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,is study addresses the problems of formation control and obstacle avoidance for a class of second-ordermultiagent systems with
directed topology. Formation and velocity control laws are designed to solve the formation tracking problem. A new obstacle
avoidance control law is also proposed to avoid obstacles.,en, the consensus control protocol consists of the formation, velocity,
and obstacle avoidance control laws. ,e convergence of the proposed control protocol is analyzed by a redesigned Lyapunov
function. Finally, the effectiveness of theoretical results is illustrated by simulation examples. ,e simulation results show that the
formation tracking problem of the given multiagent systems can be realized and obstacles can be avoided under the proposed
control protocol.

1. Introduction

,e cooperative control problem of multiagent systems has
been attracted outstanding attention in the past few years
due to its widespread applications in multisensor systems
[1], mobile robot systems [2, 3], unmanned aerial vehicle
systems [4, 5], power distribution networks [6], and so forth.
,e basic problem of cooperative control is consensus, in
which the objective of consensus is to design an appropriate
control protocol, such that the output of all agents can
achieve synchronization or track a desired trajectory.

Currently, the consensus control problems of multiagent
systems have been extensively addressed in existing papers.
Many control protocols have been designed to achieve the
consensus control of multiagent systems. In [7], the dis-
tributed linear control protocol for the linear multiagent
systems with limited interaction ranges was designed. It-
erative learning control protocols were proposed in [8–10] to
solve the consensus tracking problem of nonlinear multi-
agent systems. In [11], the consensus problem of nonlinear
multiagent systems with directed topology and

communication constraints was investigated, in which each
agent communicated only with its neighbors. Moreover, in
[12], a consensus protocol with the local state information
was proposed to solve the event-triggered control problem of
general linear multiagent systems. ,e finite-time consensus
tracking control problem of multiagent systems with un-
certain nonlinear dynamics and error constraints was in-
vestigated in [13], in which the nonsingular fast slidingmode
control technique was used.

It is not difficult to see from the abovementioned papers
that the research on the consensus control problem of
multiagent systems has achieved rich results. However, these
papers do not further analyze the formation control problem
of multiagent systems. As an important research direction,
the formation control problem has played an important role
in many fields, such as the formation control of spacecraft
[14], multiple aerial vehicles [15], multiple quadrotors [16],
and mobile robots [17–19]. ,e formation control of mul-
tiagent systems has been discussed in some studies. In [20],
the optimal formation problem of first-order multiagent
systems with fixed communication topology was considered.
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In [21], the formation tracking problem with distributed
observer was addressed, in which the distributed formation
tracking control protocol was constructed. ,e control
protocol with communication time-varying delay was pre-
sented in [22]. Furthermore, the formation control strategy
with position estimation [23] and the distributed formation
iterative learning control protocol [24] were also addressed.
Meanwhile, the consensus control protocols for the multi-
agent systems were proposed to solve the problem of col-
lision avoidance [25–27]. It should be pointed out that the
results on the formation control or the control of collision
avoidance are discussed separately. To the best of the au-
thors’ knowledge, however, it should be paid attention to
prevent the collision with obstacles while solving the for-
mation problem of multiagent systems. However, the
problem has received minimal attention in the existing
literature.

Inspired by the abovementioned facts, this study in-
vestigates the formation control and obstacle avoidance for a
class of second-order multiagent systems with directed to-
pology. ,e main contributions of this work are as follows:
(i) the formation control law and velocity control law are
designed to solve the formation tracking problem of given
multiagent systems with directed topology. Furthermore, a
new obstacle avoidance strategy is proposed to guarantee
that all agents avoid obstacles. (ii) By comparing with the
control protocols proposed in [24–26], the current con-
sensus control protocol consists of the designed formation
control law, velocity consensus control law, and obstacle
avoidance control law. ,e purpose of this is to solve the
formation control and obstacle avoidance problems of the
given multiagent systems at the same time. (iii) To prove the
convergence of the proposed control protocol, a new Lya-
punov function is structured in this paper. Finally, two
simulation examples are provided to illustrate the effec-
tiveness of the proposed control protocol.

,e remainder of this paper is organized as follows.
Graph theory is introduced in Section 2, and the problem
formulation is given in Section 3. In Section 4, the control
protocol design and convergence analysis are discussed.
Next, the simulation examples are provided to illustrate the
effectiveness of theoretical analysis in Section 4. Finally,
conclusions are drawn in Section 5.

2. Graph Theory

Let G � (V,Ε,A) denote a directed graph with a set of
nodes V � υ1, . . . , υn  and a set of directed edges
E � (i, j), i, j ∈V, and i≠ j . ,e weighted adjacency ma-
trix isA � [aij] ∈ Rn×n, where aij > 0 if and only if (i, j) ∈ E;
otherwise, aij � 0. Agent j is called the neighbor of i if agent i

receives the information from agent j. ,e set of neighbors
of agent i is defined asNi � υj: (υj, υi) ∈ E .,e Laplacian
matrix L is denoted by L � D − A, where
D � diag d1, . . . , dn  with di � j∈Ni

aij. ,e graph G is
connected if there exists a path between any two vertices.

In this paper, the multiagent systems with n agents are
considered. Hence, the exchange information among agents
can be modeled as the directed graph n with n nodes.

According to the related knowledge of the graph theory G,
we can theoretically analyze the control problem of multi-
agent systems. In addition, in order to achieve the desired
formation shape, the distance between agents should be set.
Hence, in this paper, let the matrix h is defined as the desired
formation shape of given multiagent systems. Here, the
matrix h � [h1, . . . , hn] and hi � [hi1, . . . , hin]T with hij be-
ing the desired distance between agent i and agent j.

3. Problem Formulation

In this paper, a class of second-order multiagent systems
with n agents is studied, and the ith agent’s dynamics are
described as

_xi(t) � vi(t),

_vi(t) � ui(t),
 (1)

where xi(t) ∈ R, vi(t) ∈ R, and ui(t) ∈ R (i � 1, . . . , n) are
the position, velocity, and control input of agent i,
respectively.

To facilitate the following discussion, the time variable t

will be ignored if there is no ambiguity. In addition, some
definitions and lemmas are given as follows.

Definition 1. Function Θ(xij) for xij is a nonnegative
function if the following properties are satisfied at the same
time:

(1) Θ(xij)⟶∞ for xij⟶ 0
(2) Θ(xij)⟶∞ for xij⟶∞
(3) Θ(xij)⟶ 0 for xij⟶ hij

where xij is the Euclidean distance from agent i to j, i.e.,
xij � ‖xi − xj‖.

Lemma 1. For a given multiagent system, let ∇xi
σ(xij) be the

gradient function of a continuous differentiable function
σ(xij); then, the following property is held:

1
2



n

i�1


n

j�1,j≠i
∇xi

σ xij  _xi − _xj  � 
n

i�1
vi 

n

j�1,j≠i
∇xi

σ xij . (2)

Proof. For a given multiagent system, let zij � xi − xj; then,
one has

_zij � _xi − _xj � vi − vj. (3)

Furthermore, we can obtain

∇xi
σ xij  �

zσ xij 

zxi

�
zσ xij 

zzij

zzij

zxi

�
zσ xij 

zzij

, (4)

∇xj
σ xij  �

zσ xij 

zxj

�
zσ xij 

zzij

zzij

zxj

� −
zσ xij 

zzij

. (5)

For the given multiagent systems, it is easy to obtain that
xij � ‖xi − xj‖ � ‖xj − xj‖ � xji, where xji represents the
Euclidean distance from agent j to i, and then, we have
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σ(xij) � σ(xij). Hence, on the basis of equations (4) and (5),
one obtains

∇xi
σ xij  � −∇xj

σ xij . (6)

Considering equation (6), we obtain
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1
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1
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i�1,i≠j
_xi +
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n

j�1


n

j�1,j≠i
_xi

⎛⎝ ⎞⎠∇xi
σ xij  � 

n

i�1


n

i�1,i≠j
∇xi

σ xij  _xi,

(7)

and it is obtained that

1
2



n

i�1


n

j�1,j≠i
∇xi

σ xij  _xi − _xj  � 
n

i�1
vi 

n

j�1,j≠i
∇xi

σ xij . (8)

,e proof is completed.
,e control objective of this study is to design a suitable

control protocol ui(t) (i � 1, . . . , n), such that the output of all
agents can achieve desired formation shape without obstacles,
that is, limt⟶∞(xi(t) − xj(t)) � hij and limt⟶∞vi(t) �

vj(t), where i≠ j ∈ 1, . . . , n{ } and hij ∈ h. Meanwhile, it is also
guaranteed that the desired formation shape can be main-
tained after avoiding obstacles. □

4. Control Protocol Design and
Convergence Analysis

4.1.Control ProtocolDesign. On the basis of Definition 1, the
nonnegative function Θ(xij) is designed as

Θ xij  � α ln
hij

2 xi − xj

�����

�����
+

xi − xj

�����

�����

2hij

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, ( i≠ j ∈ 1, 2, . . . , n{ }),

(9)

where α> 0 is the formation control coefficient. ,e curve of
function Θ(xij) is shown in Figure 1.

Figure 1 presents that Θ(xij)≥ 0 regardless of how to
change the distance between agents i and j. ,at is to say,
Θ(xij)⟶ +∞ for ‖xi − xj‖⟶ 0 and ‖xi − xj‖⟶ +∞,
and Θ(xij) � 0 for ‖xi − xj‖ � hij, where i≠ j ∈ 1, . . . , n{ }.
,is condition implies that agents i and j can hold the desired
distance. ,erefore, the formation control law of the given
multiagent systems can be designed as

uia � − 
n

j�1,j≠i
∇xi
Θ xij . (10)

To maintain the velocity consensus, a velocity control
law is designed as

uib � 
n

j�1,j≠i
aijΨ vi − vj , (11)

where Ψ(vi − vj) is called velocity adjust function and
represented as

Ψ vi − vj  �
β vj − vi 

�����������

1 + vi − vj 
2

 , (i≠ j ∈ 1, 2, . . . , n{ }),

(12)

where β> 0 is the velocity control coefficient. On the basis of
equation (12), the functionΨ(vi − vj) will be equal to zero as
vi � vj for i≠ j ∈ 1, . . . , n{ }.

When obstacles exist in the environment, to prevent the
collision with obstacles, a new control strategy UObi

for agent
i is regarded as

UObi
�

0, xi − Ob

����
����>R,

c R2−r2

xi− Ob‖ ‖
2
− r2

− 1 
2
, r< xi − Ob

����
����≤R,

not define, xi − Ob

����
����≤ r,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where c> 0 is the avoidance control coefficient;xi is the position
of agent i; Ob, r, and R represent the center, radius, and
maximumdetection radius of an obstacle, respectively; and ‖xi −

Ob‖ is the Euclidean distance between agent i and an obstacle.
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By taking gradient of function UObi
,

∇xi
UObi

�

0, xi − Ob

����
����>R,

c
− R2−r2(  R2 − xi − Ob

����
����
2

 

xi − Ob

����
����
2

− r2 
3 xi − Ob( , r< xi − Ob

����
����≤R,

not define, xi − Ob

����
����≤ r.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

By checking equations (13) and (14), we have
lim‖xi−Ob‖⟶ R−UObi

� lim‖xi−Ob‖⟶ R+UObi
� 0 from equation

(13), which implies that UObi
is continuous at ‖xi − Ob‖ � R,

and lim‖xi−Ob‖⟶ R−∇xi
UObi

� lim‖xi−Ob‖⟶ R+∇xi
UObi

� 0
from equation (14), which indicates that ∇xi

UObi
is also

continuous at ‖xi − Ob‖ � R.
On the basis of the above analysis, the new obstacle

avoidance control law can be designed as

uic � −∇xi
UObi

. (15)

Hence, considering the formation control law uia, ve-
locity control law uib, and obstacle avoidance control law uic,
the consensus control protocol for agent i can be selected as
ui � uia + uib + uic, that is,

ui � −α 
n

j�1,j≠i
∇xi

ln
hij

2 xi − xj

�����

�����
+

xi − xj

�����

�����

2hij

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

+ β 
n

j�1,j≠i
aij

vj − vi 
�����������

1 + vi − vj 
2

 − ∇xi
UObi

.

(16)

4.2. Convergence Analysis. ,e main results of this work are
shown in ,eorem 1.

Theorem 1. Consider the multiagent system (1) with the
directed communication topology and the consensus control
protocol (16), and assume that multiple obstacle surroundings
being considered or not; then, all agents can achieve the
desired formation shape and maintain the velocity un-
changed, i.e., limt⟶∞(xi(t) − xj(t)) � hij and
limt⟶∞vi(t) � vj(t) with i≠ j ∈ 1, . . . , n{ } and hij ∈ h.
Meanwhile, the desired formation shape will still be held after
avoiding obstacles.

Proof. ,e Lyapunov function candidate is considered:

V(x, v) �
1
2



n

i�1
v
2
i +

1
2



n

i�1


n

j�1,j≠i
Θ xij  + 

n

i�1
UObi

. (17)

On the basis of equation (17), (1/2) 
n
i�1 v2i and

(1/2) 
n
i�1 

n
j�1,j≠i Θ(xij) are continuously differentiable in x

and v. As shown in equation (13), 
n
i�1 UObi

is also a dif-
ferentiable function. Equation (17) presents that
(1/2) 

n
i�1 v2i ≥ 0. Figure 1 indicates that the second item in

equation (17) (1/2) 
n
i�1 

n
j�1,j≠iΘ(xij)≥ 0 is easily obtained.

Furthermore, function UObi
≥ 0 is obtained from the de-

scription of equation (13). ,en, the third item in equation
(17) 

n
i�1 UObi
≥ 0 can be acquired. Equation (17) is hence an

effective Lyapunov function, and V(x, v)≥ 0.

0 5 10 15 20 25 30
0

0.5

1
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||xi - xj||

Θ
 (x

ij)

hij

Figure 1: ,e curve of function Θ(xij).

4 Mathematical Problems in Engineering



By taking the derivative of function V(x, v) along with x

and v, we have

_V(x, v) � 
n

i�1
viui +

1
2



n

i�1


n

j�1,j≠i
∇xi
Θ xij  _xi − _xj  + 

n

i�1
vi∇xi

UObi

� − 
n

i�1
vi 

n

j�1,j≠i
∇xi
Θ xij  + 

n

i�1
vi 

n

j�1,j≠i
aijΨ vi − vj 

− 

n

i�1
vi∇xi
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+
1
2



n
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j�1,j≠i
∇xi
Θ xij  _xi − _xj  + 

n

i�1
vi∇xi

UObi

� − 
n

i�1
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n

j�1,j≠i
∇xi
Θ xij  + 

n
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vi 

n

j�1,j≠i
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+
1
2



n

i�1


n

j�1,j≠i
∇xi
Θ xij  _xi − _xj ,

(18)

where the control protocol (16) is applied.
Lemma 1 is considered, and we obtain

1
2



n

i�1


n

j�1,j≠i
∇xi
Θ xij  _xi − _xj  � 

n

i�1
vi 

n

j�1,j≠i
∇xi
Θ xij .

(19)

Substituting equation (19) into (18) results in

_V(x, v) � 
n

i�1
vi 

n

j�1,j≠i
aijΨ vi − vj  � 

n−1

i�1


n

j�i+1
aij vi − vj Ψ vi − vj .

(20)

Substituting equation (12) into equation (20) yields

_V(x, v) � β 
n−1

i�1


n

j�i+1
aij

vi − vj  vj − vi 
�����������

1 + vi − vj 
2



� −β 
n−1

i�1


n

j�i+1
aij

vi − vj 
2

�����������

1 + vi − vj 
2

 ≤ 0.

(21)

If

Γ ≜ (x, v): _V(x, v) � 0  � (x, v): β 
n−1

i�1


n

j�i+1
aij

vi − vj  vj − vi 
�����������

1 + vi − vj 
2

 � 0, i � 1, . . . , n − 1
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (22)

then we have Γ ≜ (x, v): v1 � · · · � vn .
,e preceding analysis implies that _V(x, v) � 0 if and

only if v1 � · · · � vn. Moreover, let v1 � · · · � vn � d, and
obtain _xi − _xj � vi − vj � d − d � 0. ,us, the consensus
problem of the multiagent system (1) can be achieved.

Considering equation (9), let

∇xi

1
2



n

i�1


n

j�1,j≠i
Θ xij ⎛⎝ ⎞⎠

� ∇xi

α
2



n

i�1


n

j�1,j≠i
ln

hij

2 xi − xj

�����

�����
+

xi − xj

�����

�����

2hij

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� 0,

(23)

where ‖xi − xj‖ � hij is the equilibrium point of the mul-
tiagent system (1), and equation (17) has the minimum value
under the equilibrium point.

,e analysis of equation (23) shows that each agent can
maintain the desired distance hij, that is, ‖xi − xj‖ � hij,
which indicates that the desired formation is achieved.
Function V(x, v) is a bounded function due to _V(x, v)≤ 0.
,erefore, the agents can avoid obstacles under the con-
sensus control law (16). ,e proof is completed. □

5. Simulation Analysis

A class of second-order multiagent systems with four agents
is considered. ,e desired formation shape is defined as a

square. ,e length of the square is set as 4. ,e number of
obstacles is set as 3. ,e dynamics of the four agents are
described as equation (1), that is,

_xi(t) � vi(t),

_vi(t) � ui(t),
 (24)

and Figure 2 presents the directed topology among agents.
On the basis of Figure 2, adjacency matrixA and desired

distance h are as follows:

A �

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

h �

0 4 4
�
2

√
4

4 0 4 4
�
2

√

4
�
2

√
4 0 4

4 4
�
2

√
4 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

,e four agents’ initial positions are given as (2.5, 1.7),
(1.3, 0.8), (1.9, 2.4), and (0.6, 1.5), and the initial velocities
are given as (0.5, 0.3), (−0.5, 0.3), (0.5, −0.3), and
(−0.5, −0.3), respectively. ,e positions of the three obsta-
cles are set as (26, 16), (40, 30), and (60, 25). ,e radius and
detection radius of the three obstacles are (2.5, 5.5),
(1.0, 2.5), and (2.0, 4.0), respectively. ,e simulation time
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t � 30 s, and the other parameters are given as α � 2.5,
β � 1.5, and c � 4.0.

Two simulation examples are provided below to illus-
trate the validity of theoretical analysis.

Example A. Consensus analysis without obstacles.
,e formation tracking problem without obstacles is

considered in this example. Figures 3–7 display the for-
mation tracking results.

Figures 3 and 4 exhibit the tracking results of position
and velocity without obstacles, respectively. By virtue of the
results of Figures 3 and 4, it can be easily found that the
consensus formation tracking problem of the multiagent
system (1) with the designed control protocol (16) can be
achieved. Figure 5 shows the desired formation shape, which
indicates that the desired formation tracking problem can
also be solved under the proposed control protocol (16).
Figure 6 depicts the desired distance among agents. ,is is
completely consistent with the theoretical results, which
further illustrate that the control protocol designed in this
paper is effective. In addition, the control input curves of the
four agents are given in Figure 7.

Overall, the results of Figures 3–7 show that the control
protocol designed in this paper is effective. Although the
existence of obstacles is not considered, the four agents can
still achieve consensus, and at the same time, they can
achieve and maintain the desired formation shape.

Example B. Consensus analysis with multiple obstacles.
In this example, three obstacles are considered in the

process of achieving formation tracking. ,e initial position
and velocity of each agent are the same as those in Example
A. Figures 8–12 display the formation tracking results.

Figures 8 and 9 show the tracking results of position and
velocity with three obstacles, respectively. Although three
obstacles are considered in the process of achieving for-
mation tracking control, the consensus can still be solved
under the consensus control protocol (16). ,e tracking
results of position and velocity of the four agents have
changed due to the existence of obstacles. Figure 10 presents

the desired formation shape, which implies that the for-
mation can be maintained after avoiding obstacles. As can be
seen from Figure 10, when an obstacle appears during the
operation of the agent, the agent will bypass the obstacle
under the action of the designed control protocol. After
circumventing obstacles, the agents will continue to main-
tain the desired formation shape under the control protocol.
,is also illustrates the effectiveness of the control protocol
designed in this paper from another angle. Figure 11 exhibits
the desired distance of the four agents. ,e results in Fig-
ures 10 and 11 illustrate the effectiveness of the theoretical
results. Figure 12 displays control input curves.

In general, the consensus control protocol (16) designed
in this study not only can achieve the desired formation
control but also can avoid obstacles and maintain the for-
mation shape after avoiding the obstacles.
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Figure 7: Control input curves.
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6. Conclusions

,e consensus problems of formation control and obstacle
avoidance for a class of second-order multiagent systems
with directed topology were considered in this study. ,e
designed control protocol consisted of the formation, ve-
locity consensus, and obstacle avoidance control laws. A
designed Lyapunov function was applied to analyze the
convergence of the designed consensus control protocol.
Under the given directed topology, the formation control
problem of the multiagent systems without obstacles was
solved by using the designed consensus control protocol. At

the same time, the desired formation control can be achieved
and maintained despite the existence of obstacles in the
environment.
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