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One of the key challenges in the area of signal processing on graphs is to design transforms and dictionary methods to identify and
exploit structure in signals on weighted graphs. In this paper, we first generalize graph Fourier transform (GFT) to spectral graph
fractional Fourier transform (SGFRFT), which is then used to define a novel transform named spectral graph fractional wavelet
transform (SGFRWT), which is a generalized and extended version of spectral graph wavelet transform (SGWT). A fast algorithm
for SGFRWTis also derived and implemented based on Fourier series approximation. Some potential applications of SGFRWTare
also presented.

1. Introduction

In traditional signal processing, the most commonly used
tools are transforms, among which Fourier transform and
wavelet transform play key roles [1]. Fourier transform and
wavelet transform were generalized and extended in many
contexts in recent years.

On the one hand, Fourier transform and wavelet
transform were extended to fractional domain, obtaining
fractional Fourier transform (FRFT) [2–23] and fractional
wavelet transform (FRWT) [24–30]. From a mathematical
viewpoint, the FRFT can be seen as a parametric Fourier
transform [7], whose fractional order θ is a free parameter
which offers more flexibility and generalization properties
compared to the classical Fourier transform. From a signal
processing point of view, the FRFT can be interpreted as a
rotation in the time-frequency plane, i.e., the unified time-
frequency transform. With the order θ increasing from 0 to
1, the FRFT can show the characteristics of the signal
changing from the time domain to the frequency domain

[8]. +ere are roughly three main research directions for
investigating FRFT: firstly, the application of FRFT to deal
with many signal processing problems [9], for example,
filtering, compression, image encryption, digital water-
marking, pattern recognition, edge detection, antennas,
radar and sonar, and communication; secondly, the dis-
cretization algorithms of the FRFT [10–17]; and lastly, the
extension of the fractional idea of FRFT to other transforms,
for example, fractional cosine, sine and Hartley transforms
[18–21], fractional Krawtchouk transform [22], and short-
time FRFT [23]. By cascading of the FRFT and the ordinary
wavelet transform, Mendlovic et al. [24] first proposed
FRWT. Recently, by introducing a new structure of the
fractional convolution [25] associated with the FRFT, Shi
et al. [26] proposed a simplified definition of the FRWT
which analyzes the signal in time-frequency-FRFD domain,
where FRFD denotes fractional Fourier domain. +e defi-
nition of FRWTin [26] was further improved by Prasad et al.
[27], who analyzed the signal only in time-FRFD domain.
More recently, Dai et al. [28] presented a new FRWTwhich
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displays the time and FRFD-frequency information jointly
in the time-FRFD-frequency plane. Srivastava et al. [29]
proposed a certain family of fractional wavelet transfor-
mations and Shi et al. [30] proposed a novel fractional
wavelet packet transform. In general, compared to tradi-
tional transforms, fractional transforms may lead to (1)
better signal filtering results due to the rotation of the
time–frequency plane [9]; (2) better image compression
ratios [31], image recognition results [32], and image seg-
mentation results [33] due to the flexible choices of the
fractional orders; and (3) better image encryption [34] and
image watermarking [35] performances since the fractional
order can be used as an additional secret key.

On the other hand, Fourier transform and wavelet
transform were extended to graph domain, obtaining
graph Fourier transform (GFT) [36–43] and graph wavelet
transform (GWT) [44–49] to handle signal defined on the
vertices of weighted graphs. Two basic approaches to
signal processing on graphs have been considered: the first
is rooted in the spectral graph theory [50] and builds upon
the graph Laplacian matrix [36]. Although spectral de-
composition of generalized graph Laplacian with negative
edges has been considered for the construction of graph
frequency domain [51, 52], in this paper, we limit this
approach to undirected graphs with real and nonnegative
edge weights for the sake of clarity. +e second approach,
discrete signal processing on graphs [40, 41], is rooted in
the algebraic signal processing theory [53, 54] and builds
on the graph shift operator. +e latter works as the ele-
mentary operator that generates all linear shift-invariant
filters for signals with a given structure. In particular, the
graph Fourier transform in this framework expands a
graph signal into a basis of eigenvectors of the adjacency
matrix, and the corresponding spectrum is then given by
the associated eigenvalues. Besides graph-based trans-
forms [36–49], recent research works on graph also in-
clude, among others, sampling and interpolation on
graphs [55, 56], graph signal recovery [57–60], semi-
supervised classification on graphs [61, 62], graph dic-
tionary learning [63, 64], and graph convolutional neural
networks [65–72]. Please refer to [73] for more references
on graph signal processing.

To the authors’ knowledge, there are only few research
works done for discrete signal processing on fractional graph
domain, which is a combination of fractional transform
domain and graph transform domain. Wang et al. [74, 75]
proposed a definition of fractional Fourier transform on
graphs named graph fractional Fourier transform (GFRFT),
which is based on algebraic signal processing theory [53, 54].
However, similar to Fourier transform, GFRFT is a global
transform and does not provide useful localization prop-
erties in fractional graph domain. Furthermore, GFRFTdoes
not allow multiresolution analysis of graph signals. In this
paper, based on spectral graph theory, we first propose a new
spectral graph fractional Fourier transform (SGFRFT),
which is then used to define a new spectral graph fractional
wavelet transform (SGFRWT), which can be seen as an
extended version of spectral graph wavelet transform
(SGWT) [44].

+e remainder of the paper is organized as follows.
Section 2 recalls the main foundations of fractional wavelet
transform, spectral graph theory, and spectral graph wavelet
transform (SGWT). +e spectral graph fractional Fourier
transform (SGFRFT) and the spectral graph fractional
wavelet transform (SGFRWT) are defined in Section 3.
Section 4 is dedicated to the Fourier series approximation-
based fast algorithm for forward and inverse SGFRWT.
Several applications of SGFRWT for addressing different
problems are shown in Section 5. Section 6 concludes the
paper.

2. Preliminary

In the following, we first recall the forward and inverse
fractional Fourier transform (FRFT) [2–5] and then the
forward and inverse fractional wavelet transform (FRWT)
[24, 26–28] and also show how scaling operator may be
expressed in the FRFT domain. Table 1 summarizes the
definitions of various transforms for classical signal pro-
cessing and also those for graph signal processing.

2.1. Fractional Fourier Transform (FRFT). +e θ-order for-
ward FRFT [2–5] is the decomposition of a function f according
to the fractional Fourier kernel, i.e.,

fθ(u) �〈f, K
∗
θ〉 � 

+∞

− ∞
f(x)Kθ(x, u)dx, (1)

where

Kθ(x, u) �

Aθ exp (j/2) x
2

+ u
2

 cot θ − jxu csc θ , θ≠ nπ,

δ(x − u), θ � 2nπ,

δ(x + u), θ � (2n + 1)π,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

Aθ �

��������

1 − j cot θ
2π



, (3)

where θ indicates the rotation angle of the transform and
δ(x) represents the Dirac distribution.

+e inverse FRFT is given by [2–5]

f(x) �〈fθ, Kθ〉 � 
+∞

− ∞
fθ(u)K

∗
θ(x, u)du. (4)

+e kernel in equation (2) can be obtained by its spectral
expansion [5]:

Kθ(x, u) � 
∞

k�0
exp(− jθk)ξk(u)ξk(x). (5)

ξk(x) in equation (5) is the kth-order normalized
Hermite function [11, 12], which is the eigenfunction of the
Fourier transform. From (5), we can see that FRFT is a
generalized version of the Fourier transform, since they
share the same eigenfunction ξk(x) and the eigenvalues of
the FRFT are the θth root of the eigenvalues of the Fourier
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è
is
th
e
fr
ac
tio

na
lo

rd
er
.

G
ra
ph

sig
na
lp

ro
ce
ss
in
g

A
lg
eb
ra
ic

sig
na
lp

ro
ce
ss
in
g
(A

SP
)
[4
0,

41
]

Sp
ec
tr
al

gr
ap
h
th
eo
ry

[5
3,

54
]

G
ra
ph

Fo
ur
ie
r
tr
an
sf
or
m

G
ra
ph

fr
ac
tio

na
lF

ou
ri
er

tr
an
sf
or
m

Sp
ec
tr
al

gr
ap
h
Fo

ur
ie
r

tr
an
sf
or
m

Sp
ec
tr
al

gr
ap
h
fr
ac
tio

na
l

Fo
ur
ie
r
tr
an
sf
or
m

Sp
ec
tr
al

gr
ap
h
w
av
el
et

tr
an
sf
or
m

Sp
ec
tr
al

gr
ap
h
fr
ac
tio

na
lw

av
el
et

tr
an
sf
or
m

 f
′(
ℓ)

�
〈
f

,χ
ℓ′ 〉

�


N n
�
1

f

(
n
)(
χ ℓ′

(
n
))
∗

,
ℓ

�
0,
1,

..
.,

N
−
1,

w
he
re

χ ′
�
v−

1
�

χ 0′
(
1)

..
.
χ N

−
1′ (
1)

⋮
⋱
⋮

χ 0′
(
N

)
..

.
χ N

−
1′ (

N
)

⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
is

ob
ta
in
ed

by
th
e
Jo
rd
an

de
co
m
po

sit
io
n
of

th
e
ad
ja
ce
nc
y

m
at
ri
x
W

as
fo
llo

w
s:
W

�
V
J A
V

−
1 .

 f
θ′ (
ℓ)

�
〈
f

,c
ℓ′ 〉

�


N n
�
1

f
(
n
)

(
c
ℓ′ (

n
))
∗

,
ℓ

�
0,
1,

..
.,

N
−
1,

w
he
re

c
′�

(
χ ′

)θ
�

c
0′ (
1)

..
.

c
N

−
1′ (
1)

⋮
⋱
⋮

c
0′ (

N
)
..

.c
N

−
1′ (

N
)

⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

w
he
re

è
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transform [2]. When the rotation angle θ� π/2, the FRFT
defaults to Fourier transform.

+e discrete form of equation (5) can be expressed as
follows [11, 12]:

FθN � VND
θ
NV

T
N � VN diag 1, e

− jθ
, . . . , e

− j(N− 1)θ
  VT

N,

(6)

where diag(.) denotes a diagonal matrix formed from its
vector argument. FθN denotes the θ-order forward FRFT
matrix of size N × N.VN � v0 v1 · · · vN− 1 , vk is the kth-
order DFT Hermite eigenvector. Note that FθN becomes
identity matrix when θ� 0 and Fourier matrix when θ� π/2.

2.2.FractionalWaveletTransform(FRWT). +ere are several
definitions for fractional wavelet transform (FRWT)

[24, 26–28]. In this part, we choose the definition in [28]
since it displays the signal in the joint time-FRFD-frequency
plane.

+e θ-order forward FRWT is defined as [28]

W
θ
f(s, a) �〈f,ψθ,s,a〉 � 

∞

− ∞
f(x)ψ∗θ,s,a(x)dx , (7)

where

ψθ,s,a(x) � e
− j/2 x2− a2− (x− a/s)2( )cot θψs,a(x), (8)

with ψs,a(x) � (1/s)ψ(x − a/s).
+e unitarity property of the FRFTapplied to (7) leads to

an equivalent form of FRWT:

W
θ
f(s, a) � T

s
θf( (a) �

��������
2π

1 − j cot θ




∞

− ∞
e

j/2s2u2 cot θ fθ(u)ψ∗θ(su)K
∗
θ(u, a)du, (9)

where fθ stands for the θ-order FRFT of f. Here also, as for
the classical CWT [1], the scaling is operated in the trans-
formed domain “u” and not directly in the time domain.

+e inverse of the FRWT is given by [28]

f(x) �
1

2π sin θCθ,ψ

∞

− ∞

∞

− ∞
W

θ
f(s, a)ψθ,s,a(x)

dsda

s
,

(10)

when the following admissibility condition is satisfied [28]:



∞

0

ψθ(s)



2

s
ds � Cθ,ψ <∞. (11)

2.3. Spectral Graph Aeory and Spectral Graph Wavelet
Transform. In this section, we briefly review the spectral
graph theory and also the spectral graph wavelet transform
[44].

2.3.1. Spectral Graph Aeory. We consider an undirected,
connected, weighted graph G � V,E, W{ }, composed of a
finite set of verticesV (with Card(V) � N), a set of edgesE,
and an adjacency symmetric and positive-valued matrix W.
A real-valued signal f defined on the verticesV of the graph
G is an N × 1 vector where each entry is the value f(n)

assigned to the vertex n. +e (nonnormalized) graph Lap-
lacian operator is the matrix defined by L � D − W ∈ RN×N,
where D is the diagonal degree matrix defined by
dm,m � nwm,n. dm,m is the degree of vertex m.

As the matrix L is real and symmetric, then it is diag-
onalizable and its eigenvectors χ0, χ1, . . . , χN− 1 , sorted
according to the ascending order of the corresponding ei-
genvalues 0 � λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN− 1, form an orthonor-
mal basis. +erefore, with the unitary column matrix:

χ � χ0, χ1, . . . , χN− 1 , (12)

and the diagonal matrix Λ � diag([λ0, λ1, . . . , λN− 1]), we
have

L � χΛχH
, (13)

where the superscript H denotes the Hermitian transpose
operation.+e graph Fourier transform (GFT) of the signal f
is then the sequence provided by the scalar products [36]:

f(ℓ) �〈f, χℓ〉 � 
N

n�1
f(n)χ∗ℓ (n), ℓ � 0, 1, . . . , N − 1,

(14)

and f can be recovered (inverse GFT) by means of the re-
construction formula:

f(n) �〈f, χ∗ℓ 〉 � 
N− 1

ℓ�0

f(ℓ)χℓ(n), n � 1, . . . , N. (15)

Using vectors and matrices notations, equations (14) and
(15) become

f � f(0) f(1) · · · f(N − 1) 
T

� χH
f,

f � f(1) f(2) · · · f(N) 
T

� χf.
(16)

+e graph Fourier transform obeys the Parseval theo-
rem; that is, for any signals f and h defined on the graph G,
we have

〈f, h〉 � 〈f, h〉. (17)

2.3.2. Spectral Graph Wavelet Transform (SGWT). +e
spectral graph wavelet transform (SGWT) of the signal fwith
the kernel g is defined by [44]
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Wf(s, n) � T
s
gf (n) � 

N− 1

ℓ�0
g sλℓ( f(ℓ)χℓ(n), n � 1, . . . , N,

(18)

where

T
s
g � g(sL), (19)

and the kernel g is continuous positive-valued function
defined on R+ satisfying

g(0) � lim
x⟶+∞

g(x) � 0
+∞

0

g(x)

x
2 dx � Cg ∈ R

+
. (20)

Using equation (14), the SGWT becomes

Wf(s, n) � T
s
gf (n) � 

N

m�1
f(m)ψ∗s,n(m) �〈f,ψs,n〉, n � 1, . . . , N,

(21)

with

ψs,n(m) � 
N− 1

ℓ�0
g sλℓ( χℓ(m)χ∗ℓ (n), m � 1, . . . , N. (22)

+e signal f can be recovered up to its mean value using
the inverse formula [44]:

f(m) − 〈f, χ0〉χ0(m) �
1

Cg


N

n�1

∞

0
Wf(s, n)ψs,n(m)

ds

s
, m � 1, . . . , N.

(23)

3. Spectral Graph Fractional Transforms

We first propose a novel spectral graph fractional Fourier
transform (SGFRFT) in Section 3.1 and then give the def-
inition of spectral graph fractional wavelet transform
(SGFRWT) in Section 3.2.

3.1. Spectral Graph Fractional Fourier Transform. Similar to
(13), we define the graph fractional Laplacian operator Lθ as
follows:

Lθ � γRγH
, (24)

where 0< θ≤ 1 and γ is the power matrix given by

γ � γ0, γ1, . . . , γN− 1  � χθ, (25)

with χ being the unitary (i.e., inverse graph Fourier trans-
form matrix) shown in (12). Note that as χ is unitary, then
c � χθ is also unitary. And

R � diag r0, r1, . . . , rN− 1 (  � Λθ
, (26)

that is,

rℓ � λθℓ , ℓ � 0, 1, . . . , N − 1. (27)

Considering λℓ ∈ [0, λN− 1], and from (27), we can easily
get rℓ ∈ [0, rN− 1]. +e reason why we choose Lθ as the

definition of graph fractional Laplacian operator will be
discussed in Section 3.2.

+e forward spectral graph fractional Fourier transform
(SGFRFT) of any signal f defined on the vertices V of the
graph G is defined by

fθ(ℓ) ≔ 〈f, χℓ〉 � 

N

n�1
f(n)c

∗
ℓ (n), ℓ � 0, 1, . . . , N − 1,

(28)

or by the following matrix form:

fθ � fθ(0) fθ(1) · · · fθ(N − 1) 
T

� γHf . (29)

For θ� 1, the proposed SGFRFT in (29) is no more than
the GFT in (18) defined by Shuman et al. [36]. For other
values of θ, we can compute c � χθ by using Schur–Padé
algorithm [76, 77] which is found to be superior in accuracy
and stability to several alternatives, including eigende-
composition method and also the approaches based on the
formula χθ � eθ log(χ).

+e inverse SGFRFT is given by

f(n) �〈fθ, c
∗
ℓ 〉 � 

N− 1

ℓ�0

fθ(ℓ)cℓ(n), n � 1, . . . , N, (30)

or by the following matrix form:

f � f(1) f(2) · · · f(N) 
T

� γfθ. (31)

+e graph fractional Fourier transform obeys the Par-
seval theorem; that is, for any signals f and h defined on the
graph G, we have

〈f, h〉 �〈fθ,
hθ〉. (32)

Note that the forward and inverse SGFRFTs defined here
are different from the forward and inverse graph fractional
Fourier transforms (GFRFTs) [74, 75], which are, respec-
tively, given by

fθ′ � fθ′(0) fθ′(1) · · · fθ′(N − 1) 
T

� γ′f , (33)

f � f(1) f(2) · · · f(N) 
T

� (γ′)
− 1 fθ′, (34)

where

σ′ � χ′( 
θ
, (35)

and χ′ � V− 1 is obtained by the Jordan decomposition of the
adjacency matrix W as follows [74, 75]:

W � VJWV− 1
, (36)

where V is a matrix composed of eigenvector and JW is a
block-diagonal matrix. For more details, please refer to
Appendix A of [74].

From (13), (29), (31), and (33)–(36), we can see that the
differences are that the proposed SGFRFTs are based on the
decomposition of the graph Laplacian matrix L, while the
GFRFTs are based on the decomposition of the adjacency
matrix W.
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3.2. SpectralGraphFractionalWaveletTransform(SGFRWT). Similar to (21), we can define the spectral graph fractional
wavelet transform (SGFRWT) operator Ts

gθ
as follows:

Wf(θ, s, n) � T
s
gθ

f (n) � 
N

m�1
f(m)ψ∗θ,s,n(m) �〈f,ψθ,s,n〉, n � 1, . . . , N, (37)

where

T
s
gθ

� g sLθ( , (38)

ψθ,s,n(m) � 
N− 1

l�0
g sλθℓ cℓ(m)c

∗
ℓ (n), m � 1, . . . N. (39)

Why we choose Lθ in (24) as the definition of graph
fractional Laplacian operator and choose ψθ,s,n(m) in (39) as
the basis of SGFRWT?+ere are two reasons. (1) We want to
define the basis of SGFRWT ψθ,s,n(m) based on a new
function cℓ(n) instead of the same function χℓ(n) as basis of
SGWT ψs,n(m) in (23). +e SGFRWT and SGWT will have
different characteristics since they are based on different
functions cℓ(n) and χℓ(n), respectively. (2) We want to
define the basis of SGFRWT ψθ,s,n(m) which changes di-
rectly with λθℓ . Since the parameter θ acts on the eigenvalues
of the Fourier matrix in the form of exponents in the spectral
expansion of FRFT in (5), similarly, we also want to obtain
the form that the parameter θ can directly affect λℓ in the
proposed definition of SGFRWT. Two other possible defi-
nitions of SGFRWTare also discussed in Appendices A and
B, respectively.

From (37), we can see that the proposed SGFRWT is a
generalization of SGWT in (21) defined by Hammond et al.
[44]; that is, when θ� 1, the proposed SGFRWT defaults to
the SGWT. +e proposed SGFRWT can be seen as a
parametric generalization of SGWT [7]. Furthermore, the
proposed SGFRWT converts a graph signal into an inter-
mediate domain between vertex and spectral graph wavelet.
With the order θ increasing from 0 to 1, the SGFRWT can
provide much more domain choices of expressions for a
graph signal.

+e scaling functions are then obtained by

ϕθ(n) � Thθ
δn � h Lθ( δn, (40)

and the coefficients by

Sθ,f(n) �〈ϕθ,n, f〉. (41)

Stable recovery of the original signal f from the SGFRWT
coefficients will be assured if the quantity
G(r) � h2(r) + 

J
j�1 g2(sjr), where sj denotes jth scale, is

bounded away from zero on the fractional Laplacian Lθ.

Moreover, under the same conditions, Lemmas 5.1, 5.2, 5.3,
and 5.4 and +eorems 5.5 and 5.6 in [44] are verified by the
SGFRWT, whose properties are shown in Appendix C.

4. Fourier Series Approximation and
Fast SGFRWT

If we compute the SGFRWT by using equation (37) directly,
we have to compute the entire set of eigenvectors and ei-
genvalues of Lθ shown in (24). Both the computational
complexity and the memory consumption become unac-
ceptable when the data is larger than hundreds of thousands
or millions of dimensions. +erefore, in this section, we
propose a fast algorithm for computing the SGFRWT based
on approximating the scaled generating kernels gθ by low-
order Fourier series. It should be noted that the proposed
fast SGFRWT algorithm is an extension of the fast SGWT
algorithm from real domain to complex domain. +e pro-
posed fast SGFRWT algorithm is different from the fast
graph Fourier transform proposed by Magoarou et al. [39],
who use the modified Jacobi eigenvalue algorithm for ap-
proximating the graph Laplacian matrix. Note that the
proposed SGFRWTalgorithm can approximate an arbitrary
matrix while the algorithm in [39] is only practicable for
approximating symmetric matrix.

+e following lemma shows that the polynomial ap-
proximation of g(sx) may be taken over a finite range
containing the spectrum of Lθ.

Lemma 1. Let rmax≥ rN− 1 be any upper bound on the
fractional spectrum of Lθ. For fixed s> 0, let p(x) be a
polynomial approximant of g(sx) with L∞ error
B � supx∈[0,rmax]|g(sx) − p(x)|. Aen the approximate
SGFRWT coefficients Wf(θ, s, n) � (p(Lθ)f)n satisfy
|Wf(θ, s, n) − Wf(θ, s, n)|≤B‖f‖.

+e proof of Lemma 1 is similar to Lemma 6.1 in [44].
In [44], Hammond et al. approximated g(sL) shown in

(19) by truncated Chebyshev expansions. +e reason is that
g(sL) is real as the original L shown in (13) is a real matrix.
However, the Chebyshev polynomial approximation
method is not suitable for our problem of approximating
g(sLθ) shown in (38), because g(sLθ) may be complex as

6 Mathematical Problems in Engineering



g(sLθ) shown in (33) may be a complex matrix.+erefore, in
this part, we will use the truncated Fourier series expansion
instead of Chebyshev expansions to approximate g(sLθ)
shown in (38).

+e Fourier series of a general function f(x) is given by
[78]

f(y) � 
∞

k�− ∞
ck exp(iky), (42)

where

ck �
1
2π


2π

0
f(y)exp(− iky)dy �

a0, k � 0,

ak − ikb( 

2
, k> 0,

ak − ikb( 

2
, k< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 �
1
2π


2π

0
f(y),

ak �
1
π


2π

0
f(y)cos(ky)dy,

bk �
1
π


2π

0
f(y)sin(ky)dy.

(43)

We now assume a fixed set of wavelet scales sn. For each
n, approximating g(snx) for x ∈ [0, rmax] can be done by
scaling the domain of exp(− iky), y ∈ [0, 2π], using the
transformation x� yrmax/(2π). +en, g(snx) can be written
by

g snx(  � 
∞

k�− ∞
cn,kFk(x), x ∈ 0, rmax , (44)

with

cn,k �
1

2πrmax


rmax

0
g snx( F− k(x)dx, (45)

Fk(x) � exp
i2πkx

rmax
 . (46)

Note that

Fk(x) � F− k(x)( 
∗

. (47)

+e above equation is due to the fact that


rmax

0
Fk(x)F− l(x)

1
rmax

dx � δkl. (48)

For each scale sj, g(sjx) can be approximated by the
truncated Fourier expansion (42) to 2Mj + 1 terms; that is,

pj(x) � 

Mj

k�− Mj

cn,kFk(x), x ∈ 0, rmax . (49)

We may choose an appropriateMj in practice to achieve
a balance between accuracy and computational complexity.
We can also use exactly the same scheme to approximate the
scaling function kernel hθ shown in (40) by p0. +en, the
approximated SGFRWT wavelet and scaling function co-
efficients are, respectively, given by

Wf θ, sj, n  � 

Mj

k�− Mj

cj,kFk Lθ( f⎛⎜⎜⎝ ⎞⎟⎟⎠

n

, (50)

Sf(θ, n) � 

M0

k�− M0

c0,kFk Lθ( f⎛⎝ ⎞⎠

n

, (51)

where

Fk Lθ(  � exp
i2πkLθ

rmax
 . (52)

Note that (52) is easily obtained by applying the function
Fk(.) in (46) to the matrix Lθ, and we have

Fk Lθ(  � F− k Lθ( ( 
∗

. (53)

+e efficiency of this algorithm depends on the following
recursive formula:

Fk Lθ( f � F1 Lθ(  Fk− 1 Lθ( f( , k ∈ − Mj, Mj . (54)

As the signal f ∈ RN, taking equation (53) into con-
sideration, equation (54) can only be computed for
k ∈ [1, Mj], and the other k ∈ [− Mj, − 1] can be obtained by
conjugate operation.

+e computational complexity of the proposed fast
SGFRWT algorithm is analyzed as follows:

(1) +e computation of c from χ in (25) by using
Schur–Padé algorithm [76, 77] needs O(N3)
operations.

(2) +e computation cost of each Fk(Lθ)f in (54) is O(6|
E|), where |E| is the number of nonzero edges in the
graph, and 6|E| because F1(Lθ) is a complex matrix
and a complex multiplication requires 4 real mul-
tiplications and 2 real additions (6 operations).
+erefore, the computation of all
Fk(Lθ)f , k � 1, 2, . . . , Mj needs O(6Mj|E|)
operations.

(3) It requires O(6N) operations at scale j for each k≤Mj
in (50) and (51). +erefore, the computation of (50)
and (51) needs O(6N 

J
j�0 Mj) operations.

+erefore, the total computational complexity of the fast
SGFRWT algorithm is O(N3 + 6Mj|E| + 6N 

J
j�0 Mj).
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Implementation of (54) requires memory of size 2N. +e
total memory requirement for the proposed fast SGFRWT is
2N(J + 1) + 2N.

4.1. FastComputationofAdjoint. Given a fixed set of wavelet
scales sj 

J

j�1, and including the scaling functions ϕn, the
SGFRWT Wθf � ((Thθ

f)T, (Ts1
gθ
f)T, . . . , (TsJ

gθ f)
T)T can be

seen as a linear map Wθ: R
N⟶ CN(J+1), where C denotes

the complex domain. Let Wθf � (((p0(Lθ))f)
T,

(p1(Lθ)f)
T, . . . , (pJ(Lθ)f)

T)T denote the approximated
fractional wavelet transform by using the fast SGFRWT
algorithm. In this section, we show that both the adjoint
W∗θ : CN(J+1)⟶ RN and the composition
W∗θWθ: R

N⟶ RN can be computed efficiently by using
the Fourier series approximation.

For any η ∈ CN(J+1), we consider η as the concatenation
η � (ηT

0 , ηT
1 , . . . , ηT

J )T with each ηj ∈ C
N for 0≤ j≤ J; we have

〈η,Wθf〉N(J+1) �〈η0, Thθ
f〉 + 

J

j�1
〈ηj, T

sj

gθ f〉N

�〈T∗hθ
η0, f〉 + 〈

J

j�1
T

sj

gθ 
∗
ηj, f〉N

�〈T∗hθ
η0 + 

J

j�1
T

sj

gθ 
∗
ηj, f〉N.

(55)

Considering 〈η,Wθf〉N(J+1) � 〈W∗θ η, f〉N, we have

W∗θη � T
∗
hθ
η0 + 

J

j�1
T

sj

gθ 
∗
ηj. (56)

Similar to (50) and (51), the adjoint operatorW∗θ in (56)
can be approximated by

W
∗
θη � 

J

j�0
p
∗
j Lθ( ηj. (57)

In the following, we derive a fast algorithm for the
computation of W

∗
θ

Wθ, which is an approximation of the
compositionW∗W. In general, when computing W

∗
θ

Wθ, we
first apply Wθ and then apply W

∗
θ by the fast SGFRWT,

which needs 2J Fourier series expansions. However, the
computational complexity of W

∗
θ

Wθ can further be reduced.
Note that

W
∗
θ

Wθf � 

J

j�0
p
∗
j Lθ(  pj Lθ( f  � 

J

j�0
p
∗
j Lθ( pj Lθ(  f .

(58)

In the following, we derive a fast algorithm for the
computation of W

∗
θ

Wθf .

Lemma 2. Set P(x) � 
J
j�0 p∗j (x)pj(x), which has degree

M∗ � 2max Mj . Aen, P(x) can be computed by

P(x) � 
M∗

k�− M∗

dkFk(x), (59)

where dk � 
J
j�0 dj,k, and

dj,k �



Mj

i�− Mj − i

c
∗
j,icj,k+i, − 2Mj ≤ k≤ − 1



Mj− k

i�− Mj

c
∗
j,icj,k+i, 0< k≤ 2Mj

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

.

Proof

p
∗
j (x)pj(x) � 

Mj

k�− Mj

cj,kFk(x)⎛⎜⎜⎝ ⎞⎟⎟⎠

∗



Mj

l�− Mj

cj,lFl(x)⎛⎜⎜⎝ ⎞⎟⎟⎠ � 

Mj

k�− Mj



Mj

l�− Mj

c
∗
j,kcj,lF

∗
k (x)Fl(x) � 

Mj

k�− Mj



Mj

l�− Mj

c
∗
j,kcj,lFl− k(x),

� 

Mj

k�− Mj



Mj

k′+k�− Mj

c
∗
j,kcj,k′+kFk′(x) � 

Mj

i�− Mj



Mj

k+i�− Mj

c
∗
j,icj,k+iFk(x) � 

Mj

i�− Mj



Mj− i

k�− Mj− i

c
∗
j,icj,k+iFk(x),

� 
− 1

k�− 2Mj



Mj

i�− Mj− i

c
∗
j,icj,k+iFk(x) + 

2Mj

k�0


Mj− k

i�− Mj

c
∗
j,icj,k+iFk(x) � 

M∗

k�− M∗

dj,kFk(x).

(60)

Note that F∗k (x)Fl(x) � Fl− k(x) is used in the above
derivation.

+erefore,

P(x) � 

J

j�0
p
∗
j (x)pj(x) � 

J

j�0


M∗

k�− M∗

dj,kFk(x)

� 
M∗

k�− M∗



J

j�0
dj,kFk(x) � 

M∗

k�− M∗

dkFk(x).

(61)

+e proof of Lemma 2 is now completed.
Combining (58) and (59), we have

W
∗
θ

Wθf � P Lθ( f � 

M∗

k�− M∗

dkFk Lθ( f . (62)

From (62), we can see that W
∗
θ

Wθf can be computed by a
single Fourier series expansion with twice the length, which
reduces the computational cost by a factor J comparing to
the direct computation of W

∗
θ

Wθf . □
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4.2. Reconstruction by Using the Fast Adjoint Algorithm.
In this part, we show the reconstruction of proposed
SGFRWT by using the fast adjoint algorithm in Section 4.1.

+e SGFRWT is an overcomplete transform since it
maps an input signal f of size N to the N(J+ 1) factional
wavelets coefficients

c � Wθf . (63)

+e pseudoinverse of the above equation can be obtained
by solving the following square matrix equation:

W∗θWθ( f � W∗c. (64)

Equation (64) can be solved by the conjugate gradients
method [79], whose computation in each step is dominated
by applyingW∗θWθ to a single vector. What is more,W∗θWθf
can be fast approximated by W

∗
θ

Wθf shown in (62).
+erefore, we can reconstruct input signal f from c.

5. Application Examples

Similar to [44], in this section, we will show several appli-
cation examples of the SGFRWT on different real and
synthetic datasets by modifying the GSPBOX toolbox [80].
+e first and the third experiments are implemented in
MATLAB programming language on a PC machine, which
sets up Microsoft Windows 7 operating system and has an
Intel® Core™ i7-2600 CPU with speed of 3.40GHz and
16GB RAM. +e second experiment is implemented using
PyTorch on a PC machine, which sets up Ubuntu 16.04
operating system and has an Intel® Core™ i7-4790 CPUwith
speed of 4.00GHz and 32GB RAM and has also two
NVIDIA GTX1080-Ti GPUs.

5.1. SGFRWTDesign Details. We should design two kernels
in SGFRWT. One is the wavelet kernel g(x), and the other is
the scaling function h(x).

For the wavelet kernel g(x), we choose the same cubic
spline in [44] as follows:

g(x) �

x
− α
1 x

α
, forx<x1,

s(x), for x1 ≤x≤ x2,

x
β
2x

− β
, forx>x2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(65)

where α and β are integers and they are used to determine
the decay rate of spline. x1 and x2 are boundary of transitions
region. Note that g is normalized such that
g(x1) � g(x2) � 1. +e coefficients of the cubic polynomial
s(x) are determined by s(x1)� s(x2)� 1, s′(x1) � α/x1, and
s′(x2) � − β/x2. All of the examples in this paper were
produced using α� β� 2, x1 � 1, and x2 � 2; in this case,
s(x)� − 5 + 11x − 6x2 + x3. For the SGFRWT, we can easily
substitute x in (65) by Lθ shown in (24) to get g(Lθ).

For the scaling function kernel h(x), we take h(x) �

ρ exp(− (x/0.6λmin)4) with ρ � h(0).

5.2. SGFRWT Application Examples

5.2.1. SGFRWT on Synthetic Graph Data. In the first ex-
ample, we perform the proposed SGFRWT on “Swiss roll,”
which is a dataset whose points are sampled randomly from
a two-dimensional (2D) manifold as follows:

x
→

t1, t2(  � t1
cos t2( 

4π
, t1, t2

sin t2( 

4π
 ,

− 1≤ t1 ≤ 1, π ≤ t2 ≤ 4π.

(66)

Figure 1 shows the Swiss roll data cloud. We take 500
points sampled uniformly on the manifold and then build a
weighted graph, whose edge weight is defined as follows:

ai,j � exp −
xi − xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠. (67)

Note that the definition of the edge weight is a critical
issue in graph construction.+e most direct way to compute
the edge weight is based on a given (dis)similarity measure.
In practice, the edge weight is generally defined using dif-
ferent measures for better interpretability. As discussed in
[81], Gaussian kernel and its variants (i.e., heat kernel or RBF
kernel) are one of the most popular schemes to assign edge
weights for a graph. +erefore, we take the Gaussian kernel
in (67) to calculate the edge weight to simplify our discussion
in this paper. We perform SGFRWT with fractional order
θ ∈ [0.1, 1.0] on Swiss roll data cloud with J� 5 wavelet scales,
and the results of some fractional orders θ ∈ {0.1, 0.5, 0.8, 1.0}
are shown in Figure 2. +e last column of Figure 2 shows the
results of performing SGWT [44] on Swiss roll, from which
we can see that SGWT [44] searches for the optimal ex-
pression domain only along the dimension of scale. How-
ever, the proposed SGFRWT searches for the optimal
expression domain not only along the dimension of scale but
also along the dimension of fractional order. +at is,
compared with SGWT, the proposed SGFRWT can express
Swiss roll in higher dimensions, which makes the expression
space larger and is therefore more likely to obtain a better
expressive domain for the original problem. Just like
[31–33], the fractional order θ is a hyperparameter
depending on the original problem and you should search
for a suitable value of θ. For example, the fractional order
θ� 0.4 is an appropriate value for gland segmentation when
using fractional wavelet scattering network [33].

As a comparison, we also give the results of the proposed
spectral graph fractional Fourier transform (SGFRFT) and
graph fractional Fourier transform (GFRFT) proposed in
[74, 75] on the “Swiss roll” in Figure 3, respectively. As we
can see from Figure 3, the results of the proposed SGFRFT
are different from those of GFRFT in [74, 75]. Furthermore,
both SGFRFT and GFRFT are global transform and are not
easily to be used for local analysis. However, let us see the
third column of Figure 2, that is, the results of SGFRWTwith
J� 5 and fractional order θ� 0.8; the localization is more and
more obvious along scale dimension. Comparing the third
column of Figure 2 with the third column of Figure 3, we can
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see that, compared with SGFRFT and GFRFT, the proposed
SGFRWT allows localization in fractional graph domain,
which may lead to better local analysis in spectral graph
domain. +e experiment results of Figure 3 verify the local
properties of SGFRWT shown in Appendix C (i.e., Lemmas
C2–C4 and +eorem C5) to a certain extent.

5.2.2. SGFRWT on MNIST Database. In the second exam-
ple, we will see that the proposed SGFRWTcan be used as a
data augmentation method in the preprocessing of con-
volutional neural networks, which require as many input
images as possible. Because, as shown in the first example,
the proposed SGFRWT allows deriving many images from
the original image by considering several fractional orders.
In the following, a series of experiments are performed on
the MNISTdataset to verify the effectiveness of the proposed
SGFRWT as a method of data augmentation.

We construct the graph for each image in MNIST
dataset.+e vertices of the graph are made up of pixels in the
image and each pixel is connected with its vertical and
horizontal neighbor pixel. +e edge weight is calculated by a
Gauss kernel weighting function [36] as follows:

wi,j �

exp −
[dist(i, j)]

2

2τ2
 , if dist(i, j)≤ k,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(68)

where wi,j is the weight on the edge connection of the vertex
vi and vj, and dist (i, j) represents the distance between pixel i
and pixel j.

In order to prove the effectiveness of SGWT and
SGFRWT, we augment MNIST dataset by the following
strategies: (i) +e original MNISTdatabase has a training set
of 60,000 images and a testing set of 10,000 images, which are
used as a control group. (ii) For each image of the MNIST
training set, we perform SGWT [44] with J� 5 wavelet scales

and generate a total of 360,000 images. +e original 10,000
test images are still used as the testing set. (iii) For each
image of the MNIST training set, we apply the proposed
SGFRWT with J� 5 wavelet scales and fractional order
θ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, generating a total of 1,800,000
training images.+e details of the generated four datasets are
shown in Table 1. Figure 4 shows all sample images by
processing an image of the digit “zero” by SGFRWT with
J� 5 wavelet scales and fractional order θ ∈ {0.2, 0.4, 0.6, 0.8,
1.0}.

To evaluate the data augmentation performance of the
proposed approach, we train and test a simple convolutional
neural network, which is shown in Figure 5, using the three
datasets mentioned above. +e CNN model consists of 2
convolutional layers, 2 pooling layers, and a fully connected
layer with a 10-way Softmax classifier. +e inputs of the
CNN are images of size 28× 28. +e first convolutional layer
has 32 kernels with size 5× 5, while the other layer has 64
kernels with size 3× 3. +e Rectified Linear Units (ReLUs)
are chosen as the activation function. Every convolutional
layer is followed by a nonoverlapping max-pooling with
filter of size 2× 2. Stochastic gradient descent algorithm is
employed to optimize the network with a learning rate of
0.001. When the network converges, we evaluate the clas-
sification accuracy on the testing set with an average value of
10 times. +e last column of Table 2 shows the classification
performance comparison of the three different datasets. As
we can see from Table 2, if we use traditional data aug-
mentation methods (flipping, rotating, and adding noise),
then the recognition rate can achieve 98.41%. When the
training dataset of MNIST is augmented by SGWT without
traditional data augmentation, the recognition rate can
increase to 98.71%. From the last row of Table 2, we can see
that our proposed SGFRWT can further improve the
accuracy.

5.2.3. Face Recognition by Fusing SGFRWT Features. In the
third example, the application of SGFRWT to provide
features for face recognition is investigated. We use four
classical face databases, whose MATLAB formats are
provided in [82, 83]. (1) Yale Database [84]. It contains
165 grayscale images (15 individuals, 11 images per in-
dividual). (2) AR Database [85]. We use a nonoccluded
subset of AR database containing 700 images (50 male
subjects and 50 female subjects, 7 images per subject). (3)
CMU PIE Face Database [86]. We also use a nonoccluded
subset of CMU PIE database which contains 11560 images
(68 persons, 170 images per person). (4) ORL Database
[87]. It contains 400 grayscale images (40 individuals, 10
images per individual). Note that all the images are resized
to 32 × 32 pixels.

+e experiment is carried out by the following three
steps:

(1) For each image of the four face databases, we apply
the propoJ � tr(Sb)/tr(Sw),sed SGFRWT with

1

0

–1
1
0
–1

–1 0 1

Vertex 32

Figure 1: Spectral fractional graph wavelets on Swiss roll data
cloud. +e figure shows vertex at which SGFRWT is centered; that
is, we will apply SGFRWT on the signal value of centered vertex.
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Figure 2: Spectral fractional graph wavelets on Swiss roll data cloud, with wavelet scale J� 5 and fractional order θ ∈ {0.1, 0.5, 0.8, 1.0}. (a)
Wavelet scale j� 0, 1, 2 and fractional order θ ∈ {0.1, 0.5, 0.8, 1.0}. Note that j� 0 denotes the scaling function (b) wavelet scale j� 3, 4 and
fractional order θ ∈ {0.1, 0.5, 0.8, 1.0}.
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wavelet scale J� 10 and fractional order θ ∈ {0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, obtaining 100 times
the images of original datasets.

(2) We then extract the SGFRWT features of three
fractional orders which have the highest trace ration
[88] as follows:

J �
tr Sb( 

tr Sw( 
, (69)

where tr(.) denotes the trace. Sb and Sw are between-
class scatter matrix and the within-class scatter matrix,
respectively,

Sb � 
c

i�1
Ni A − Ai( 

T
,

Sw � 
c

i�1
Ni Ai − xθ,j



  Ai − xθ,j



 
T

,

(70)
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Figure 3: Spectral graph fractional Fourier transform (SGFRFT) and graph fractional Fourier transform (GFRFT) [74, 75] on Swiss roll data
with fractional order θ ∈ {0.1, 0.4, 0.7, 1.0}.
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denotes the fractional order; j denotes the scale.
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Table 2: Dataset generation implementation details. Comparison of classification performance of three different datasets with three
different augmentation methods on the same CNN network.

Dataset Augmentation details of training set Validation set Accuracy (%)
(i) MNIST training set augmented with flipping, rotating, and adding noise. Original MNIST testing set 98.41
(ii) MNIST training set augmented with SGWT Original MNIST testing set 98.71
(iii) MNIST training set augmented with SGFRWT Original MNIST testing set 98.86

Input 28 × 28

Convolutions Max pooling Convolutions Max pooling Full connection Flatten

C1: 32 @ 28 × 28

S1: 32 @ 14 × 14
S1: 64 @ 7 × 7 FC: 1024

Output: 10

C2: 64 @ 14 × 14

Figure 5: +e convolutional neural network used in our experiment.

Table 3: +e recognition results of the proposed SGFRWT feature, the SGWT feature, and the baseline on four face databases (Yale, AR,
ORL, and CMU PIE). We randomly selected several images per individual as training set and the remaining images as testing set. “i train”
means that we randomly choose i images in each class for training. +e accuracy is the average results of ten random testing experiments.

Dataset Number of
categories

Construction
details

Baseline
(SVM) (%)

SGWT+ SVM
(%)

+e proposed
SGFRWT+SVM (%)

Yale: 165 grayscale images (15 individuals, 11
images per individual)

15 1 train, 10 test each
class 91.93 99.27 100

15 2 train, 9 test each
class 93.26 99.48 100

15 3 train, 8 test each
class 93.42 99.86 100

15 4 train, 7 test each
class 94.57 100 100

15 5 train, 6 test each
class 95.56 100 100

AR: 700 images (50 male subjects and 50
female subjects, 7 images per subject)

100 1 train, 6 test each
class 49.53 90.92 96.52

100 2 train, 5 test each
class 70.78 93.24 98.14

100 3 train, 4 test each
class 78.53 96.58 98.4

ORL: 400 grayscale images (40 individuals, 10
images per individual)

40 1 train, 9 test each
class 93.94 98.16 99.86

40 2 train, 8 test each
class 97 98.5 99.81

40 3 train, 7 test each
class 97.72 99.29 99.89

40 4 train, 6 test each
class 97.83 99.33 99.83

40 5 train, 5 test each
class 98 99.35 100

CMPUPIE: 11560 images (68 persons, 170
images per person)

68 1 train, 169 test each
class 15.1 77.9 81.13

68 5 train, 165 test each
class 40.9 89.22 90.09

68 10 train, 160 test
each class 52.45 91.11 91.95

68 15 train, 155 test
each class 60.28 91.14 92.36

68 20 train, 150 test
each class 64.81 91.67 92.7
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where the superscript T denotes transposition. C
denotes the number of classes. A is the mean of Ai
and Ai is the mean image of class Xi and Ni is the
number of images in class Xi.| X(θ, j)| denotes the
modulus of SGFRWT coefficient with the fractional
order θ and the wavelet scale j.

(3) +e SGFRWT features of three fractional orders are
fused by canonical correlation analysis (CCA) [89] to
obtain the feature vector, whose dimension is then
reduced by principal component analysis (PCA) and
Linear Discriminant Analysis (LDA). Finally, we feed
the feature vector to the support vectormachine (SVM).

We conduct experiments on 18 different datasets which
are constructed by four classical face databases mentioned
above. Each set of datasets is compared with three different
methods (baseline, SGWT, and SGFRWT), and we evaluate
the classification accuracy on the testing set with an average
value of 10 times. +e recognition comparison results of the
proposed SGFRWTfeature building, the SGWTfeature, and
the baseline (only PCA+LDA+ SVM used) on four face
databases are shown in Table 3, from which we can see that
the proposed SGFRWT feature building approach can
achieve promising results and perform better than SGWT
feature and also the SVM baseline.

6. Conclusion

+is paper investigates the issue of extension of spectral graph
wavelet transform (SGWT) to fractional domain. +e main
contributions of this paper can be summarized as follows. (1) A
novel transform named spectral graph fractional wavelet
transform (SGFRWT) is defined. (2) A Fourier series ap-
proximation-based fast algorithm for SGFRWT is derived and
implemented since the SGFRWT includes complex domain
computations compared to SGWT. (3) Applications of
SGFRWT to synthetic and real datasets are also given to
highlight its potential usefulness. In summary, the proposed
fractional spectral graph wavelets provide a new choice for the
graph signal processing. Further research may include the
extension of the proposed SGFRWT for dealing with the di-
rected graphs [40, 41] and the extension of the idea of SGFRWT
to critically sampled graph wavelets like GraphBio [46].

Appendix

A. Definition of SGFRWT by Using the Idea of
Traditional FRWT

According to (8), we can define the SGFRWT in (37) in
another form by using the idea of traditional FRWT as
follows:

Wf(θ, s, n) � T
s
gθ

f (n) � 
N

m�1
f(m)ψ∗θ,s,n(m) �〈f,ψθ,s,n〉,

n � 1, . . . , N,

(A.1)

where

T
s
gθ

� e
− j/2 m2− n2− (m− n/s)2( )cot θg(sL), (A.2)

ψθ,s,n(m) � e
− j/2 m2− n2− (m− n/s)2( )cot θ 

N− 1

ℓ�0
g sλℓ( χℓ(m)χ∗ℓ (n).

(A.3)

From (A.3), we can see that this definition has two
defects:

(1) +e basis of SGFRWT ψθ,s,n(m) is still based on
χℓ(n); however, we want to define the basis of
SGFRWT ψθ,s,n(m) based on a new function, for
example, cℓ(n). If we use the definition of (A.3), then
the characteristic of ψθ,s,n(m) will be very similar to
ψs,n(m) in (22) since they are based on the same
function χℓ(n).

(2) We want to define the basis of SGFRWT ψθ,s,n(m)

which changes directly with λθℓ ; that is, the parameter
θ should have an effect on λℓ directly.

+erefore, we do not use (A.1)–(A.3) to define the
SGFRWT.

B. Definition of SGFRWT by Using Another
Graph Fractional Laplacian Operator Lθ

Different from the definition in (24), the graph fractional
Laplacian operator can also be defined as follows:

Lθ � χΛχH
 

θ
� χΛθχH

. (B.1)

Comparing (B.1) and (13), we can see that the decom-
position of L and Lθ shares the same χ. +at is, if we define Lθ
as the graph fractional Laplacian operator, then, similar to
(21), we can define the spectral graph fractional wavelet
transform (SGFRWT) operator Ts

gθ
as follows:

Wf(θ, s, n) � T T
s
gθ

, f (n) � 
N

m�1
f(m)ψ∗θ,s,n(m)〈f,ψθ,s,n〉,

n � 1, . . . , N,

(B.2)

where

T
s
gθ

� g sLθ , (B.3)

ψθ,s,n(m) � 
N− 1

ℓ�0
g sλθℓ χℓ(m)χ∗ℓ (n), m � 1, 2, . . . , N.

(B.4)

From (B.4), we can see that this definition has one defect:
the basis of SGFRWT ψθ,s,n(m) is based on χℓ(n); however,
we want to define the basis of SGFRWT ψθ,s,n(m) based on a
new function, for example, cℓ(n). If we use the definition of
(B.4), then the characteristic of ψθ,s,n(m) will be very similar
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to ψs,n(m) in (21) since they are based on the same function
χℓ(n).

+erefore, we do not use (B.1)–(B.4) to define the
SGFRWT.

C. Some Properties of SGFRWT

In this appendix, we give some properties of proposed
SGFRWT without proof, since the proof of these properties
is very similar to that of those properties of SGWT in [44].

Lemma C.1. If the SGFRWT kernel gθ satisfies the following
admissibility condition:



∞

0

g
2
(x)

x
dx � Cg <∞, (C.1)

and g(0) � 0, then

1
Cg



N

n�1

∞

0
Wf(θ, s, n)ψθ,s,n(m)

ds

s
� f

#
(m), (C.2)

where f# � f − 〈c0, f〉c0. In particular, the complete recon-
struction is given by f � f# + f(0)c0.

Lemma c.1 shows that the mean of f may not be re-
covered from the zero-mean fractional graph wavelets.
Lemma c.1 is a generalization of Lemma 5.1 in [44].

Lemma C.2. Let G be a weighted graph, Lθ the graph
fractional Laplacian operator, and t> 0 an integer. For any
two vertices m and n, if dG(m, n)> t then ((Lθ)

t)m,n � 0.

Note that dG(m, n) is the shortest-path distance, i.e., the
minimum number of edges for any paths connecting m and
n. Lemma c.2 shows the localization result for integer powers
of the fractional Laplacian Lθ. Lemma c.2 is a generalization
of Lemma 5.2 in [44].

Lemma C.3. Let ψθ,s,n � Ts
gθ
δn and ψθ,s,n � Ts

gθ
δn be the

fractional wavelets at scale s generated by the fractional
kernels gθ and gθ. If |g(sr) − g(sr)|≤M(s) for all
r ∈ [0, rN− 1], then |ψθ,s,n(m) − ψθ,s,n(m)|≤M(s) for each
vertex m. Additionally, ‖ψθ,s,n − ψθ,s,n‖2≤

��
N

√
M(s).

Lemma c.3 shows that if two fractional kernels gθ and gθ
are close to each other in some sense, then the resulting
graph fractional wavelets should be close to each other.
Lemma 3.3 is a generalization of Lemma c.3 in [44].

Lemma C.4. Let gθ be K+ 1 times continuously differen-
tiable, satisfying g(0) � 0, g(i)(0) � 0 for all i<K, and
g(K)(0) � C≠ 0. Assume that there is some s′ > 0 such that
|g(K+1)(r)|≤B for all r ∈ [0, s′rN− 1]. Aen, for
g(sr) � (C/K!)(sr)K, we have M(s) � sup

r∈[0,rN− 1]

|g(sr) − g

(sr)|≤ sK+1rK+1
N− 1/(K + 1)! for all s< s′.

Lemma c.4 shows that if a fractional kernel gθ has a zero
of integer multiplicity at the origin, then gθ can be

approximated by a single monomial for small scales. Lemma
c.4 is a generalization of Lemma 5.4 in [44].

Theorem C.1. Let G be a weighted graph with fractional
Laplacian Lθ. Let gθ be a kernel satisfying the hypothesis of
Lemma 3.4, with constants s′ and B. Let m and n be vertices of
G such that dG(m, n)>K. Aen, there exist constants D and
s″, such that ψθ,s,n(m)/‖ψθ,s,n‖≤Ds for all s<min(s′, s″).

+eorem c.1 shows that the localization of the fractional
wavelet ψθ,s,n must include a renormalization factor in the limit
of small scales. In general, ψθ,s,n(m)⟶ 0 as s⟶ 0 for allm
and n, due to the normalization chosen for the graph fractional
wavelets.+eorem c.1 is a generalization of+eorem 5.5 in [44].

Theorem C.2. Given a set of scales sj 
J

j�1, the set

F � ϕθ,n 
N

n�1 ∪ ψθ,sj,n 
J

j�1
N
n�1 forms a frame with bounds A,

B given by A � minr∈[0,rN− 1]G(r) and B � maxr∈[0,rN− 1]G(r),
where G(r) � |h(r)|2 + j|g(sjr)|2.

Note that the basic definition of a frame is as follows:
Given a Hilbert space H, a set of vectors Γk ∈H form a
frame with frame bounds A and B if the inequality
A‖f‖2 ≤ 

k

|〈f, Γk〉|2 ≤B‖f‖2 holds for all f ∈H. +eorem
C.6 shows that the numerical stability of recovering the
vector f from the inner product 〈f, Fk〉 depends on the
frame bounds A and B. +eorem c.2 is a generalization of
+eorem 5.6 in [44].

Data Availability
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