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We present option pricing under the double stochastic volatility model with stochastic interest rates and double exponential
jumps with stochastic intensity in this article. We make two contributions based on the existing literature. First, we add double
stochastic volatility to the option pricingmodel combining stochastic interest rates and jumps with stochastic intensity, and we are
the first to fill this gap. Second, the stochastic interest rate process is presented in the Hull–White model. Some authors have
concentrated on hybrid models based on various asset classes in recent years. )erefore, we build a multifactor model with the
term structure of stochastic interest rates. We also approximated the pricing formula for European call options by applying the
COS method and fast Fourier transform (FFT). Numerical results display that FFTand the COS method are much faster than the
numerical integration approach used for obtaining the semi-closed form prices. )e COS method shows higher accuracy, ef-
ficiency, and stability than FFT. )erefore, we use the COS method to investigate the impact of the parameters in the stochastic
jump intensity process and the existence of the process on the call option prices. We also use it to examine the impact of the
parameters in the interest rate process on the call option prices.

1. Introduction

An abundance of empirical studies show the existence of the
asymmetric leptokurtic features and the volatility smile after
Black and Scholes [1] did some experimental and pioneering
work in European option pricing. Allowing the volatility and
the interest rate to change, allowing for the existence of
jumps, and the change of the jump intensity over time
represent reasonable dynamics of the asset returns.

Stochastic volatility models have been playing a signif-
icant part in European option modelling since volatility
should be a random variable based on extensive empirical
studies. Some authors proposed several representative sto-
chastic volatility models [2–5]. Heston [6] specified the
variance (the square of volatility) with a Cox–Ingersoll–Ross
(CIR) process which is more proper for application than
other models. He contributed to the existing literature

mainly by modelling the variance with the CIR process
which displays mean-reverting and nonnegative properties,
deriving the formulae for the characteristic functions with
PDE approach and applying the Fourier transform for
obtaining the closed-form valuation formula for European
options since the density function is expressed with the
characteristic function using inverse Fourier transform.
Schöbel and Zhu [7] developed a model with stochastic
volatility which is also proper for application. )e volatility
follows an Ornstein–Uhlenbeck process in their model with
the asset returns, and its volatility being correlated with each
other. )ey contributed to the existing literature mainly by
using the expectation approach for deriving the formulae for
the characteristic functions instead of PDE approach. Lewis
[8] developed a stochastic variance model that the variance
follows a 3/2 nonaffine stochastic process because the option
prices under this model are local martingales instead of
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martingales, and 3/2 process is not stationary and it is
improper for application. Grasselli [9] proposed that the
variance follows a 4/2 process which is a mix of the 1/2 and
the 3/2 terms. Since they quoted that the 4/2 model shares
the same properties as the 3/2 model, so it is not proper for
practical application as well. Christoffersen et al. [10]
modelled the variance with a two-factor mean-reverting
square root process that provides more flexibility than the
Heston model. )eir empirical study shows that their model
works better than the one-factor model. Based on the
existing forms of processes used to describe the dynamics of
the volatility, we decide to study option pricing under two-
factor stochastic volatility in this article since it is more
applicable for practical application.

)e interest rate is also time varying in the real economy.
Meanwhile, stochastic interest rate models have a longer
history than stochastic volatility models. )ey are initially
used to study the zero-coupon bond and interest rate options
and derive the formulae for them for application. )ere are
four typical stochastic interest rate models. Vasicek [11]
modelled the interest rate with an Ornstein–Uhlenbeck
process for describing the change of it. Cox et al. [12]
modelled the interest rate with mean-reverting square root
process; henceforth, it was applied for reference to develop
the stochastic volatility model. )ey contributed to the
existing literature by expanding Vasicek’s model that they
added a term to the diffusion coefficient, and it maintains the
mean-reverting and nonnegative properties that make it
more proper for application than Vasicek’s model. Since
then, this model has been a benchmark to specify the dy-
namic change of the variance and the interest rate for de-
cades. Longstaff [13] proposed a mean-reverting double
square root model, and compared to the one square root
model, it has some special features that it requires the pa-
rameters in the model to satisfy a specific condition. Since
the dynamic change of the variance and the interest rate
shares some common features, Zhu [14] expanded Long-
staff’s model to the stochastic variance model that they
modelled the variance with double square root process. Hull
and White [15] proposed a special process to specify the
change of the interest rate with all the parameters in the
model being time varying. Since this model cannot capture
the market shapes very well in reality, they noted that the
calibration of this model needs to be carefully dealt with. To
make it perform better for practical application, Hull and
White [16] improved their model to be a more reliable and
applicable one that only one parameter in the process is time
varying. It can be transformed to another form which is
generally called the Hull–White interest rate process [17].

Because of the contribution of the authors who devel-
oped the stochastic interest rate models, some authors began
to introduce the stochastic interest rate processes into Eu-
ropean option pricing models to make them more rea-
sonable for practical application. )eir empirical work
supports the significant improvement of stochastic interest
rates [18, 19]. Meanwhile, several authors focused on option
pricing combining stochastic volatility and interest rates to
build hybrid models. CIR and Hull–White models are

generally used to display the dynamics of the interest rate.
Grzelak and Oosterlee [20] proposed an option pricing
model with stochastic volatility and stochastic interest rates.
)e interest rate follows Hull–White and CIR processes in
their model. Grzelak et al. [21] proposed option pricing
combining stochastic volatility with Schöbel–Zhu and CIR
processes and stochastic interest rate with Hull–White
process, and they used some techniques for obtaining the
formula for discounted characteristic function.

Jumps are used to describe the discontinuous behavior of
the asset returns, and adding jumps to the option pricing
model is also an extension. Merton [22] added the lognormal
jumps to the option pricing model since he mentioned that
the changes in stock prices appear to be jumps. However, the
volatility is still a constant parameter in his model. Kou [23]
proposed a double exponential jump-diffusion model for
capturing discontinuous nature that the asset returns have;
jump size is double exponentially distributed in his paper,
and it can capture the leptokurtic feature and the volatility
smile. Empirical studies also support the improvement of the
option pricing model with jumps. Bates [24] established a
model combining stochastic volatility and lognormal jumps,
and his empirical work shows that his model can improve on
fitting option prices. Bakshi et al. [25] also found that adding
jumps to the option pricing model with stochastic volatility
can improve the performance on pricing options, especially
for short time to maturity.

Some authors also make some expansions that they
focused on the option pricing modelling combining sto-
chastic volatility, stochastic interest rates, and jumps, and
several authors think that this kind of model is more rea-
sonable and appropriate for application. Scott [26] sup-
ported better performance of this kind of the option pricing
model. Jiang [27] also indicated that though their empirical
study demonstrates that the dynamics of the interest rate has
little impact on option pricing, option pricing modelling
combining the three factors is still robust over time. Besides
assuming the interest rate follows a CIR process, the
Hull–White interest rate process also deserves studying [28].

In addition, empirical studies also support the existence
of the change in the jump intensity over time. Santa-Clara
and Yan [29] proposed that the volatility and the jump
intensity change over time in their model. )eir empirical
results show that the volatility varies over time, and the jump
intensity varies much wider than the former. Chang et al.
[30] used ten years of stock returns data to affirm the ex-
istence of the change in the jump intensity over time and
capture the switching of the jump intensity. Huang et al. [31]
proposed a model combing stochastic volatility and jumps
with stochastic intensity. )ey derived the characteristic
function and did some numerical study based on it by
applying FFT. Several authors presented models combing
stochastic volatility, stochastic interest rates, and jumps with
stochastic intensity [32, 33].

We present option pricing combining double stochastic
volatility, stochastic interest rates, and double exponential
jumps with stochastic intensity in this article. We derive the
semi-closed form pricing formula and use it as the
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benchmark to examine some properties of two numerical
approaches generally used to approximate the pricing for-
mula for European options. Fast Fourier transform (FFT)
and the COS method are two accurate and efficient nu-
merical approaches generally used to approximate the for-
mula for European option prices. Carr and Madan [34]
developed a straightforward and efficient expression for the
Fourier transform and used FFT to approximate the pricing
formula for the options numerically. It makes computation
simple and efficient and has a significant reduction in
computation time. Fang and Oosterlee [35] developed the
COS method for approximating the pricing formula for
European options. Since the density function is expressed
with the characteristic function via inverse Fourier trans-
form, they used the Fourier cosine series to replace it for
approximating the pricing formula. )eir numerical results
show that it is a highly efficient approach. In the numerical
analysis part, we use FFT and the COS method to ap-
proximate the formula for European call option prices and
compare the computation speed, the accuracy, the efficiency,
and the stability between the two approaches. We examine
the impact of the parameters in the jump intensity process
and the existence of the process on call option prices. We
also examine the impact of the parameters in the interest rate
process on the call option prices.

We make two contributions based on the existing lit-
erature. First, we add double stochastic volatility to the
option pricingmodel combining stochastic interest rates and
jumps with stochastic intensity since the double stochastic
volatility model is more applicable for practical application
than the one-factor stochastic volatility model [10], and we
are the first to fill this gap. Second, the stochastic interest rate
process is presented in the Hull–White model. In recent
years, some authors have concentrated on hybrid models
based on various asset classes [20, 21], and the option pricing
model with all these features have the possibility to develop
more proper option prices [21]. )erefore, we build a
multifactor model with the term structure of stochastic
interest rates. It is an extension of the work by Grzelak et al.
[21]. Since our model is in the class of the affine jump-
diffusion (AJD) process which was introduced by Duffie
et al. [36], we use their results to obtain the formula for the
discounted characteristic function. Duffie et al. [36] did the
pioneering research on the AJD process, the securities were
modelled under an equivalent martingale measure, they
extended the Heston model to be a multidimensional model,
and the Fourier transform of the security price is in closed
form which means that the coefficients in the expression of
the Fourier form need to satisfy some ordinary differential
equations by applying the Feynman–Kac theorem [36].

We form the structure of this article with the following
sections. We develop option pricing modelling combining
double stochastic volatility, stochastic interest rates, and
double exponential jumps with stochastic intensity and
derive the semiclosed form pricing formula in Section 2. In
Section 3, we discuss and investigate some stochastic dif-
ferential equations relevant to the Hull–White interest rate
process and derive the discounted characteristic function. In

Section 4, we do some numerical work. Section 5 provides
the conclusion.

2. The Model and Semi-Closed Form Formula

Let(Ω,F, (Ft)t∈[0,T],Q)be a complete probability space
with a filtration and Q presents a risk-neutral measure. )e
stock price St is expressed by the following dynamic system:

dSt

St

� rt − λtμJ dt +
���
V1t


dW

S
1t +

���
V2t


dW

S
2t + (J − 1)dNt,

dV1t � κ1 θ1 − V1t( dt +σ1
���
V1t


dWV

1t,

dV2t � κ2 θ2 − V2t( dt +σ2
���
V2t


dWV

2t,

drt � δ ϑt − rt( dt +ηdWr
t ,

dλt � κλ θλ − λt( dt +σλ
��
λt


dWλ

t ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where WS
1t, WS

2t, WV
1t, WV

2t, Wt
r, and Wλ

t are the standard
Brownian motions. We assume that WS

1t is correlated with
WV

1t, dWS
1t · dWV

1t � ρ1dt and WS
2t is correlated with WV

2t,
dWS

2t · dWV
2t � ρ2dt. Any other Brownian motions are

pairwise independent.
Vjt � v2jt, j � 1, 2, vjt is the volatility, Vjt is its square

which is called the variance, and λt is the jump intensity. θj

and θλ are their mean-reversion levels, κj and κλ are their
mean-reversion rates, and σj and σλ are their volatilities,
respectively. rt is the instantaneous spot interest rate, δ is its
mean-reversion speed, η is its volatility, and ϑt is a time-
varying drift term, and it is used to match the initial term
structure of the interest rates.

Nt represents Poisson process with intensity λt and J

represents the jump size, and we assume that lnJ has an
asymmetric double exponential distribution with density
function p dfu(z):

p dfu(z) � pη1e
− η1z1 z≥0{ } + qη2e

η2z1 z≺0{ }, (2)

where η1 ≻ 1, η2 ≻ 0, p, q≻ 0, and p + q � 1, where p and q

represent the probabilities for positive and negative jumps,
respectively; therefore, we can obtain that
μJ � EQ(J − 1) � (pη1/η1 − 1) + (qη2/η2 + 1) − 1.

We set Xt � ln St, τ � T − t, Y � ln J, and k � lnK,
where T is the maturity date, τ is the time to maturity, and K

is the strike price. Under the risk-neutral measure Q, the
price of a call option C(S, V1, V2, r, λ, t) at time t ∈ [0, T]

with strike price K and maturity date T is given by

C S, V1, V2, r, λ, t(  � E
Q

e
− 

T

t
rsdsmax ST − K, 0( 


Ft ,

(3)

we can rewrite it as
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C S, V1, V2, r, λ, t(  � E
Q

e
− 

T

t
rsds

ST1 XT ≻ k{ }


Ft 

− KE
Q

e
− 

T

t
rsds1 XT ≻ k{ }


Ft .

(4)

)e derivation of the semi-closed form formula is
presented by applying Radon–Nikodym derivatives. We
consider switching Q to the measure QS and the T forward
measure QT for the first and second expectation parts re-
spectively in (4). We give the following Radon–Nikodym
derivatives:

dQ
dQS

�
eX

e
− 

T

t
rsds+XT

,

dQ
dQT

�
P(t, T)

e
− 

T

t
rsds

,

(5)

where

S � e
X

� E
Q

e
− 

T

t
rsds+XT


Ft , (6)

P(t, T) ≔ EQ(e
− 

T

t
rsds

|Ft) is the price at time t of a zero-
coupon bond which matures at time T.

)en, (4) can be rewritten as

C S, V1, V2, r, λ, t(  � SE
QS

1 XT ≻ k{ }

Ft 

&9; − KP(t, T)E
QT

1 XT ≻ k{ }

Ft .

(7)

Since the density function f(x) and the characteristic
function f(u) form a Fourier pair,

f(u) � 
R

e
iux

f(x)dx, f(x) �
1
2π


R

e
− iux f(u)du,

(8)

and we define

φS(u): φS u; X, V1, V2, r, λ, τ(  � E
QS

e
iuXT

Ft , (9)

φT(u): φT u; X, V1, V2, r, λ, τ(  � E
QT

e
iuXT

Ft , (10)

φ(u): φ u; X, V1, V2, r, λ, τ(  � E
Q

e
− 

T

t
rsds+iuXT


Ft ,

(11)

where φS(u) denotes the characteristic function under QS,
φT(u) denotes the characteristic function under QT, and
φ(u) denotes the discounted characteristic function under
Q.

We can obtain the following equations using
Radon–Nikodym derivatives:

φS(u) � E
QS

exp iuXT( 
Ft 

� E
Q e

− 
T

t
rsds

e(iu+1)XT

eX



Ft
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ �
φ(u − i)

φ(− i)
,

(12)

φT(u) � E
QT

exp iuXT( 
Ft 

� E
Q e

− 
T

t
rsds+iuXT

P(t, T)



Ft
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ �
φ(u)

P(t, T)
.

(13)

)en, (4) can be rewritten as

C S,V1,V2, r,λ, t(  � S
1
2

+
1
π


∞

0
R

e− iukφ(u − i)

iuφ(− i)
 du 

− KP(t,T)
1
2

+
1
π


∞

0
R

e− iukφ(u)

iuP(t,T)
 du .

(14)

)erefore, we can get the semi-closed form formula once
we obtain the formula for the discounted characteristic
function φ(u). )e formula for φ(u) is derived in the next
section.

3. The Discounted Characteristic Function

)e derivation of the formula for the discounted charac-
teristic function is presented in this section. To be specific,
first, we discuss and investigate some stochastic differential
equations relevant to the Hull–White interest rate process,
present the Hull–White decomposition, and enumerate
some relevant formulae including the pricing formula for a
zero-coupon bond. Second, we use the results given by
Duffie et al. [36] to obtain the formula for the discounted
characteristic function.

Applying Itô’s lemma to the Hull–White model we
obtain that

d e
δt

rt  � δe
δtϑtdt + ηe

δtdW
r
t . (15)

We integrate (15) to obtain that

rT � rte
− δ(T− t)

+ δ
T

t
e

− δ(T− u)ϑudu + η
T

t
e

− δ(T− u)dW
r
u.

(16)

)erefore, rT is a normally distributed conditional onFt

with

E
Q

rT

Ft  � μHW � rte
− δ(T− t)

+ δ
T

t
e

− δ(T− u)ϑudu,

(17)

VarQ rT

Ft  � σ2HW �
η2

2δ
1 − e

− 2δ(T− t)
 . (18)
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)e interest rate process in (1) can be decomposed into
rt � rt + ψt, and this is well known as the Hull–White de-
composition. ψt and rt are given by

ψt � E
Q

rt

F0  � r0e
− δt

+ δ
t

0
e

− δ(t− u)ϑudu, (19)

rt � η
t

0
e

− δ(t− u)dW
r
u. (20)

We can obtain the following stochastic differential
equation using Itô’s lemma:

drt � − δrtdt + ηdW
r
t , with r0 � 0. (21)

Theorem 1. If the dynamics of rt is given by the stochastic

process (21), we define f(t, T, r): � EQ(e
− 

T

t
rudu

|Ft), and
it takes the following form:

f(t, T, r) � e
C(t,T)− D(t,T)r

, (22)

where

%
C(t, T) �

η2

2δ2
(T − t) −

2
δ

1 − e
− δ(T− t)

  +
1
2δ

1 − e
− 2δ(T− t)

  ,

D(t, T) �
1 − e− δ(T− t)

δ
.

(23)

Proof. Since (21) is an Ornstein–Uhlenbeck process and it
possesses an affine term structure, we conjecture that

f(t, T, r) � e
C(t,T)− D(t,T)r

, (24)

where f(t, T, r) satisfies a partial differential equation by
applying the Feynman–Kac theorem [36]:

zf

zt
− δr

zf

zr
+
1
2
η2

z2f

zr2
− rf � 0, (25)

with boundary condition f(T, T, r) � 1.
We can obtain two ordinary differential equations by

rearranging (25) in terms of (24)

Ct(t, T) +
1
2
η2D2

(t, T) � 0,

Dt(t, T) − δD(t, T) + 1 � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

with boundary conditions C(T, T) � 0 and D(T, T) � 0.
We can obtain the solutions for C(t, T) and D(t, T) by

solving the above two ordinary differential equations, thus
the proof is complete.

)erefore, we can obtain the pricing formula for P(0, T):

P(0, T) � e
− 

T

0
ψudu+C(0,T)

. (27)

)us, ψT can be given by

ψT � −
zlnP(0, T)

zT
+

zC(0, T)

zT
� f(0, T) +

η2

2δ2
1 − e

− δT
 

2
,

(28)

where f(0, T) � − (zlnP(0, T)/zT), and we denote f(0, T)

as the instantaneous forward interest rate. According to (19),
ϑt can be expressed as ϑt � (1/δ)(zψt/zt) + ψt, and
substituting (28) into it yields

ϑt � f(0, t) +
1
δ

zf(0, t)

zt
+

η2

2δ2
1 − e

− 2δt
 . (29)

Setting f(0, T) � fM(0, T), where fM(0, T) is the
market instantaneous forward rates, the superscript M

represents that the value is calculated according to a set yield
curve [37]. □

Lemma 1. If the dynamics of rt is governed by the stochastic
process (21), we can have the following equation:


T

t
rdu �

1 − e− δ(T− t)

δ
r +

η
δ


T

t
1 − e

− δ(T− u)
 dW

r
u. (30)

Proof. )e proof of Lemma 1 is in Appendix A. □

Theorem 2. Since rT is a normally distributed conditional on
Ft, t≤T, the integrated interest rate process Rt,T � 

T

t
rudu is

normally distributed with

E
Q

Rt,T

Ft  � μR � D(t, T) rt − ψt( 

+ ln
PM(0, t)

PM(0, T)
+(C(0, T) − C(0, t)),

(31)

VarQ Rt,T

Ft  � σ2R � 2C(t, T). (32)

Proof. )e Hull–White decomposition leads to

Rt,T � 
T

t
r du + 

T

t
ψudu. (33)

We can obtain the formula for the first integral part
in (33) by using Lemma 1, and we only need to derive the
formula for the second integral part to obtain mean μR and
variance σ2R.

According to (27), we can express PM(0, T) as

P
M

(0, T) � e
− 

T

0
ψudu+C(0,T)

. (34)

)erefore, we can obtain that

e
− 

T

t
ψudu

�
PM(0, T)e− C(0,T)

PM(0, t)e− C(0,t)
, (35)

which leads to


T

t
ψudu � ln

PM(0, t)

PM(0, T)
+(C(0, T) − C(0, t)). (36)

)erefore, we can obtain that
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Rt,T � 
T

t
rdu + 

T

t
ψudu

�
1 − e− δ(T− t)( 

δ
rt +

η
δ


T

t
1 − e

− δ(T− u)
 dW

r
u

+ ln
PM(0, t)

PM(0, T)
+(C(0, T) − C(0, t)).

(37)

We can get equations (31) and (32) by simple calculation.
)e proof is complete. □

Theorem 3. If the dynamics of the interest rate rt is expressed
as the stochastic process in system (1), the pricing formula for a

zero-coupon bond P(t, T) � EQ(e
− 

T

t
rudu

|Ft) takes the
form

P(t, T) � e
C(t,T)− D(t,T)r

, (38)

where

C(t, T) � D(t, T)f
M

(0, t) + ln
PM(0, T)

PM(0, t)

−
η2

4δ
1 − e

− 2δt
 D

2
(t, T), r � rt.

(39)

Proof. )eorem 2 can lead us to the following equation:

P(t, T) � e
C(t,T)− D(t,T)(r− ψ)+lnPM(0,T)/PM(0,t)− (C(0,T)− C(0,t))

,

(40)

where ψ � ψt. We can obtain (38) by rearranging the above
equation. )e proof is complete. □

Theorem 4. If the asset price is governed by the dynamic
system (1), the discounted characteristic function
φ(u; X, V1, V2, r, λ, τ) takes the following form:

φ u; X, V1, V2, r, λ, τ(  � e
CA(u,τ)+DX(u,τ)X+DV1(u,τ)V1+DV2(u,τ)V2+Dr(u,τ)(r− ψ)+Dλ(u,τ)λ

, (41)

where

CA(u, τ) � CA(u, τ) + Λ(u, t, T),

CA(u, τ) � 
2

j�1

2κjθj

σ2j

κj − iuρjσj − ζj τ
2

+ ln
2ζj

2ζj + κj − iuρjσj − ζj  1 − e− ζjτ 
⎛⎝ ⎞⎠

+
2κλθλ
σ3λ

κλ − ζλ( τ
2

+ ln
2ζλ

2ζλ + κλ − ζλ(  1 − e− ζλτ( 
   +(iu − 1)

2
C(t, T),

Λ(u, t, T) � (iu − 1) ln
PM(0, t)

PM(0, T)
+(C(0, T) − C(0, t)) ,

DX(u, τ) � iu,

DVj
(u, τ) � (iu)

2
− iu 

1 − e− ζjτ

2ζj + κj − iuρjσj − ζj  1 − e− ζjτ 
,

Dr(u, τ) �
(iu − 1)

δ
1 − e

− δ(T− t)
 ,

Dλ(u, τ) � 2Π(u)
1 − e− ζλτ

2ζλ + κλ − ζλ(  1 − e− ζλτ( 
,

ζj �

�������������������������

κj − iuρjσj 
2

− σ2j (iu)2 − iu 



,

ζλ �

�����������

κ2λ − 2σ2λΠ(u)



,

M(u) �
pη1

η1 − iu
+

qη2
η2 + iu

− 1,

Π(u) � M(u) − iuμJ.

(42)
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Proof. Although ourmodel is in the class of the AJD process,
we still need to separate Xt into two parts and use the
Hull–White decomposition before using the results given by
Duffie et al. [36]. According to Grzelak et al. [21], we define
Xt: � Xt + Ψt, with Ψt � 

t

0 ψsds, and then we can obtain
the following system by using the Hull–White decomposi-
tion rt � rt + ψt:

d Xt � rt − λtμJ −
1
2

V1t + V2t(  dt

+
���
V1t


dWS

1t +
���
V2t


dWS

2t + YdNt,

dV1t � κ1 θ1 − V1t( dt + σ1
���
V1t


dWV

1t,

dV2t � κ2 θ2 − V2t( dt + σ2
��
Vt


dWV

2t,

drt � − δrtdt + ηdWr
t ,

dλt � κλ θλ − λt( dt + σλ
��
λt


dWλ

t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

)en, we use the results given by Duffie et al. [36] to
derive the discounted characteristic function.

We define

φ u; X, V1, V2, r, λ, τ(  ≔ E
Q

e
− 

T

t
rsds+iuXT


Ft , (44)

whereφ(u; X, V1, V2, r, λ, τ) is the discounted characteristic
function of Xt in system (43) under the risk-neutral measure
Q.

φ(u; X, V1, V2, r, λ, τ) satisfies a PIDE by applying the
Feynman–Kac theorem [36]:

−
zφ
zτ

+ r − λμJ −
1
2

V1 + V2(  
zφ
z X

+
1
2

V1 + V2( 
z2φ
z X

2

+ 
2

j�1
ρjσjVj

z2φ
z XzVj

+ κj θj − Vj 
zφ
zVj

+
1
2
σ2jVj

z2φ
zV2

j

⎛⎝ ⎞⎠

− δr
zφ
zr

+
1
2
η2

z2φ
zr2

+ κλ θλ − λ( 
zφ
zλ

+
1
2
σ2λλ

z2φ
zλ2

+ λ
∞

− ∞
(φ( X + Y) − φ( X))f(Y)dY − rφ � 0.

(45)

We conjecture φ(u; X, V1, V2, r, λ, τ) has the following
form:

φ u; X, V1, V2, r, λ, τ( 

� e
CA(u,τ)+DX(u,τ)X+DV1(u,τ)V1+DV2(u,τ)V2+Dr(u,τ)r+Dλ(u,τ)λ

,

(46)

with boundary conditions CA(u, 0) � 0, DX(u, 0) � iu,
DVj

(u, 0) � 0, Dr(u, 0) � 0 and Dλ(u, 0) � 0.

We simplify the integral term in (45) as

λ
∞

− ∞
(φ( X + Y) − φ( X))f(Y)dY � λφ(u)M(u), (47)

where M(u) � (pη1/η1 − iu) + (qη2/η2 + iu) − 1.
We can get a system of six ordinary differential equations

by rearranging (45) in terms of (46) and (47):
dCA

dτ
� κ1θ1DV1

+ κ2θ2DV2
+
1
2
η2D2

r + κλθλDλ,

dDX

dτ
� 0,

dDV1

dτ
�
1
2
σ21D

2
V1

+ ρ1σ1DX − κ1( DV1
+
1
2

D
2
X − DX ,

dDV2

dτ
�
1
2
σ22D

2
V2

+ ρ2σ2DX − κ2( DV2
+
1
2

D
2
X − DX ,

dDr

dτ
� − δDr + DX − 1( ,

dDλ

dτ
�
1
2
σ2λD

2
λ − κλDλ + M(u) − μJDX.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

We can obtain the formulae for CA(u, τ), DX(u, τ),
DVj

(u, τ), Dr(u, τ), and Dλ(u, τ) by solving the above or-
dinary differential equations, and thus we can obtain the
formula for φ(u; X, V1, V2, r, λ, τ).

)e discounted characteristic function φ(u; X, V1, V2,

r, λ, τ) can be expressed as the following form:

φ u; X, V1, V2, r, λ, τ(  � E
Q

e
− 

T

t
rsds+iuXT


Ft 

� e
− 

T

t
ψsds+iuΨTE

Q
e

− 
T

t
rs ds+iuXT


Ft 

� e
− 

T

t
ψsds+iuΨT · φ u; X, V1, V2, r, λ, τ( .

(49)

According to (36), we can obtain that

e
(iu− 1)

T

t
ψsds

� exp (iu − 1) ln
PM(0, t)

PM(0,T)
+ (C(0,T) − C(0, t))  .

(50)

Hence, we can obtain the formula for
φ(u; X, V1, V2, r, λ, τ):

φ u; X, V1, V2, r, λ, τ( 

� e
CA(u,τ)+DX(u,τ)X+DV1(u,τ)V1+DV2(u,τ)V2+Dr(u,τ)(r− ψ)+Dλ(u,τ)λ

.

(51)

)e proof is complete. □
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4. Numerical Discussion

)e approximated pricing formula for the call options using
the COS method is derived in this section. We use it to do
some numerical analyses to compare the computation speed,
the accuracy, the efficiency, and the stability between FFT
and the COS method. We also investigate the impact of the
parameters in the jump intensity process and the interest
rate process and the existence of the jump intensity process
on the call option prices.

Theorem 5. >e pricing formula for the call options with the
COS method V(t, x) at time t ∈ [0, T] is approximated on a
bounded interval [a, b]:

V(t,x)≈P(t,T) 
N− 1

k�0

′R ϕ
kπ

b − a
;x e

− ikπ(a/b− a)
 Wk, (52)

where the apostrophe on the right side of the summation
symbol means that the first item is weighted by 1/2, R(·) is the
real part, x � ln(S/K), and ϕ(u; x) is the characteristic
function of x, and it satisfies the following equation [35, 38]:
ϕ(u; x) � φT(u; x, V1, V2, r, λ, τ), a and b are specific con-
stants that satisfy a≺b, and Wk are the cosine series coeffi-
cients of the call option payoff.

Proof. )e pricing formula under the T forward measure
QT is given by

V(t, x) � P(t, T)E
QT

V(T, y)|Ft( 

� P(t, T) 
∞

− ∞
V(T, y)f(y|x)dy,

(53)

wheref(y|x) is the density function of y given x with re-
spect to QT, y � ln(ST/K), and V(T, y) is the call option
payoff.

According to Fang and Oosterlee [35], f(y | x) decays
fast to zero as y⟶ ±∞, so we can truncate the inte-
gration to make the difference between the true value and
approximation negligible by choosing a specific interval
[a, b], thus its approximation can be given by

V(t, x) ≈ P(t, T) 
b

a
V(T, y)f(y | x)dy. (54)

Since f(y | x) decays fast, we can approximate the
characteristic function ϕ(u; x) on the interval [a, b]:

ϕ(u; x) ≈ 
b

a
e

iuy
f(y | x)dy. (55)

To find an analytical approximation formula forf(y | x),
we can express it with the following Fourier cosine series
expansion:

f(y | x) � 
∞

k�0

′A
k
cos kπ

y − a

b − a
 ,

withAk �
2

b − a


b

a
f(y | x)cos kπ

y − a

b − a
 dy,

(56)

then Ak can be given by

Ak �
2

b − a


b

a
f(y | x)R e

ikπ(y− a/b− a)
 dy

≈
2

b − a
R ϕ

kπ
b − a

; x e
− ikπ(a/b− a)

 ,

(57)

thus the approximated pricing formula can be rewritten by

V(t, x) ≈ P(t, T) 
∞

k�0

′R ϕ
kπ

b − a
; x e

− ikπ(a/b− a)
 Wk,

(58)

where the cosine coefficient Wk is given by

Wk �
2

b − a


b

a
V(T, y)cos kπ

y − a

b − a
 dy. (59)

Since the coefficients decay fast, the summation can be
truncated to obtain that

V(t, x) ≈ P(t, T) 
N− 1

k�0

′R ϕ
kπ

b − a
; x e

− ikπ(a/b− a)
 Wk.

(60)

)e call option payoff is given by

V(T, y) � max ST − K, 0(  � max K e
y

− 1( , 0( , (61)

then Wk can be rewritten by

Wk �
2

b − a


b

a
V(T, y)cos kπ

y − a

b − a
 dy

�
2

b − a
K 

b

0
e

y cos kπ
y − a

b − a
 dy − 

b

0
cos kπ

y − a

b − a
 dy .

(62)

Using the basic integration rules straightforward, we can
obtain that

Wk �
2

b − a
K χk(0, b) − ψk(0, b)( , (63)

where

χk(0, b) � 
b

0
e

y cos kπ
y − a

b − a
 dy

�
1

1 +(kπ/b − a)2
cos(kπ)e

b
− cos −

akπ
b − a

 

+
kπ

b − a
sin(kπ)e

b
− sin −

akπ
b − a

  ,

ψk(0, b) � 
b

0
1 · cos kπ

y − a

b − a
 dy

�

b − a

kπ
sin(kπ) − sin −

akπ
b − a

  , k≻ 0,

b, k � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(64)
)e proof is complete. □
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To make the difference between the true value and
approximation negligible, we need to determine the interval
[a, b] appropriately, and the range of interval [a, b] is de-
termined by [35]

[a, b] � c1 − L

���������

c2


 +

���

c4






, c1 + L

���������

c2


 +

���

c4






 , (65)

where cn(n � 1, . . . , 4) are the n-th cumulant of ln(ST/K)

and L is the truncation parameter. cn can be given by

cn �
zn(ln(ϕ(u)))

zun

u�0
. (66)

Since we cannot obtain the cumulants directly under the
condition that the interest rate follows the Hull–White
process, we use some specific and suitable range for ap-
proximation according to Grzelak et al. [21]:

[a, b] � [0 − L
�
τ

√
, 0 + L

�
τ

√
]. (67)

We use the formulae derived above and set the values of
the parameters to do some numerical analyses. )e pa-
rameters are given in Table 1.

Table 2 shows the numerical results. We use the inte-
gration approach to calculate the semi-closed form prices
obtained by (14), and it takes a large amount of time for
calculation. )e COS method and FFT are much faster than
the integration approach which means that the two ap-
proaches make big improvement in computation speed. )e
numerical results demonstrate that the price differences
between the COS method and semi-closed form prices are
negligible compared to the price differences between FFT
and semi-closed form prices which means that the COS
method shows higher accuracy than FFT.

We compare the error convergence between the COS
method and FFTwith different grid points. We set the semi-
closed form price as the benchmark, the values of the grid
points with N � 2n(6, . . . 10), the strike price K � 80, 100,
and 120, T � 1, and Table 3 shows the result. )e differences
between the semi-closed form price and the prices computed
by applying the COS method are negligible, and the COS
method converges much faster than FFT which means that
the COS method shows higher efficiency than FFT.

We examine the relative differences of the call option
prices with different grid points to compare the COSmethod
and FFT in terms of the stability. We set the value of grid
points N � 2n(n � 15) as the benchmark, grid points with
N � 2n(6, . . . 10), the strike prices K � 80, 100, and 120,
T � 1, and Table 4 shows the result. )e relative differences
computed using the COS method are lower than those
computed using FFT for all the chosen values of grid points,
respectively. It demonstrates that the COS method is more
stable than FFT which means that the COS method shows
higher stability than FFT.

Since the COS method is more accurate, efficient, and
stable than FFT to approximate the option prices, we use it
for approximation to investigate the impact of the param-
eters in the jump intensity process and the interest rate

process and the existence of the jump intensity process on
the call option prices.

Figure 1 illustrates that the change of the mean-reversion
rate κλ has little impact on call option prices, and the change
of the mean-reversion level θλ has important impact on call
option prices. As θλ increases, call option price also in-
creases, and the change of the call option price is an in-
creasing function of θλ. )e reason that this phenomenon
happens is possibly when the mean level of the jump in-
tensity is high and the cost of investing stocks becomes
higher; therefore, the investors tend to buy call options to
lower the cost of their investment which makes the call
option price become higher.

We investigate the impact of the existence of the jump
intensity process on the call option prices, and Figure 2
shows the result. It illustrates that the call option prices with
stochastic jump intensity are higher than the call option
prices with constant jump intensity. )e reason that this
phenomenon happens is possibly when the jump intensity
changes over time, and there is a great opportunity that the
cost of investing stocks becomes higher; therefore, the in-
vestors tend to buy call options to lower the cost of their
investment which makes the call option price become
higher.

We investigate the impact of the parameters in the in-
terest rate process on the call option prices, and Figure 3
shows the result. It illustrates that the change of the mean-
reversion rate δ has little impact on call option prices and the

Table 1: Values of parameters.

Parameter Value Parameter Value
T 1 S 100
κ1 1.5 κ2 0.9
θ1 0.08 θ2 0.1
σ1 0.15 σ2 0.12
V1 0.06 V2 0.1
ρ1 − 0.5 ρ2 − 0.3
κλ 3 ρλ 0.5
θλ 0.3 λ 0.6
δ 0.1 r 0.04
η 0.02 p 0.5
η1 5 ρ2 5
N 1024 L 10

Table 2: Comparisons of European call option prices by applying
the COS method and FFT.

Strike Semi-closed form
price

COS
price

FFT
price

80 29.1910 29.1910 29.2104
85 26.1354 26.1354 26.1695
90 23.3359 23.3359 23.3876
95 20.7865 20.7865 20.8192
100 18.4776 18.4776 18.566
105 16.3968 16.3968 16.4227
110 14.5297 14.5297 14.6222
115 12.8608 12.8608 12.9601
120 11.3742 11.3742 11.3798
Computation time (s) 1575.7674 0.0248 0.0175
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Table 3: Comparisons of error convergence between the COS method and FFT.

K n 6 7 8 9 10

80 COS − 0.2799 − 1.2E − 09 − 7.3E − 10 − 7.3E − 10 − 7.3E − 10
FFT − 10.1215 − 2.2598 0.0265 − 0.0249 − 0.0194

100 COS 0.5234 6.91E − 10 − 2.4E − 10 − 2.4E − 10 − 2.4E − 10
FFT − 14.9982 − 2.9451 − 1.4132 − 0.2262 − 0.0883

120 COS − 0.1211 − 4.1E − 10 3.31E − 10 3.31E − 10 3.31E − 10
FFT − 17.3328 − 1.8551 − 1.2309 − 0.4625 − 0.0056

Table 4: Relative differences of the call option prices computed by applying the COS method and FFT.

K n 6 7 8 9 10

80 COS − 0.2799 − 4.5E − 10 0 0 0
FFT − 10.1215 − 2.2598 0.0266 − 0.0248 − 0.0194

100 COS 0.5234 9.31E − 10 0 0 0
FFT − 14.9982 − 2.9451 − 1.4132 − 0.2261 − 0.0883

120 COS − 0.1211 − 7.4E − 10 0 0 0
FFT − 17.3327 − 1.8550 − 1.2308 − 0.4624 − 0.0055
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Figure 1: )e impact of κλ and θλ on call option prices for T � 1.
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Figure 2: )e impact of the existence of the jump intensity process on call option prices for T � 1.
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change of the volatility η has important impact on call option
prices. As η increases, call option price also increases, and
the change of call option price is an increasing function of η.
)e possible reason that this phenomenon happens is that
greater volatility of the interest rate means a greater op-
portunity of the increase of it. )e interest rate is the op-
portunity cost of the investment in stocks, options, and other
financial products. When the interest rates increase, the cost
of investing stocks becomes higher; therefore, the investors
tend to buy call options to lower the cost of their investment
which makes the call option price become higher. )e in-
vestors can obtain the same profits by investing in the call
options instead of investing in the stocks.

5. Conclusion

We addressed European option pricing under a double
stochastic volatility model with stochastic interest rates and
double exponential jumps with stochastic intensity in this
article.

In theoretical part, we used Radon–Nikodym derivatives
to derive the semi-closed form valuation formula with the
expression of the discounted characteristic function which
means we only need to derive the formula for the discounted
characteristic function for obtaining the semi-closed form
valuation formula. We used the results given by Duffie et al.
[36] to derive the discounted characteristic function.

In the numerical analysis part, we derived the ap-
proximated pricing formula by applying the COS method
and FFT and compared the calculation speed, the accu-
racy, the efficiency, and the stability between the COS
method and FFT. )e numerical results demonstrate that
it takes a large amount of time to calculate the semi-closed
form prices using the integration approach. Both the COS
method and FFT takes less time, and they improve in
computation speed. )e price differences between the

COS method and semi-closed form prices are negligible
compared to the price differences between FFT and semi-
closed form prices which means that the COS method
shows higher accuracy than FFT. We compare the COS
method and FFT in terms of the convergence, and it
demonstrates that the COS method shows higher effi-
ciency than FFT. We examined the relative differences of
call option prices with different grid points to compare the
COS method and FFT in terms of the stability. )e result
demonstrates that the COS method shows higher stability
than FFT. Because of the higher accuracy, efficiency, and
stability of the COS method, we use it to investigate the
impact of the parameters in the jump intensity process on
call option prices. )e numerical results illustrate that the
change of the mean-reversion rate has little impact on call
option prices and the change of the mean-reversion level
has important impact on call option prices. We examine
the impact of the existence of the jump intensity on the call
option prices with the COS method, and it illustrates that
the call option prices with stochastic jump intensity are
higher than the call option prices with constant jump
intensity. We also investigate the impact of the parameters
in the interest rate process on the call option prices with
the COS method. It illustrates that the change of the
mean-reversion rate has little impact on call option prices,
and the change of the volatility has important impact on
call option prices.

Appendix

A. Proof of Lemma 1

In this appendix, we derive Lemma 1, using the method
initially presented by Brigo and Mercurio [39].

We can get the following equation by applying stochastic
integration by parts:
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Figure 3: )e impact of δ and η on call option prices for T � 1.
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T

t
rudu � 

T

t
(T − u)dru +(T − t)rt. (A.1)

According to (21), the integral in the right-hand side of
(A.1) can be rewritten as


T

t
(T − u)dru � − δ

T

t
(T − u)rudu + η

T

t
(T − u)dW

r
u.

(A.2)
According to (20) and (21), we have

ru � rte
− δ(u− t)

+ η
u

t
e

− δ(u− s)dW
r
s. (A.3)

)erefore, the first part in the right-hand side of (A.2)
can be expressed as

− δ
T

t
(T − u)rudu � − δrt 

T

t
(T − u)e

− δ(u− t)du

− δη
T

t
(T − u) 

u

t
e

− δ(u− s)dW
r
sdu.

(A.4)

)e first part in the right-hand side of (A.4) can be
expressed by the following equation using simple
calculation:

− δrt 
T

t
(T − u)e

− δ(u− t)du � − (T − t)rt +
1 − e− δ(T− t)

δ
rt.

(A.5)

)e second part in the right-hand side of (A.4) can be
expressed by the following equation:

− δη
T

t
(T − u) 

u

t
e

− δ(u− s)dW
r
sdu

� − δη
T

t


u

t
e
δsdW

r
s du 

u

t
(T − v)e

− δvdv 

� − δη 
T

t
e
δudW

r
u  

T

t
(T − v)e

− δvdv 

− 
T

t


u

t
(T − v)e

− δvdv e
δudW

r
u

� − δη
T

t


T

u
(T − v)e

− δvdv e
δudW

r
u

� − η
T

t
(T − u) +

e− δ(T− u) − 1
δ

 dW
r
u.

(A.6)

)erefore, we can obtain that


T

t
(T − u)dru � − (T − t)rt

+
1 − e− δ(T− t)( 

δ
rt

+
η
δ


T

t
1 − e

− δ(T− u)
 dW

r
u.

(A.7)

Substituting (A.7) into (A.1), we can obtain (30);
therefore, the proof is complete.
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