20δ2θ2 + 4θ4􏼐 􏼑φ − 8δ4 + 4δ3θ − 8δ2θ2 − 4δθ3􏼐 􏼑φ

� 8δ4 − 4δ3θ − 12δ2θ2 + 4δθ3 + 4θ4􏼐 􏼑φ

� 4 δ2 − θ2􏼐 􏼑 2δ2 − θ2 − δθ􏼐 􏼑

> 0.

(44)

Hence, both the numerator and the denominator of τ∗
are larger than the ones of τ′.

For the sake of comparison, we divide both τ′ and τ∗ into
two parts according to numerators. For the first part of each
one, we have

2β 2δ2 + δθ􏼐 􏼑(δa + θa)

4 δ2 − θ2􏼐 􏼑 2δ2 + δθ􏼐 􏼑φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2

>
2β 2δ2 + δθ􏼐 􏼑(δa + θa)

4δ2 − 2θ2􏼐 􏼑
2
φ − 4δ2θ2φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2

.

(45)

For the second part, in order to make a comparison
concisely, we denote

4 δ2 − θ2􏼐 􏼑 2δ2 + δθ􏼐 􏼑k

4 δ2 − θ2􏼐 􏼑 2δ2 + δθ􏼐 􏼑φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2
�

Uk

Uφ − V
,

(46)
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4δ2 − 2θ2􏼐 􏼑
2
k − 4δ2θ2k

4δ2 − 2θ2􏼐 􏼑
2
φ − 4δ2θ2φ − 4(δ + θ) 2δ2 + δθ􏼐 􏼑β2

�
(U + Δ)k

(U + Δ)φ − V
,

(47)

where ∆> 0. /en,
Uk

Uφ − V
−

(U + Δ)k
(U + Δ)φ − V

�
ΔVk

(Uφ − V)[(U + Δ)φ − V]
> 0.

(48)

Given the above, τ′ > τ∗ under the same green degree
subsidy k. Considering the decisionmodel of the government,

max k

s.t. τk≤g,
(49)

we draw the following conclusion:

Proposition 2. Under a finite financial budget, the per-unit
green degree subsidy of the centralized supply chain provided
by the government is always lower than the one of the
decentralized supply chain.

Considering the inverse relation between τ and k, we
present the following result by Proposition 2:

Corollary 1. =e green degree of the product of the cen-
tralized supply chain is always higher than the one of the
decentralized supply chain.

Specifically, the decision model of the government is
given as follows:

max k

s.t.
βak + 2(δ − θ)k2

2(δ − θ)φ − 2β2
≤g.

(50)

Next, we analyze the profits of the two types of supply
chain. Clearly, objective functions of total profits of the two
supply chains are the same:

S � M + Rb + Re. (51)

However, their sales prices must be different under qua-
dratic profit functions [24]. Certainly, we can accurately cal-
culate the difference between them by comparing (9) and (40).

Because a quadratic function has only one optimal so-
lution, we have the following result:

max S>maxM + maxRb + maxRe. (52)

Namely, the total profit of the centralized supply chain is
always higher than the one of the decentralized supply chain.
In the next section, we will show this point by an example.

5. Numerical Illustration on Brick Production

Before illustrating the performance of the developed models,
we briefly discuss the government policies in energy-saving

production. Although the entity enterprises substantially
contribute to the gross domestic product (GDP) in many
developing countries, they often utilize outdated, energy-
intensive technologies to carry out industrial production
activities [21], which lead to serious pollution on
environment.

/e promotion of green production is one important
aspect to lower electricity consumption and oil consump-
tion. Hence, the government pays much attention to
strengthen the awareness of green production. In China, for
example, the government provides energy-saving subsidies
for many electrical and petrolic appliances. Both manu-
facturers and consumers benefit from this energy-saving
policy.

In order to visualize the models, we present an example
with the following scenario: given market potential demand
a� 1000, consumers’ purchasing preference proportions for
the physical store retailer and the e-commerce retailer are
λ� 0.6 and 1− λ� 0.4, the marginal demand with respect to
the sales price is δ � 3, the demand shift with respect to the
price is θ� 2, the marginal demand with respect to the green
degree level is β� 1, and the fixed cost related to the green
degree is φ� 2. In addition, we assume that the financial
budget of the government to motivate green production is
g � 125000. Apparently, the above parameters meet both
inequality (11) and inequality (33).

First, the decentralized case is analyzed. By (9), the
undetermined equilibrium solution of the Bertrand game is
obtained:

p∗b �
4400 + 18qb + 6qe + 8τ

32
,

p∗e �
3600 + 6qb + 18qe + 8τ

32
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(53)

Clearly, optimal prices of the two retailers are deter-
mined as soon as the manufacturer makes his decisions.

Examining (25) and (26), we find that optimal decisions
of the manufacturer are ultimately determined by the per-
unit green degree subsidy. /us, according to (31), we
consider the following model:

max k

s.t.
240000k + 640k2

800
≤ 125000, k≥ 0.

(54)

We transform the inequality in the constraint to

20k
2

+ 7500k − 3125000≤ 0. (55)

By the factorization approach, we have

(4k + 2500)(5k − 1250)≤ 0. (56)

Hence, max k� 250 on the interval [0, 250].
Given the above, the green degree of the product is

determined by (25): τ∗ � 500. And the optimal wholesale
prices are obtained by (26): q∗b � 510 and q∗e � 490. By all the
obtained results, optimal prices of the physical store retailer
and the online retailer are p∗b � 641.25 and p∗e � 608.72. /e
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profit of each participant is as follows: M∗ � 250388.5,
R∗b � 51671.8, and R∗e � 42304.7./e total profit of the supply
chain is M∗ +R∗b +R∗e � 344365.

Second, we handle the centralized case. According to
(50), we consider the following model:

max k

s.t.
1000k + 2k2

2
≤ 125000.

(57)

/en, we obtain max k� 183< 250, which coincides with
Proposition 2. Substituting k� 183 into (41), we have
τ′� 683. Substituting τ′� 683 into (40), we obtain pb

′� 601.5
and pe
′� 581.5. Finally, the profit of the centralized supply

chain (or a manufacturer who operates two sales channels) is
max S� 359244.5>M∗ +R∗b +R∗e .

/e curves of the two green degrees of the decentralized
supply chain (DS) and the centralized supply chain (CS) are
depicted in Figures 1 and 2.

It is shown that the difference between τ∗ and τ′ is
highest when k� 183.

Next, we analyze the sensitivity of the total profit of each
supply chain with respect to the coefficient of the extra
production cost φ under a certainmarket; i.e., a, λ, δ, θ, and β
remain unchanged. According to (12) and (34), the value
range of φ is φ> 1. /us, we consider φ ∈ [1.5, 5].

/e curves are presented in Figure 2.
/e curve of CS is always above the curve of DS, which

meets our conclusion. Besides, with the increase of φ, the two
curves get closer quickly. Hence, we draw the following
conclusion: when φ is relatively low, the centralized deci-
sion-making of the supply chain significantly raises the total
profit; when φ is relatively high, the motivation of the
centralized decision-making reduces.

6. Conclusions

In this paper, we investigate production and pricing issues in
a two-echelon dual-channel supply chain under government
subsidies. Both decentralized supply chain and centralized
supply chain are considered. In the decentralized supply
chain, we propose a three-layer decision model involving the
government, the manufacturer, and dual-channel retailers.
Both Bertrand game and Stackelberg game are conducted to
deal with the multilevel model. /e existence and unique-
ness of the solution of each game model is analyzed. In the
centralized supply chain, a two-layer model for determining
sales prices, the green degree, and the per-unit green degree
subsidy is constructed. Decision models of the government
under a financial budget are developed for maximizing green
degrees of the two cases.

/is paper reveals some managerial insights. First, re-
lations between all the coefficients are analyzed for the two
cases in order to guarantee that each supply chain runs
normally. Second, we demonstrate that the green degree of
the product of the centralized supply chain is always higher
than the one of the decentralized supply chain, which means
that the government tends to offer production subsidies to a
centralized supply chain./ird, it is shown that a centralized
supply chain always gains more profit than a decentralized
one.

Nevertheless, some aspects have not been taken into
consideration. First, demand functions are only assumed to
be related to sales prices. However, in practice, they may vary
with time, especially for some seasonal products. In such
situations, dynamic pricing strategies are often adopted.
Second, competition between different supply chains have
not been considered. Besides, the impact on the environ-
ment incurred by green production has not been paid
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Figure 1: Curves of τ∗ and τ′ (DS and CS, respectively) with
respect to k.
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Figure 2: Curves of total profits of DS and CS with regard to φ.

10 Mathematical Problems in Engineering



attention in this paper. In practice, consumers’ awareness on
the environment attracts much attention in recent years.
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