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For solving nonlinear complementarity problems, a new algorithm is proposed by using multidimensional filter techniques and a
trust-region method.'e algorithm is shown to be globally convergent under the reasonable assumptions and does not depend on
any extra restoration procedure. In particular, it shows that the subproblem is a convex quadratic programming problem, which is
easier to be solved. 'e results of numerical experiments show its efficiency.

1. Introduction

Let F(x): Rn⟼Rn be a continuous differentiable func-
tion. 'e nonlinear complementarity problem (NCP) is to
find a vector x ∈ Rn such that

x≥ 0,

F(x)≥ 0,

x
T
F(x) � 0.

(1)

For convenience, denote I � 1, 2, . . . , n{ }. 'roughout
this paper, ‖·‖ denotes the Euclidean norm.

'e traditional approach for NCP involves reformu-
lating the problem as an optimization problem [1–12] or a
nonlinear differentiable function [13–18]. In this paper, a
new method for solving this optimization problem is based
on the class of trust-region methods and also filter methods
introduced by Fletcher and Leyffer in 1997 and subse-
quently published as [19]. 'is technique has important
reference value for many nonlinear system problems
[20–22]. 'e idea of filter methods is that trial points are
accepted as long as they could reduce the value of objective
function or improve the feasibility, which is different from
the conventional approach of combining these two mea-
sures by a penalty function. Filter approaches play an

important role to balance the objective function and
constraints and have advantages over penalty function
methods. Numerical experiments have shown the
impressing efficiency of filter methods [19, 23]. 'e global
convergence proof of filter-SQP algorithm is given by
Fletcher et al. [24], and relevant superlinear local con-
vergence is achieved by Ulbrich [25].

Because of good numerical results, filter techniques are
extensively studied to handle the nonlinear complementarity
problem [7–9, 26, 27]. Most of the contributions to NCP of
filter algorithms rely on an external “restoration procedure”
[19, 27–29] whose purpose is to reduce constraint infeasi-
bilities, since the filter idea introduced by Fletcher and
Leyffer [19] is based on constrained optimization problems,
and the constrained optimization problems transformed by
NCP may be infeasible. Gould et al. [30, 31] proposed a
multidimensional filter algorithm for nonlinear uncon-
strained optimization problems instead of a two-dimen-
sional filter [19] for constrained optimization problems.'is
motivates us to consider the possibility of reformulating
NCP as an unconstrained optimization problem and solving
the optimization by a multidimensional filter method. In
spite of the fact, we suggest a reformulation of NCP as an
optimization problem with nonnegativity constraints be-
cause Fischer [2] points out that stationary points with
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negative components can be avoided in contrast to the
reformulation as unconstrained minimization problem.
Unfortunately, the multidimensional filter method is pro-
posed on unconstrained optimization [30, 31].

'ere are two main motivations of this paper. One is to
find an effective method to overcome the influence of
“restoration procedure” on the efficiency of the algorithm.
'e other is to find a technology to solve the constrained
optimization problem with nonnegative constraints by using
a multidimensional filter method, just like solving the un-
constrained optimization problem, so as to solve the NCP
problem. Our proposal is to reformulate NCP as an opti-
mization problem with nonnegative constraints and solve
the optimization by a multidimensional filter method. 'e
gradient-projection method [32] shows that the first-order
optimality condition of the nonnegativity constrained op-
timization problem is equivalent to the fact that the pro-
jected gradient is zero, which is similar to the optimality
condition of the unconstrained optimization problem. 'e
characteristics of NCP make sure that the trust-region
subproblem of the equivalent reformulation is a convex
quadratic programming problem because thematrix B in the
subproblem is a positive semidefinite symmetric matrix.
Even we find that the twice continuously differentiability of
F(x) implies that B is uniformly bounded. It is very im-
portant for the global convergent analysis of our algorithm.
Especially, the new algorithm does not depend on any extra
restoration procedure because it always remains the com-
patibility of the trust-region subproblem.

'is paper is organized as follows: the algorithm and
preliminaries are introduced in Section 2 and the global
convergence analysis for the proposed method is given in
Section 3. Some numerical results are reported in Section 4.
'e final section gives some conclusions.

2. The Algorithm and Preliminaries

In this section, we will describe the specific strategies and
motivations for solving problem (1) and finally present a
multidimensional filter algorithm for the nonlinear com-
plementarity problem.

2.1. Equivalent Model and Gradient-Projection Method.
We consider using the Fischer–Burmeister function [33] to
reformulate NCP as the following optimization problem and
solve the optimization by a multidimensional filter method:

min
x≥0

fμ(x) ≔
1
2
Φμ(x)

TΦμ(x) , (2)

where μ≥ 0 is a smooth parameter, and Φμ(x) �
�������������

x2
1 + F2

1(x) + μ2
􏽱

− x1 − F1(x)􏼒 , . . . ,
�������������
x2

n + F2
n(x) + μ2

􏽰
−

xn − Fn(x)􏼓
T

. For μ � 0, we get the following equivalence

relation [34]: x∗solves (1)⟺ x∗ solves (2). Nonnegative
constraints in optimization problem (2) can help to avoid
stationary points with negative components [2], but it brings
some troubles to the multidimensional filter method

[30, 31].'erefore, we use a gradient-projectionmethod [32]
and define the “projected” gradient of fμ(x) into the feasible
set of problem (2) as follows:

gμ,i(x) �
gμ,i(x), xi ≥gμ,i(x),

xi, xi <gμ,i(x),

⎧⎨

⎩ (3)

where gμ,i(x) is the i-th component of the gμ(x),
gμ(x) ≔ ∇xfμ(x) and i ∈ I.

'e advantage of this strategy is obvious: x∗μ is a KKT
point of problem (2) if and only if gμ(x∗μ ) � 0. So, we can use
a multidimensional filter method to solve problem (2) when
μ approaches to zero just as we can solve unconstrained
optimization problem.

2.2. Trust-Region Subproblem. To solve problem (2), we
compute a trial step dk by finding an approximation to the
solution of the trust-region subproblem:

min Qk(d) � fμk
xk( 􏼁 + ∇xfμk

xk( 􏼁
T
d +

1
2

d
T
Bkd,

s.t. xk + d≥ 0, ‖d‖∞ ≤Δk,

(4)

where xk is the current iteration point, Δk is the trust-region
radius, and Bk � ∇xΦμk

(xk)∇xΦμk
(xk)T, and

∇xΦμ(x) ≔ (bij)nn, bij � (zΦμ,j(x)/zxi). 'e positive pa-
rameters μk tend to zero during the iterate of algorithm. A
trial point x+

k is then computed by the trial step dk; denote
x+

k � xk + dk.
Subproblem (4) obviously has a solution d � 0 at least.

'erefore, our new algorithm does not depend on any extra
restoration procedure [19, 27–29] because it always remains
the compatibility of the trust-region subproblem. Especially,
we note that the characteristics of NCP make sure that the
trust-region subproblem of the equivalent reformulation is a
convex quadratic programming problem, which is com-
paratively easy to solve.

2.3. /e Multidimensional Filter Mechanism. Whether the
new trial point x+

k can be considered as a successful point
requires the following multidimensional filter mechanism
[30, 32] to assist in judgment. 'is mechanism helps the
components of function gμ(x) to approach to zero evenly
and provides an effective rule to judge whether x+

k is ac-
cepted. In practical computation, a iterate point xk is said to
dominate another point xl if and only if
|gμk− 1 ,i(xk)|≤ |gμl− 1 ,i(xl)|, ∀i ∈ I. Besides, a filter set F is a
set of points such that no pair dominates any other.

Acceptability rule: a new trial point x+
k is acceptable for

the filter Fk if and only if

∀xl ∈ Fk,∃j ∈ I, gμk,j x
+
k( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ gμl− 1 ,j xl( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − cg gμl− 1
xl( 􏼁

�����

�����,

(5)

where cg ∈ (0, (1/
�
n

√
)). If an iterate xk is acceptable for the

filter Fk, we add it to the filter and remove from it every
xl ∈ Fk such that |gμk,i(x+

k )|≤ |gμl− 1 ,i(x)l| for all i ∈ I, i.e.,
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Fk+1 � Fk ∪ x
+
k􏼈 􏼉\Dk, (6)

where

Dk � xl ∈Fk

􏼌􏼌􏼌􏼌gμk,i x
+
k( 􏼁≤gμl− 1 ,i xl( 􏼁

􏼌􏼌􏼌􏼌􏼌, ∀i ∈ I􏼚 􏼛. (7)

2.4. A Multidimensional Filter Algorithm for NCPs. In this
part, we will present a multidimensional filter algorithm for
nonlinear complementarity problem (1).

Algorithm 1. A multidimensional filter algorithm for NCPs.

Step 0: initialization. An initial point and an initial
trust-region radius Δ0 are given. Let an initial point x0,
an initial trust-region radius Δ0 > 0, and an initial filter
set F0 � (105, . . . , 105)T be given, as well as constants
ε, cg ∈ (0, (1/

�
n

√
)), 0< c1 < c2 < 1< c3, 0< η1 < η2 < 1,

0<Δ0 ≤Δmax. Compute fμ0(x0), gμ0(x0), gμ0(x0), B0,
set k ≔ 0.
Step 1: test for optimality. If ‖gμk

(xk)‖ + μk < ε, stop.
Step 2: determine a trial step. Compute a solution dk of
subproblem (4).
Step 3: if dk � 0, set xk+1 � xk, μk+1 � θμk, Bk+1 � Bk,
k ≔ k + 1, and go to Step 1; otherwise, set x+

k � xk + dk,
and compute fμk

(x+
k ), gμk

(x+
k ).

Step 4: test for optimality. If ‖gμk
(x+

k )‖ + μk < ε, stop;
otherwise, compute

ρk �
fμk

xk( 􏼁 − fμk
x+

k( 􏼁

Qk(0) − Qk dk( 􏼁
. (8)

Step 5: tests to accept the trial step.

(i) If ρk ≥ η1, set xk+1 � x+
k , Fk+1 � Fk ∪ x+

k􏼈 􏼉\Dk;

(ii) Besides, if ρk < η1 and x+
k is acceptable for the filter

Fk, set xk+1 � x+
k , Fk+1 � Fk ∪ x+

k􏼈 􏼉\Dk,

(iii) Otherwise, set xk+1 � xk, Fk+1 � Fk.

Step 6: update the trust-region radius and the smooth
parameter.

Δk+1 �

c1Δk, c2Δk􏼂 􏼃, if ρk < η1,

c2Δk,Δk( 􏼃, if ρk ∈ η1, η2􏼂 􏼁,

min Δmax, c3Δk􏼈 􏼉, if ρk ≥ η2.

⎧⎪⎪⎨

⎪⎪⎩
(9)

μk+1 �
θμk, if μk > 0.1 gμk

xk+1( 􏼁
�����

�����,

μk, otherwise.

⎧⎨

⎩ (10)

Step 7: compute fμk+1
(xk+1), gμk+1

(xk+1), gμk+1
(xk+1),

Bk+1, set k ≔ k + 1, and go to Step 1.

Note that, there is an advantage to choosing a large
Δk+1 � c3Δk when ρk ≥ η2, but it may be unwise to choose it
to be too large; hence, we give a upper bound Δmax and set

Δk+1 � min Δmax, c3Δk􏼈 􏼉 when ρk ≥ η2. Specifically,
Bk+1 � ∇xΦμk+1

(xk+1)∇xΦμk+1
(xk+1)

T can be computed easily
instead of updating Bk+1 with higher numerical expenditure
(e.g., BFGS). By the way, from (8), we are surprised to find
that the smooth parameter μk does not tend to zero before
‖gμk

(xk)‖ during our algorithm. In other words, fμk
(x) is

twice continuously differentiable form beginning to end; this
is a critical condition to our algorithm.

3. Analysis for Global Convergence

Global convergence properties of Algorithm 1 will be proved
under the following assumptions.

A1. F(x): Rn⟶ Rn is a twice continuously differ-
entiable function.
A2.'e iterates xk remain in a closed, bounded convex
domain Ω of Rn.

Note that, for subproblem (4), A1 and A2 together imply
that Bk is uniformly bounded on Ω. In other words, there
exist constants κumb > 0 such that |Bk|≤ κumb, ∀k.

3.1.Well Definedness. Let dk denote the solution of (4), then
we have some technical lemmas which are very important
for the global convergence of Algorithm 1.

Lemma 1. If dk � 0, we have gμk
(xk) � 0.

Proof. We first change the constraint ‖d‖∞ ≤Δk to another
form d + Δke≥ 0 and d − Δke≤ 0, then we have the Lagrange
function of (4):

L(d, λ, μ, 􏽢μ) � Qk(d) − λT
xk + d( 􏼁 − μT

d + Δke( 􏼁

+ 􏽢μT
d − Δke( 􏼁,

(11)

where λ, μ, 􏽢μ ∈ Rn are Lagrange multipliers,
e � (1, 1, . . . , 1)T ∈ Rn. Since dk is the solution of (4), we
then obtain that
∇dL dk, λ, μ, 􏽢μ( 􏼁 � 0, λ, μ, 􏽢μ≥ 0,

xk + dk ≥ 0,

dk + Δke≥ 0,

dk − Δke≤ 0,

λT xk + dk( 􏼁 � μT dk + Δke( 􏼁 � 􏽢μT dk − Δke( 􏼁 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Observe that dk � 0 and Δk > 0 ensure that
gμk

xk( 􏼁 � λ + μ − 􏽢μ,

λ, xk ≥ 0,

λTxk � 0,

μ � 􏽢μ � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

'us, xT
k gμk

(xk) � 0, i.e., gμk
(xk) � 0. □

Lemma 2 (see [32]). İere exists a constant κmdc ∈ (0, 1) such
that

Mathematical Problems in Engineering 3



Qk(0) − Qk dk( 􏼁≥ κmdc gμk
xk( 􏼁

�����

�����min
gμk

xk( 􏼁
�����

�����

1 + Bk􏼂 􏼃
,Δk

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(14)

Lemma 3 (see [35]). Suppose that A1 and A2 hold. If
gμk

(xk)≠ 0 and

Δk ≤min
κmdc 1 − η2( 􏼁

κubh
,

1
1 + κumb

􏼨 􏼩· gμk
xk( 􏼁

�����

�����, (15)

we have ρk ≥ η2, and Δk+1 ≥Δk.
Consequently, we may now obtain that the trust-region

radius cannot become arbitrarily small if the iterates stay
away from first-order critical points.

Lemma 4. Suppose that A1 and A2 hold. Suppose further-
more that there exists a constant κlpg > 0 such that
‖gμk

(xk)‖≥ κlpg for all k. /en, there is a constant κlbd > 0 such
that Δk ≥ κlbd for all k.

Proof. Assume that iteration k0 is the first such that

Δk0
≤ c1κlpg · min

κmdc 1 − η2( 􏼁

κubh
,

1
1 + κumb

􏼨 􏼩. (16)

'en, we have from our assumption ‖gμk
(xk)‖≥ κlpg and

(9) that c1Δk− 1 ≤Δk, ∀k, and hence, Δk0− 1≤
min (κmdc(1 − η2)/κubh), (1/1 + κumb)􏼈 􏼉 · ‖gμk0 − 1

(xk0− 1)‖. It
implies that (15) holds and thus Δk0− 1≤Δk0

. But this con-
tradicts the fact that iteration k0 is the first such that (16)
holds, and our initial assumption is therefore
impossible. □

3.2. Convergence to Stationary Points. For convenience of
discussion, we shall denote T � k | dk � 0􏼈 􏼉 as the set of
zero-solution of (4) iterations, denote S � k | xk+1 ≠ xk􏼈 􏼉 as
the set of successful iterations, denote
U � k | ρk < η1, x+

k is not accepted byFk􏼈 􏼉 as the set of un-
successful iterations, and denote
P � k | ρk < η1, x+

k is accepted byFk􏼈 􏼉 as the set of iterations
which is not accepted by trust-region rule but filter rule (5).
Now, we consider the first-order global convergent con-
clusion of our algorithm in the following three cases:
|T| � +∞, |U| � +∞, and |S| � +∞.

Theorem 1. Suppose that A1 and A2 hold and that
|T| � +∞, then limk∈T(‖gμk

(xk)‖ + μk) � 0.

Proof. Note that, if |T| � +∞, Lemma 1 implies that
gμk

(xk) � 0. Moreover, by the mechanism of updating μk

(10), we have μk+1 � θμk. 'en, we get the first-order global
convergence of our Algorithm 1 limk∈T(‖gμk

(xk)‖ + μk) � 0,
i.e., Algorithm 1 can be terminated with finite steps. □

Theorem 2. Suppose that A1 and A2 hold and that
|U| � +∞, then limk∈U(‖gμk

(xk)‖ + μk) � 0.

Proof. Assume, to arrive at a contradiction, that there exist
ε> 0 and k0 such that

gμk
xk( 􏼁

�����

����� + μk ≥ ε, ∀k> k0. (17)

Since |U| � +∞, there exists a positive integer k1 > k0
such that

xk � xk1
, ∀k≥ k1. (18)

By the mechanism of updating μk (10), we can consider
two cases. □

Case 1. limk⟶∞μk ≠ 0, i.e., there exists a positive integer
k2 ≥ k1 such that μk � μk2

for all k≥ k2. By Algorithm 1, we
obtain that

Δk ≤ c
k− k2
2 Δk2

,

μk ≤ 0.1 gμk
xk+1( 􏼁

�����

�����,
(19)

for all k≥ k2. Hence, we can deduce from (18) and (19) that
‖gμk

(xk)‖≥ κlpg for all k≥ k2, where κlpg � 10μk2
. Note that

c2 ∈ (0, 1) in Algorithm 1, so we have limk⟶∞Δk � 0.
Applying Lemma 4, there is a constant κlbd > 0 such that
Δk ≥ κlbd for all k, which contradicts the fact limk⟶∞Δk � 0,
as stated in (19). 'erefore, Case 1 cannot hold.

Case 2. limk⟶∞μk � 0. We deduce from (17) that there is a
integer k3 ≥ k1 such that ‖gμk

(xk)‖≥ 0.5ε≥ 10μk for all k≥ k3,
i.e., μk ≤ 0.1‖gμk

(xk)‖ � 0.1‖gμk
(xk+1)‖, for all k≥ k3. By the

mechanism of updating μk, then we have μk � μk3
for all

k≥ k3, which contradicts limk⟶∞μk � 0. 'us, Case 2
cannot hold. Our initial assumption must then be false.

Theorem 3. Suppose that A1 and A2 hold and that
|S| � +∞, then limk∈S(‖gμk

(xk)‖ + μk) � 0.

Proof. Assume, to arrive at a contradiction, that there exist
ε> 0 and k0 such that

gμk
xk( 􏼁

�����

����� + μk ≥ ε, ∀k> k0. (20)

By the mechanism of updating μk (10), we can consider
two cases. □

Case 3. limk⟶∞μk ≠ 0, i.e., there exists a positive integer
k1 > k0 such that μk � μk1

for all k≥ k1. Observe first that (10)
implies that μk ≤ 0.1‖gμk

(xk+1)‖ � 0.1‖gμk+1
(xk+1)‖, ∀k≥

k1. Let κlpg � 10μk1
, then

gμk
xk( 􏼁

�����

�����≥ κlpg, ∀k> k1. (21)

(i) |P|< +∞ (i.e. |S\P| � +∞). 'at means there
exists a positive integer k2 ≥ k1 such that either
k ∈ S\P or k ∈ S for all k≥ k2. Besides, we can
deduce from |S| � +∞ that ρk ≥ η1 for all k ∈ S\P.
'en, by (9), we have that for all k> k2,
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fμk2
xk2

􏼐 􏼑 − fμk
xk( 􏼁

� 􏽘
k− 1

j�k2 ,j∈S\P

fμj
xj􏼐 􏼑 − fμj+1

xj+1􏼐 􏼑􏼒 􏼓 + 􏽘
k− 1

j�k2 ,j∈S

fμj
xj􏼐 􏼑 − fμj+1

xj+1􏼐 􏼑􏼒 􏼓

� 􏽘
k− 1

j�k2 ,j∈S\P

fμj
xj􏼐 􏼑 − fμj+1

xj+1􏼐 􏼑􏼒 􏼓≥ 􏽘
k− 1

j�k2 ,j∈S/P
η1 Qj(0) − Qj dj􏼐 􏼑􏼐 􏼑

≥ η1κmdcκlpg · 􏽘
k− 1

j�k2 ,j∈S/P
min

κlpg
1 + κumb

,Δj􏼨 􏼩.

(22)

Hence, we deduce from the boundedness of
fμk

(xk)􏽮 􏽯 that limk>k2Δk � 0. But it derives a con-
tradiction from (21) and Lemma 3.

(ii) |P| � +∞. Assumptions A1 and A2 show that
‖gμk

(xk+1)‖􏽮 􏽯 is a bounded subsequence.'en, there
exists an infinite subsequence ki􏼈 􏼉ki > k1

⊆P such that

lim
i⟶∞

gμki

xki+1􏼐 􏼑

������

������ � g∞
����

����≥ κlpg. (23)

By definition of ki ∈ P, xki+1 is acceptable for the current
filterFki

.'is implies, by (21) and filter mechanism (5), that,
for each xk ∈ Fki

, there exists an index j(k) ∈ I such that

gμki
,j(k) xki+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤ gμk− 1 ,j(k) xk( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − cg gμk− 1
xk( 􏼁

�����

�����

� gμk− 1 ,j(k) xk( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − cg gμk
xk( 􏼁

�����

�����

≤ gμk− 1 ,j(k) xk( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − cgκlpg.

(24)

If xki− 1+1 ∉ Fki
, we obtain from (6) and (7) that there

exists xks
∈ Fki

such that
|gμks − 1,j

(xks
)|≤ |gμki− 1

,j(xki− 1+1)|, ∀j ∈ I. 'us, (24) ensures
that there exists an index j(ks) ∈ I such that

gμki
,j ks( ) xki+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 − gμki− 1
,j ks( ) xki− 1+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤ − cgκlpg. (25)

If xki− 1+1 ∈Fki
, (23) implies that there exists an index

j(ki− 1 + 1) ∈ I such that

gμki
,j ki− 1+1( ) xki+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 − gμki− 1
,j ki− 1+1( ) xki− 1+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤ − cgκlpg.

(26)

Since the finite possibility of j(ki− 1 + 1), let
j(ki− 1 + 1) � j0. 'en, the left-hand side of inequality (25)
and (26) tends to zero when i tends to infinity because of
(23), which is impossible. In a word, Case 3 does not happen.

Case 4. limk⟶∞ μk � 0. 'e infiniteness of |S| and (10)
implies that there exists a infinite index K⊆S such that
limk∈K‖gμk

(xk+1)‖ � limk∈K‖gμk
(x+

k )‖ � 0. We then obtain

that limk∈K(‖gμk
(x+

k )‖ + μk) � 0, which contradicts (20),
and therefore, Case 4 cannot hold, yielding the desired
result.

4. Numerical Experiments

Now, we give some numerical results for the following 10
complementarity test problems in Table 1. 'e values for the
constants used in our tests are μ0 � 10− 5, cg � 10− 3,
c1 � 0.25, c3 � 2, η1 � 0.25, η2 � 0.95, Δ0 � 2, θ � 0.1,
Δmax � 103, ε � 10− 5, F0 � (105, . . . , 105)T. 'e iteration is
terminated once ‖fμk

(xk)‖≤ 10− 5.
In addition, we use the nonlinear equations to carry out

large-scale data experiments. Let p(x) � 0 be a (large-scale)
differentiable system of nonlinear equations and let x∗ ∈ Rn

be defined by x∗ � (1, 0, 1, 0, . . .)T. For all i ∈ I, set

Fi(x) �
pi(x) − pi x∗( ), if i odd or, i> r,

pi(x) − pi x∗( ) + 1, otherwise,
􏼨 (27)

where r≥ 0 is a given integer. In this way, x∗ is a solution of
the nonlinear complementarity (but not necessarily its
unique solution). As done in [36], we used the collection of 6
large-scale problems (Examples 5–10) form Lukšan [37].
Some numerical results for these test problems are presented
in Table 1.

Example 1. (Kojima–Shindo nonlinear complementarity
test problem)

(i) Degenerate example [7, 10, 11, 27, 38, 39]:

F(x) �

3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (28)

(ii) Nondegenerate example [10, 38]:

Mathematical Problems in Engineering 5



F(x) �

3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 3x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 3x4 − 1

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (29)

Example 1 (i) has a degenerate solution
((

�
6

√
/2), 0, 0, (1/2))T and a nondegenerate solution

(1, 0, 3, 0)T. Example 1 (ii) has only one solution
((

�
6

√
/2), 0, 0, (1/2))T which is nondegenerate.

Example 2 (Kanzow nonlinear complementarity test
problem [10, 40]). We choose
F � (F1, . . . , Fn)T: Rn⟼Rn with

Fi(x) � 2 xi − i + 2( 􏼁 · exp 􏽘
5

i�1
xi − i + 2( 􏼁

2⎧⎨

⎩

⎫⎬

⎭, 1≤ i≤ 5.

(30)

Example 2 has only one solution(0, 0, 1, 2, 3)T.

Example 3 (see [41]). We choose F � (F1, . . . , Fn)T:

Rn⟼Rn with

Fi(x) � − xi− 1 + 2xi − xi+1 +
1
3
x
3
i − bi, 1≤ i≤ n, (31)

where n is a positive integer and x0 � xn+1 � 0. We choose
the constant b � ((− 1)1, . . . , (− 1)i, . . . , (− 1)n)T and
b � ((− 1)1

�
1

√
, . . . , (− 1)i

�
i

√
, . . . , (− 1)n �

n
√

)T, respectively.

Example 4. We consider the following four linear com-
plementarity problem [7, 11, 27, 39, 42–44]:
F(x) � Mix + q, i � 1, 2, 3, 4, where q � (− 1, . . . , − 1)T, and
M1, M2, M3, M4 are given as follows, respectively:

4 − 2

1 4 ⋱

⋱ ⋱ − 2

1 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

4 − 1

− 1 4 ⋱

⋱ ⋱ − 1

− 1 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(1/n)

(2/n)

⋱

(n/n)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

1 2 2 . . . 2

1 2 . . . 2

1 . . . 2

⋱ ⋮

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(32)

Example 5. Countercurrent reader problem [37]:

pk(x) �

α − (1 − α)xk+2 − xk 1 + 4xk+1( 􏼁, if k � 1,

− (2 − α)xk+2 − xk 1 + 4xk− 1( 􏼁, if k � 2,

αxk− 2 − (1 − α)xk+2 − xk 1 + 4xk+1( 􏼁,
if k ∈ (2, n − 1)

andmod(k, 2) � 1,

αxk− 2 − (2 − α)xk+2 − xk 1 + 4xk− 1( 􏼁,
if k ∈ (2, n − 1)

andmod(k, 2) � 1,

αxk− 2 − xk 1 + 4xk+1( 􏼁, if k � n − 1,

αxk− 2 − (2 − α)xk 1 + 4xk− 1( 􏼁, if k � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Table 1: Numerical result of test problems.

Example Start point x0 n iter Resf

1.1 (0, 0, 0, 0)T 4 7 4.43e − 12
1.2 (0, 0, 0, 0)T 4 9 7.98e − 15
2 (3, 2, 1, 2, 3)T 5 2 1.43e − 13
3.1 (2, . . . , 2)T 103 8 1.66e − 11
3.2 (2, . . . , 2)T 103 5 1.05e − 14
4.1 (0.5, . . . , 0.5)T 103 5 6.60e − 14
4.2 (0, . . . , 0)T 500 5 5.78e − 10
4.3 (0, . . . , 0)T 80 9 1.92e − 08
4.4 (1, . . . , 1)T 103 3 8.00e − 16
5 — 100 16 1.65e − 08
5 — 103 72 1.63e − 10
6 (1, 0, 1, 0, . . .)T 100 5 4.03e − 15
6 (1, 0, 1, 0, . . .)T 103 6 6.23e − 14
7 (0, . . . , 0)T 100 14 1.49e − 11
7 (0, . . . , 0)T 103 25 1.94e − 10
8 (− 1.2, 1, − 1.2, 1, . . .)T 100 1 3.97e − 24
8 (− 1.2, 1, − 1.2, 1, . . .)T 103 3 9.25e − 15
9 — 100 15 3.61e − 12
9 — 103 15 3.04e − 11
10 (− 1, . . . , − 1)T 100 7 5.53e − 10
10 (− 1, . . . , − 1)T 103 7 4.35e − 19
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where α � (1/2). We choose the following initial point x:

xk �

0.1, if mod(k, 8) � 1,

0.2, if mod(k, 8) � 2 andmod(k, 8) � 0,

0.3, if mod(k, 8) � 3 andmod(k, 8) � 7,

0.4, if mod(k, 8) � 4 andmod(k, 8) � 6,

0.5, if mod(k, 8) � 5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Example 6. Extended Powell badly scaled function [37]:

pk(x) �
10000xkxk+1, if mod(k, 2) � 1,

e− xk− 1 + e− xk − 1.0001, if mod(k, 2) � 0.
􏼨

(35)

Example 7. Trigonometric exponential system [37]:

pk(x) �

3x3
k + 2xk+1 − 5 + sin xk − xk+1( 􏼁sin xk + xk+1( 􏼁, if k � 1,

3x3
k + 2xk+1 − 5 + sin xk − xk+1( 􏼁sin xk + xk+1( 􏼁,

+4xk − xk− 1e
xk− 1− xk , if k ∈ (1, n),

4xk − xk− 1e
xk− 1− xk , if k � n.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(36)

Example 8. Extended Rosenbrock function [37]:

pk(x) �
10 xk+1 − x2

k( 􏼁, if mod(k, 2) � 1,

1 − xk− 1, if mod(k, 2) � 0.
􏼨 (37)

Example 9. Extended Cragg and Levy Function [37].

pk �

exk − xk+1( 􏼁
2
, if mod(k, 4) � 1,

10 xk − xk+1( 􏼁
3
, if mod(k, 4) � 2,

tan2 xk − xk+1( 􏼁, if mod(k, 4) � 3,

xk − 1, if mod(k, 4) � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(38)

We choose the following initial point x as

xk �
1, if mod(k, 4) � 1,

2, otherwise.􏼨

Example 10. Broyden tridiagonal problem [37]:

pk(x) �

3 − 2xk( 􏼁xk − 2xk+1 + 1, if k � 1,

3 − 2xk( 􏼁xk − xk− 1 − 2xk+1 + 1, if k ∈ (1, n),

3 − 2xk( 􏼁xk − xk− 1 + 1, if k � n.

⎧⎪⎪⎨

⎪⎪⎩

(39)

'e computational results are listed in Table 1, in which
iter denotes the number of iterations, and Resf stands for the
computing accuracy, i.e., Resf � fμk

(xk). 'e numerical
results show that Algorithm 1 is robust and efficient. 'e
number of iterations and computing accuracy for most
problems are satisfactory.

5. Conclusions

In this work, we have proposed multidimensional filter
techniques for solving nonlinear complementarity problem
(1) and have shown this algorithm to be globally convergent
under a weaker assumption because assumptions A1 and A2
imply that the matrix sequence Bk􏼈 􏼉 in subproblem (4) is
uniformly bounded. Moreover, we are surprised to find that
Bk+1 � ∇xΦμk

(xk)∇xΦμk
(xk)T can be computed easily in-

stead of updating Bk+1 by utilizing some methods (e.g.,

BFGS). 'e new algorithm differs from other traditional
filter methods [7, 27, 39] for nonlinear complementarity
problems; subproblem (4) is consistent throughout, so we do
not need any extra restoration procedure which means
higher numerical expenditure. Besides, we used the gradi-
ent-projection technique which makes sure that the opti-
mality condition of constrained optimization problem (2) is
equivalent to the fact that the projected gradient is zero, so
the multidimensional filter techniques based on uncon-
strained optimization problem is suitable for problem (2).
Finally, in this context, we provide a reasonable and effective
way to balance the projected gradient gμk

(xk) and the
smooth parameter μk and then ensure that
lim infk⟶+∞‖gμk

(xk)‖ + μk � 0. 'e results of numerical
experiments show its efficiency.
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