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+is paper presents an algorithm for solving a minimum cost flow (MCF) problem with a dual approach. +e algorithm holds the
complementary slackness at each iteration and finds an augmenting path by updating node potential iteratively. +en, flow can be
augmented at the original network. In contrast to other popular algorithms, the presented algorithm does not find a residual
network, nor find a shortest path. Furthermore, our algorithm holds information of node potential at each iteration, and we
update node potential within finite iterations for expanding the admissible network. +e validity of our algorithm is given.
Numerical experiments show that our algorithm is an efficient algorithm for the MCF problem, especially for the network with a
small interval of cost of per unit flow.

1. Introduction

+eminimum cost flow (MCF) problem is to find a minimal
cost of a given amount flow from a set of supply nodes to a
set of demand nodes in a directed network where each arc is
assigned a cost and a capacity constraint. MCF problem
plays a fundamental role in network optimization. On the
one hand, many network flow problems, such as shortest
path problem, maximal flow problem, and transportation
problem, can be viewed as special cases of the MCF problem.
On the other hand, the MCF problem has a remarkable wide
range of applications [1] in the real word, for example,
scheduling [2], agriculture [3], communications [4], health
care [5, 6], and transportation [7].

Since the MCF problem is a linear program, we can also
find the optimal solution with linear programming meth-
odologies. Indeed, many of various optimality conditions
about the MCF problem and linear programming are de-
rived by researchers. +us, we can develop efficient algo-
rithms for the MCF problem with theory of duality.

Several algorithms have been designed for solving the
MCF problem over past decades both from theoretical and

from practical aspects. Many algorithms combing in-
gredients of both shortest path and maximal flow are de-
veloped to solve the MCF problem.+ese algorithms find an
optimal solution by solving a sequence of the shortest path
problem within maximum flow-like residual networks and
augmenting path, such as the cycle-canceling algorithm [8],
successive shortest path algorithm [9], and primal-dual and
out-of-kilter algorithms [10]. +ey are equivalent in the
sense that these algorithms perform the same sequence of
strategy, and the key step is defining the residual network
iteratively. Moreover, both cost and capacity are to be
considered for defining the residual network, and some
more arcs are to be introduced with negative cost, which
make the original problem much more difficult to solve.
Although none of the algorithms mentioned above has been
shown to be a well complexity, they usually behave much
better in practice compared to their theoretical analysis.
Edmonds and Karp [11] proposed the first polynomial al-
gorithm. Currently, an efficient polynomial time algorithm
for the MCF problem was proposed by Orlin [12] and Vygen
[13]. Some theoretical results and algorithms are given in
[14–18] for solving the MCF problem or its variants.
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Recently, Vieira et al. [19] evaluated the practical perfor-
mance of 4 algorithms on real networks. And Vernet et al.
[20] used a success shortest path algorithm for dynamic
graph. A recent survey on the MCF problem is given in [21].

Our purpose in this paper is to present a new algorithm
for solving the MCF problem.We consider the dual problem
of MCF problem and derive the optimality conditions. +e
algorithm can find an augmenting path directly in a directed
network when some dual variables (nodes potentials) of the
MCF problem are updated iteratively in finite steps. In
contrast to other algorithms, we do not need to define any
residual network.

+is paper is organized as follows: Section 2 derives
optimality conditions of MCF problem with duality theory.
Section 3 gives an iterative algorithm for the MCF problem.
Section 4 discusses validity of the presented algorithm.
Numerical experiment results and analysis of computational
experiments are reported in Section 5. Section 6 contains
some concluding remarks on the proposed algorithm for
solving the MCF problem.

2. Optimality Conditions

Let G � (N, A, C, U) be a directed network with a node set
N, an arc set A, a cost set C, and a capacity set U. Fur-
thermore, a cost cij ∈ C and a nonnegative capacity uij ∈ U

associated with each arc (i, j) ∈ A,∀i, j ∈ N. And we as-
sociate with each node i ∈ N a number bi which indicates its
supply or demand depending on whether bi < 0 or bi > 0. Let
node s and node t be the source node and sink node, re-
spectively. And we assume that i∈N,i≠s,tbi � 0. +e MCF
problem can be stated as follows:

MCF

min z(x) � 
(i,j)∈A

cijxij


j:(i,j)∈A

xij − 
j:(j,i)∈A

xji � v∗, i � s,


j:(i,j)∈A

xij − 
j:(j,i)∈A

xji � − v∗, i � t,


j:(i,j)∈A

xij − 
j:(j,i)∈A

xji � 0, ∀i ∈ N, i≠ s, t,

0≤xij ≤ uij, ∀(i, j) ∈ A.



(1)

+e dual problem of MCF is

DMCF

max ω � v∗ps − v∗pt + 
(i,j)∈A

uijpij

pi − pj + pij ≤ cij, ∀(i, j) ∈ A,

pi is free, ∀i ∈ N,

pij ≤ 0, ∀(i, j) ∈ A, i ∈ N,



(2)

where pi and pij are the dual variables of the MCF problem.
And we refer to pi and pij as the potential of node i and arc
(i, j),∀i ∈ N,∀(i, j) ∈ A, respectively.

Let x � xij  and p � pi, pij  be a feasible solution of
MCF and DMCF, respectively. If feasible solution x � xij 

and p � pi, pij  are optimal solutions, according to theo-
rem of commentary slackness, the following conditions will
be satisfied:

xij � 0, if pi − pj + pij < cij,∀i ∈ N, (i, j) ∈ A, (3)

xij � uij, if pij < 0,∀(i, j) ∈ A. (4)

Since pi is free ∀i ∈ N, let pij � min 0, cij + pj − pi ,
then we have pij ≤ 0.+erefore, we can find a feasible solution
p � pi, pij  of DMCF where the value of pij is defined above
∀i ∈ N,∀(i, j) ∈ A. +us, the complementary slackness
conditions (3) and (4) are equal to the following conditions:

xij � 0, if pi − pj < cij,∀i ∈ N, (i, j) ∈ A, (5)

xij � uij, if pi − pj > cij,∀i ∈ N, (i, j) ∈ A. (6)

+erefore, if feasible solution x � xij  is an optimal
solution of MCF, then x will satisfy conditions (5) and (6).
On the contrary, for the arc (i, j) ∈ A satisfying
pi − pj � cij, we have 0≤ xij ≤ uij. In other words, we can
find an augmenting path where each arc (i, j) ∈ A on the
path such that pi − pj � cij when the value of flow is not the
maximum flow in a network. We refer to arc (i, j) ∈ A

satisfying pi − pj � cij as the admissible arc, and let G′ �
(N′, A′, C′, U′) be an admissible network satisfying that
N′ ⊆N, A′ ⊆A, C′ ⊆C, U′ ⊆U, pi − pj � cij,∀(i, j) ∈ A′.

3. An Iterative Algorithm for Solving MCF

It is clear that xij � 0,∀(i, j) ∈ A is an optimal solution with a
flow valued 0. In order to get an optimal solution ofMCFwith
a given amount of flow, we iteratively augment flow holding
the complementary slackness condition (5) and (6) at each
iteration. And flow can be augmented after we find an
augmenting path within the admissible network. Moreover, a
new admissible network can be given by updating the po-
tential of node when we cannot find an augmenting path and
flow is not the maximal flow. Let V be a number of given
amount of flow. We now describe formally our algorithm for
solving the MCF problem (Algorithm 1).

Next, we will give the validity of the proposed algorithm.

4. Validity of the Proposed Algorithm

+e validity of the above algorithm depends mainly from the
following results:

Lemma 1. When the current flow is not the maximal flow in
a network, at least one admissible arc can be found after
updating node potential.

Proof. It is clear that there is at least one augmenting path if
current flow is not the maximal flow in a directed network.
+erefore, we have xij < uij for some forward arc (i, j) or
xji > 0 for some backward arc (j, i),∀i ∈ S, j ∈ S. Otherwise,
node j will be labeled and j ∈ S according to the presented
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algorithm.+en, we can find θ and update node potential by
Algorithm 1. +us, at least one new admissible forward arc
(i, j), pi − pj � cij or backward arc (j, i), pj − pi � cji will be
found. □

Theorem 1. 4e proposed algorithm finds an augmenting
path in a finite iteration when the current flow is not the
maximal flow.

Proof. Let n be the number of nodes in a network
G � (N, A, C, U), and there are at most n − 1 arcs on a path
μ from the source node to sink node. According to Lemma 1,
the presented algorithm can find an augmenting path in n −

1 iterations, which implies +eorem 1. □

Theorem 2. After augmenting a flow of value v by our
algorithm, then the new feasible flow valued v′ � v + δt is
the minimum cost flow valued v′.

Proof:. the algorithm begins a feasible flow xij � 0, ∀(i, j) ∈
A, and feasible flow xij � 0,∀(i, j) ∈ A is the minimum cost
flow valued 0. Furthermore,the proposed algorithm holds the
complementary slackness condition (5) and (6) at each it-
eration.+erefore, augmented flow updated by Algorithm 1 is
the optimal solution of a minimum cost flow valued v′, which
gives +eorem 2. □

5. Numerical Experiment

In this section, the computational experimental results are
presented in order to verify the performance of the presented
algorithm. +e presented algorithm has been coded with
Matlab and run on PC with Intel® Core™ i5-7300HQ CPU
(2.5GHz) and RAM 8GB. +e tested problem is generated by
the well-knownWaxman network topology generator with the
method proposed byWaxman [22]. All nodes of the generated
problem are a Poisson process in the plane with scaled. Nodes i

and j are connected with probability p(i, j) � αe− d(i,j)/βL,
where α is the maximal link probability, β is a parameter to
control length of the arcs, d(i, j) is the Euclidean distance
between node i and j, and L is the maximal distance between
any two nodes. For the network generated by the Waxman
generator, we randomly give a cij and uij for each arc
(i, j) ∈ A. +e computational experiments are performed on a
network with different scales (n varied from 10 to 200). Let
n(m) be the number of nodes (arcs) of the generated network.
And for a fixed n and m, a set of 10 instances are solved by our
proposed algorithm and the successive shortest path algorithm
(SSPA) [9] in order to make computational comparison.
Furthermore, for a fixed n, our algorithm and SSPA are
performed on a network with different number of arcs and
cij, i, j � 1, 2, . . . , n. For the sake of simplicity, the algorithm
proposed in [9] is named as Algorithm A1 and the algorithm

Initialization: initialize node potential pi � 0, ∀i ∈ N. Let xij � 0, (i, j) ∈ A, be an initial optimal solution with a flow valued 0. Label
source node (0, +∞). Set S � s{ }, S � N − S.
While i:(s,i)∈Axsi ≥V or θ cannot be found
While t ∉ S

For i ∈ S

θi � min
min

j:(i,j)∈(S,S)∩A
pi − pj < cij

(cij − pi + pj), min
j:(j,i)∈(S,S)∩A

pj− pi > cij

(pj − pi − cij)⎧⎨

⎩

⎫⎬

⎭

End
θ � min

i∈S
θi 

pi �
pi + θ, i ∈ S,

pi, i ∈ S.


If pi − pj � cij then
(i, j) ∈ R

End
If t ∈ S then
For ∀i ∈ S, j ∈ S

If (i, j) ∈ R and xij < uij

Label node j with a label (i, δj), where δj � min δi, uij − xij , S � S∪ j .
End
If (j, i) ∈ R and xji > 0 then
Label node j with a label (− i, δj), where δj � min δi, xji , S � S∪ j .

End
End

xij �

xij + δt, xij ∈ μ+,

xij − δt, xij ∈ μ− ,

xij.

⎧⎪⎨

⎪⎩

End
End

End

ALGORITHM 1
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proposed in this paper as A2.+e numerical experiment results
are reported in Table 1. +e column titled “AVER.” in Table 1
provides an average CPU time out of 10 runs in the execution.

+e numerical experiments indicate the following
observations.

A2 outperforms A1 in terms of CPU time in all cases. A2
runs approximately 9–140 times faster than A1 as “n” varies
from 10 to 200 with cij ∈ [1, 10],∀(i, j) ∈ A. For a larger
interval of cij ∈ [1, 1000],∀(i, j) ∈ A, A2 takes more CPU
time compared with a smaller interval of cij ∈ [1, 10],

∀(i, j) ∈ A. As the proposed algorithm described, the pro-
posed algorithm holds information of node potential at each
iteration, and we update node potential for expanding the
admissible network. +erefore, we may find several ad-
missible arcs after updating the node potential in an iteration
for a smaller interval of cij, which implies that we find
augmenting path(s) more efficiently compared with a larger
interval of cij,∀(i, j) ∈ A.

Furthermore, the numerical experiments show that the
increased CPU time of A2 is greater than A1 when the
number of nodes increased. And the largest number of nodes
in the network generated by the Waxman generator on our
PC is 200. +erefore, for a larger number of nodes (great
than 200) and a great interval of cij ∈ [1, 1000],∀(i, j) ∈ A in
a network, A2 will take more CPU time compared to A1 for
solving the MCF problem.

6. Conclusion

In this paper, we proposed an algorithm for solving the MCF
problemwith a dual approach which holds a complementary
slackness conditions at each iteration. +e key step of our
algorithm is updating node potential, and flow can be
augmented after updating node potentials in finite steps.

Unlike existing algorithms such as successive shortest path
algorithm and primal-dual algorithm, our algorithm does
not find the residual network, nor find the shortest path
iteratively. We conduct a numerical experiment to in-
vestigate the performance of the proposed algorithm. +e
results of the numerical experiment show that our algorithm
reduces CPU time greatly compared with SSPA.

In this paper, the cost of flow is fixed, and we plan to
develop an algorithm for solving the MCF problem with
fuzzy cost and constraints. In practice, it is worthwhile to
study the case that we have a close-to-optimal solution for
the MCF problem. It is fundamentally important to trans-
form the multiobject assignment problem and multiobject
transportation problem into the MCF problem, which could
be our further study.
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“Successive shortest path algorithm for flows in dynamic
graphs,” in Proceedings of the 16th Cologne-Twente Workshop
on Graphs and Combinatorial Optimization, Paris, France,
June 2018.

[21] A. Sifaleras, “Minimum cost network flows: problems, algo-
rithms, and software,” Yugoslav Journal of Operations Re-
search, vol. 23, no. 1, pp. 3–17, 2013.

[22] B. M. Waxman, “Routing of multipoint connections,” IEEE
Journal on Selected Areas in Communications, vol. 6, no. 9,
pp. 1617–1622, 1988.

Mathematical Problems in Engineering 5

https://arxiv.org/abs/1612.00201
https://arxiv.org/abs/1612.00201

