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,is paper presents a novel method of dynamic modeling and design optimization integrated with dynamics for parallel robot
manipulators. Firstly, a computationally efficient modeling method, the discrete time transfer matrix method (DT-TMM), is
proposed to establish the dynamic model of a 3-PRR planar parallel manipulator (PPM) for the first time. ,e numerical
simulations are performed with both the proposed DT-TMMdynamic modeling and the ADAMSmodeling.,e applicability and
effectiveness of DT-TMM in parallel manipulators are verified by comparing the numerical results. Secondly, the design pa-
rameters of the 3-PRR parallel manipulator are optimized using the kinematic performance indices, such as global workspace
conditioning index (GWCI), global condition index (GCI), and global gradient index (GGI). Finally, a dynamic performance
index, namely, driving force index (DFI), is proposed based on the established dynamic model.,e described motion trajectory of
the moving platform is placed into the optimized workspace and the initial position is determined to finalize the end-effector
trajectory of the parallel manipulator by the further optimization with the integrated kinematic and dynamic performance indices.
,e novelty of this work includes (1) developing a new dynamic model method with high computation efficiency for parallel robot
manipulators using DT-TMM and (2) proposing a new dynamic performance index and integrating the dynamic index into the
motion and design optimization of parallel robot manipulators.

1. Introduction

Parallel manipulators with closed-loop mechanical archi-
tectures have advantages over serial-link manipulators with
open-loop mechanical architectures, such as high precision,
large load capacity, fast speed, and high acceleration.
,erefore, various types of parallel manipulators have been
developed to substitute the serial ones for the precise ma-
nipulations at high speed and acceleration. Parallel ma-
nipulators have been applied more and more in aerospace
[1], precision manufacturing [2], structural engineering [3],
surgical robot [4], and other fields.

However, parallel manipulators also have disadvantages
compared with serial manipulators. ,e first primary

disadvantage is that parallel manipulators have very complex
kinematic equations, which makes dynamic modeling be-
come much more challenging [5]. Compared with the sig-
nificant efforts and achievements in the kinematics over the
past decades, much fewer research efforts were paid toward
the dynamics and control of parallel manipulators due to the
complicated calculations [6, 7]. To promote the applications
of parallel manipulators, some fundamental problems must
be addressed. One major issue is the computational efficiency,
especially for the dynamics and control of parallel manipu-
lators considering the flexibility of their components [8–10].

DT-TMM is a recently developed method for the dy-
namic modeling of multibody systems, and it is featured
with high computation efficiency [11–13]. ,e DT-TMM
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method has been applied to the dynamic modeling of
multibody systems, such as multibarrel rocket [14], self-
propelled gun [15], naval gun [16], and serial manipulators
with flexible links [17–19]. One major contribution of this
work is to extend the research efforts in the DT-TMM to the
dynamic modeling of the 3-PRR planar parallel manipulator
and verify its applicability. ,e proposed methodology in
this work can be further extended to the dynamic modeling
of other types of planar parallel manipulators and pave the
way for the dynamic design and optimization of the me-
chanical structure.

,e second primary disadvantage is a limited workspace
[20] and kinematic singularity inside the complete work-
space due to the additional constraints imposed by the
closed kinematic chains of these mechanisms [21, 22].
,erefore, significant research efforts have been paid to the
structure and motion optimization of parallel manipulators
using kinematic performance indexes, such as global per-
formance index [23], workspace [24], global stiffness per-
formance [25], and manipulability ellipsoid [26]. To
optimize the dynamic design of the planar parallel robot, the
maximum driving force is proposed and defined as a dy-
namic index in this work. By computing the driving force of
the parallel manipulator in the process of movement, the
maximum driving force required is minimized, when the
center position of the moving platform tracks the described
trajectory with the desirable kinematic performance.

In this paper, DT-TMM is employed to establish the
dynamics model of 3-PRR PPM, and it is verified with the
numerical simulations using the virtual work principle and
ADAMS. ,e maximum driving force is adopted as the
dynamic performance index for the design and motion
optimization of the PPM, combined with Global Workspace
Conditioning Index (GWCI), Global Condition Index
(GCI), and Global Gradient Index (GGI) [27]. ,e single-
objective andmultiobjective analysis methods are performed
to achieve the optimized structure and motion trajectory of
the PPM [28, 29]. Figure 1 is presented to illustrate the
methodology for the design and optimization of the 3-PRR
planar parallel manipulator by integrated kinematics and
dynamics. ,e twofold contribution of this work is (1)
developing a computationally efficient dynamic modeling
method for a parallel manipulator by employing DT-TMM
and (2) proposing a new dynamic performance index to
conduct the dynamic design and motion optimization of
parallel robot manipulators with the developed dynamic
modeling method. Although the developed dynamic mod-
eling method and optimization strategies are demonstrated
with the 3-PRR parallel robot manipulator in this work, it is
feasible to extend the developed method and strategies to
other types of parallel robot manipulators.

2. Inverse Kinematics Modeling

2.1. Configuration and Coordinate System of the Planar
Manipulator. ,e three degrees of freedom of parallel
manipulator presented as a case study in this paper is
composed of three links, each of which consists of a
translational joint and two rotational joints to form a PRR

motion structure. Each slider moves along a linear guideway
and is driven by a DC motor through the ball screw mech-
anism. ,e moving platform and the three sliders are con-
nected by three intermediate links. ,e two ends of the
intermediate links are composed of nondriving revolute
joints. ,e moving platform is an equilateral triangle corre-
sponding to the end-effector, and its motion is determined by
the forces transferred from the three intermediate links. ,e
entire moving platform moves along the plane of the X-axis
and Y-axis plane and rotates at an angle around the Z-axis of
the plane [30].

,e rectangular coordinate system XOY is at the center of
the static platform (Figure 2).,e origin of each slider is fixed
at Ai, i� 1, 2, 3. ,e orientation of sliders is at angles αi

concerning the base frame XOY, and [α1 α2 α3 ] �

[30° 150° 270°] in this case study. ,e symbols ρi represents
the distance of the slider from Ai. Bi is the joint between the
slider and the intermediate links. ,e angles between the
intermediate links and the X− axis are indicated as βi. Ci

connects the intermediate link and the moving platform. ,e
position of the platform at its mass center P is defined as
(Xp, Yp) while φp denotes the orientation angle of the
platform and the X-axis.

2.2. Inverse Kinematics. ,e Jacobian matrix of the ma-
nipulator is the mapping between the input joint velocity
vector and the output velocity vector of the moving plat-
form. ,e Jacobian matrix of the manipulator can be ob-
tained through inverse kinematics [31]. For the parallel
manipulator with three same symmetric kinematic chains,
only one of three chains is illustrated for establishing the
equation, and the equations of the other two chains can be
expressed based on the geometric symmetry (Figure 3).

,e close loop geometry equation of each chain can be
expressed as

AiBi

���→
+ BiCi

���→
+ CiP

��→
+ PO

��→
+ OAi

���→
� 0. (1)

,e vector in equation (1) is projected onto the X and Y-
axis:

ρi cos αi + L2 cos βi + L3 cos ci � Xp − XAi
,

ρi sin αi + L2 sin βi + L3 sin ci � Yp − YAi
,

⎧⎨

⎩ (2)

where (XAi
, YAi

) are the positions of crossing point Ai, and
L2 is the length of the intermediate link, αi � (4πi − 3π/6),
ci � αi + φp.

Organizing equation to eliminate βi, we can get

ρi1 �
− b1 +

���������

b21 − 4a1c1



2a1
,

ρi2 �
− b1 −

���������

b21 − 4a1c1



2a1
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where
a1 � 1, b1 � − 2Mcosαi − 2Nsinαi, c1 � M2 + N2 − L2

2, M �

Xp − XAi
− L3cosci,N � Yp − YAi

− L3sinci
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Figure 2: Configuration and coordinate system of the planar manipulator.
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Figure 1: Schematic diagram for the design and optimization with integrated dynamics of a parallel robot manipulator.
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Organizing equation to eliminate ρi, we can get

βi1 � 2 arctan
− b2 +

���������

b22 − 4a2c2



2a2
,

βi2 � 2 arctan
− b2 −

���������

b22 − 4a2c2



2a2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where a2 � M sin αi − N cos αi + L2 sin αi, b2 � 2L2 cos αi,

c2 � M sin αi − N cos αi − L2 sin αi, M � Xp − XAi
− L3

cos ci, N � Yp − YAi
− L3 sin ci

Taking the derivative of equation (2), and getting rid of
the _βi, we have

_XP cos βi + _YP sin βi + _φpL3 sin ci cos βi − cos ci sin βi 

� _ρi cos αi cos βi + sin αi sin βi( .

(5)

Simplifying equation (5), it can be written as

A _X � B _ρ, (6)

A � L2

cos β1 sin β1 L3 sin
π
6

+ φp − β1 

cos β2 sin β2 L3 sin
5π
6

+ φp − β2 

cos β3 sin β3 L3 sin
3π
2

+ φp − β3 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

B � L2

cos β1 −
π
6

  0 0

0 cos β2 −
5π
6

  0

0 0 cos β3 −
3π
2

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

_X � _Xp
_Yp _φp 

T
,

_ρ � _ρ1 _ρ2 _ρ3( 
T
.

(8)

In equation (6), A is the output Jacobian matrix, B is the
input Jacobianmatrix, which can bewritten in a uniform form as

_X � J _ρ, (9)

where J � A− 1B. J is the velocity Jacobian transfer matrix of
a 3-PRR planar parallel manipulator [32, 33].

3. Dynamics Modeling with DT-TMM

In the current literature, the dynamics equations of robot
manipulators were usually established with traditional dy-
namic modeling methods, such as the Lagrange equation,
Newton-Euler equation, Kane method, and the virtual work
principle. However, the size of the global dynamic equations
increases with the degrees of freedom and the number of
divided subparts of each component. In this paper, DT-TMM
dynamics is employed to establish the dynamic equations of
the 3-PRR PPM to increase computation efficiency. To verify
the applicability and effectiveness of the proposed DT-TMM
for the dynamic modeling of parallel manipulators, numerical
simulations are performed with the DT-TMM, the virtual
work principle, and the ADMAS modeling methods, re-
spectively, and numerical results are compared with each
other.

3.1. Dynamic Modeling with Virtual Work Principle.
Implementing the virtual work principle on the 3-PRR
parallel planar manipulator, we have

δ ρ→T
Fa + δX

→T

pFp + δ ρ→T
Fs + 

3

i�1
δX
→T

i Fi � 0, (10)

where δX
→

p, δ ρ
→

� JpδX
→

p, and δX
→

i � Jβi
δX
→

p are the virtual
displacement of X

→
p, ρ→, X

→
i, respectively. Fa �

(Fa1, Fa2, Fa3) represents the forces applied on the slider,
and Fp � (− mp €xp, − mp €yp, − Ip€φp)T represents the inertia
force of the end effector, in which mp and Ip are the mass
and the moment of inertia of the platform, respectively. Fs �

(− ms1€ρ1, − ms2€ρ2, − ms3€ρ3)
T is the inertia force of the sliders,

where msi is the mass of the ith slider, Fi � (− mi €xi,

− mi €yi, − Ii
€βi)

T is the inertia force of the ith link, and mi and
Ii are the mass and the moment of inertia of the ith link.
Substituting the virtual displacement into equation (10), the
dynamics equation can be expressed as

Fa � − Fs − J
T
p 

− 1
Fp + 

3

i�1
J

T
βiFi

⎛⎝ ⎞⎠. (11)

3.2. DT-TMM. In this section, the DT-TMM is employed to
establish the multibody dynamics model of the 3-PRR PPM.
,e dynamic modeling based on the DT-TMM includes the
following major steps. (1) ,e PPM is divided into com-
ponents/elements. (2) ,e dynamics of each component/
element is derived through the Newton-Euler equation, and
the kinematics of each component/element is established
based on the inverse kinematics of the PPM. (3) ,e ki-
nematics and dynamics of each component/element are
linearized to obtain its transfer matrix based on the defined
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Figure 3: Schematic diagram of the close loop equation.
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state vector at the inboard and outboard. (4) ,e dynamic
model of the PPM is formulated by assembling the dynamics
of each component/element through connecting the com-
ponent/element transfer matrix [34].

3.2.1. State Vector and Transfer Matrices. In the DT-TMM,
the state vector needs to be defined. Since the 3-PRR PPM is
a chain system with planar motion, the state vector of the
connection point between any rigid body and hinge is
defined as

z � x, y, θ, Mz, qx, qy, 1 
T
, (12)

where x and y are the position coordinates of the con-
nection point for the global inertial coordinate system, θ is
the orientation angle of the body, Mz, qx, qy are the
corresponding internal torques and internal forces in the
same reference system, respectively.

,e transfer matrix of a single element can be obtained
by linearizing the dynamic equation of the element with the
numerical integration method:

zi+1 tk(  � Ui tk( zi tk( . (13)

In equation (13), the matrix Ui(tk) (i� 1, 2, . . ., n) is the
transfer matrix of the ith element which expresses the rela-
tionship between the state vectors of its output end zi+1 and
input end zi at time instant tk.,e size of the transfer matrices
is always (7× 7) for any multi-rigid-body systems moving in
the plane.

Connecting all the components of the system, compo-
nent by component, the whole system can be assembled and
calculated as

zn � Usysz1,

Usys � Un, Un− 1 · · · U2U1,
(14)

where the subscript “n” denotes the total number of the
elements of a chain multi-rigid-flexible-body system.

3.2.2. Transfer Matrices of Typical Elements. ,e 3-PRR
PPM can be decomposed into three sliders, three inter-
mediate links, one moving platform, and six revolute
joints (Figure 4). With the inverse kinematics of the
manipulator and the Newton-Euler equation, we can
derive the transfer matrix for each decomposed compo-
nent of the 3-PRR PPM.

If the size of the rigid body slider is ignored (Figure 5),
the slider element can be treated as a point mass ms. We have
xO � xI, yO � yI, θO � θI, MO � MI.

Based on the Newton-Euler equation, the force equa-
tions can be given as

qx,I − qx,O � − ms€ρx, qy,I − qy,O � − ms€ρy. (15)

To linearize all the terms, the transfer matrix of the slider
is expressed as

Uslider �

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 u57

0 0 0 0 0 1 u67

0 0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where u57 � ms€ρx, u67 � ms€ρy.
Each intermediate linkage used in this paper is assumed

to be a rigid body (Figure 6), and the kinematic relation
between its input and output is given as xO � xI + l cos β,
yO � yI + l sin β, θO � θI. ,e moment balance regarding
the inboard point yields

MO � MI − l sin βqx,I + l cos βqy,I +
1
2
mll cos β€yI

−
1
2
mll sin β€xI + Ji

€β + ml €xcl sin β − ml €ycl cos β,

(17)
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Figure 4: 3-PRR DT-TMM model.
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Figure 5: ,e slider model.
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where β is the rotation angle of the linkage, ml is the mass of
the linkage, l is the length of the linkage, €xI and €yI are the
input acceleration components, €xc and €yc are the acceler-
ation components of the linkage mass center, Ji is the inertia
moment of the linkage.

,e force equations of an intermediate linkage can be
given based on the Newton-Euler equation:

qx,I − qx,O � ml €xc,

qy,I − qy,O � ml €yc.
(18)

Linearizing the kinematic and the dynamic equations
(the moment and force equations), the transfer matrix of
each intermediate link is expressed as

Ulink �

1 0 0 0 0 0 u17

0 1 0 0 0 0 u27

0 0 1 0 0 0 0

0 0 0 1 u45 u46 u47

0 0 0 0 1 0 u57

0 0 0 0 0 1 u67

0 0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, (19)

where u17 � l cos β, u27 � l sin β, u45 � − u27, u46 � u17,
u47 � (1/2)mll cos β€yI − (1/2)mll sin β€xI + Ji

€β+ ml €xcl sin β−

ml €ycl cos β, u57 � − ml €xc, u67 � − ml €yc.
A hinge connects two objects (Figure 7), and it allows to

rotate freely and is a passive joint. Its input and output
parameters are the same, then the transfer matrix is:

Uhinge �

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

3.2.3. Transfer Matrices of 3-PRR PPM. ,e 3-PRR PPM can
be treated as a branched system in which each kinematic
chain is a subchain system and the moving platform is a rigid
body with three inboards at tips 4, 5, 6, and one outboard at
its mass center P (Figure 8). ,e transfer matrix of the ith
kinematic chain is given as

Ui � Uhinge1i
Ulinki

Uhinge2i
Uslideri

, i � 1, 2, 3, (21)

where Uslideri
is the transfer matrix of the slider which is

point mass, Uhinge1i
and Uhinge2i

are the smooth pin hinges
connected at both tips of the rigid linkages and Ulinki

is the
rigid beam transfer matrix represents the ith linkage. ,e
state vectors for each chain system is expressed as

z
→

1, 2, 3 � x y 0 0 qx qy 1 1,2,3,

z
→

4, 5, 6 � x y 0 0 qx qy 1 4,5,6.
(22)

So the overall transfer equation for each chain system is

z
→

i + 3 � Ui z
→

i , i � 1, 2, 3. (23)

,e dynamic equations of the platform can be written
based on the Newton-Euler equation as

 Fx � €xpmp,

 Fy � €ypmp,

 M � €φpIp.

(24)

Using the kinematic equations, equation (24) can be
combined and rewritten in a matrix form as

1 0 1 0 1 0

0 1 0 1 0 11

− dy1 dx1 − dy2 dx2 − dy3 dx3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

qx4

qy4

qx5

qy5

qx6

qy6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

€xpmp

€ypmp

φpIp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(25)
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Figure 7: ,e hinge model.
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where dxi � − (
�
3

√
/3)lp cos ci, dyi � (

�
3

√
/3)lp sin ci,

c1 c2 c3  � 210 − 30 90 , and qxi, qyi, i � 1, 2, 3 are
internal forces at outboard tips of linkages.

Equation (25) gives three equations to solve six unknowns.
To solve the dynamic equations, the relations of internal forces
qxi and qyi are required to be established. From the transfer
equation of each subsystem (equation (23)), we have

x

y

0

0

qx

qy

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i+3

�

u11 u12 u13 u14 u15 u16 u17

u21 u22 u23 u24 u25 u26 u27

u31 u32 u33 u34 u35 u36 u37

u41 u42 u43 u44 u45 u46 u47

u51 u52 u53 u54 u55 u56 u57

u61 u62 u63 u64 u65 u66 u67

0 0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

x

y

0

0

qx

qy

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

. (26)

,e fourth row of the transfer matrix provides the
moment balance relations so that the internal forces along
the y-direction at 1, 2, 3 can be written as the functions of the
internal forces along x-direction as

qyi � −
1

u46,i

u41 u42 u43 i

x

y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

−
u45,i

u46,i

qxi, i � 1, 2, 3.

(27)

Inserting equation (27) into the fifth and sixth rows in
equation (26), qx and qy at point i+ 3 where i� 1, 2, 3 can be
expressed only as the functions of inboard internal forces qxi

as
qx

qy

⎡⎣ ⎤⎦

i+3

�
u51 u52 u53 u54 u55 u56 u57

u61 u62 u63 u64 u65 u66 u67
 

i

qx

qy qx( 
⎡⎣ ⎤⎦

i

,

(28)

where qy(qx) represents that the qy is a function of qx at the
inboard i. Substituting equation (28) into equation (25), we
can get

1 0 1 0 1 0

0 1 0 1 0 1

− dy1 dx1 − dy2 dx2 − dy3 dx3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

qy4 qx1( 

qy4 qx1( 

qx5 qx2( 

qy5 qx2( 

qx6 qx3( 

qy6 qx3( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

€xpmp

€ypmp

€φpIp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(29)

Equation (25) has been changed to equation (29) that only
contains three unknowns. ,e actuated forces on x-direction
applied on sliders can be obtained from equation (29), and the
forces along the y-direction can be calculated from equation (27).

3.3. Dynamic Simulation and Verification. To verify the
dynamic modeling using the DT-TMM, numerical

simulations are conducted on the 3-PRR PPM and com-
pared with the results of the dynamic modeling using the
virtual work principle and ADAMS. In all simulations, the
orientation angle of the moving platform remains un-
changed, with the setting φp � 45°. ,e center position of
themoving platformmoves periodically along the circle with
radius 2 cm, and the moving platform trajectory is defined as

Xp � Px0 + 2 cos(πt ), 0≤ t≤ 4 s,

Yp � Py0 + 2 sin(πt), 0≤ t≤ 4 s,
(30)

where Px0 � 0 and Py0 � 0 are the initial position coordinate
at themass center of the end effector.,e trajectory is set in a
safe area such that the manipulator works without any
singularity in two periods (4 s).,e dynamics parameters for
the 3-PRR PPM are listed in Table 1.

In the DT-TMMmethod, since the trajectory at the mass
center of the platform as well as the kinematic equations of
all three chains are given in the previous instant. ,e po-
sitions and accelerations of platform xp, yp, €xp, €yp, €φp and
positions of sliders are known. From equation (29), the
actuated forces could be solved. During the ADAMS sim-
ulation (Figure 9), the kinematics parameters of the slider
are obtained by giving the trajectory of the center of the
moving platform. Taking the spline curve of slider dis-
placement as the input of the moving drive, the driving
force required by a parallel manipulator can be obtained
(Figure 10). ,e simulation has been carried out with time
interval ∆T= 0.01 s. ,e root mean square error (RMSE) is
used to evaluate the driving forces of different methods.
Compared with the two methods of DT-TMM and ADAMS
simulation, the RMSE value for all three driving forces is
only 0.0018, the calculated order of magnitude is smaller,
which means the two methods are basically identical. ,e
RMSE of the DT-TMMmodel and the virtual work principle
model is 0, which means that the results are completely
consistent (Table 2). ,e numerical simulations and com-
parison verify the effectiveness of the DT-TMM model for
the dynamic modeling of the 3-PRR PPM. ,e driving force
of the manipulator increases with the increase of the speed
and acceleration of the end platform. In the case of the same
path, it is necessary to provide more driving force to realize
the high-speed and high-acceleration characteristics of the
manipulator. ,e size of the driving force depends on the
motor and the application. For example, the rated torque of
the motor selected for the test bench is 0.2Nm and the screw
pitch of the lead screw is 2mm.,en, the driving force of the
motor is around 628.3N with the consideration of the
gearbox. As shown in Figure 11, in order to achieve a circle
with the same radius of 2 cm, the smaller the rotation cycle of
the platform, the greater the motor driving force required.
,is means that testing a faster trajectory requires larger
driving force.,erefore, with the selected testing motors, the
shortest rotation cycle of the moving platform is 0.01 second
as indicated in Figure 11.

One main contribution of this part is to extend the DT-
TMM into the dynamicmodeling of PPMs and to compare it
with the traditional calculation methods and the ADAMS
modeling. ,e DT-TMM method avoids the large size of
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global dynamic equations by decomposing the global dy-
namics to the component dynamics and transferring the
component dynamics from one component to its neigh-
boring components. With the DT-TMM, the matrix size of
the multibody system dynamic equations does not increase
with the degrees of freedom of the multibody systems and
hence significantly reduces the computation cost. ,is
method provides a novel method for the dynamics study of
PPMs and facilitates the following structure parameter and
motion optimization of the PPM, dynamic analysis, and
control of parallel robotic manipulators etc. because of its
high computation efficiency.

4. Structure Parameter Optimization

,e kinematic performance of a parallel robot manipulator
heavily depends on its structure geometry parameters.
,erefore, it is desirable to optimize the structure geometry
parameters based on selected performance indices for each
application. Various kinematic performance indices were
proposed for the optimization of structural parameters for
parallel manipulators in the literature. In this section, we
briefly introduce how to define and analyze the workspace
and singularity since both of them are the most important
properties that are usually employed to define various ki-
nematic performance indices. ,en we select and define the
kinematic performance indices of the presented PPM. Fi-
nally, we conduct the structure parameter optimization with
single and multiple objectives.

4.1.Workspace. According to whether the orientation angle
φp changes or not, the workspace of planar parallel ma-
nipulators is divided into the reachable workspace and
constant orientation workspace [35]. Reachable workspace is
the set of all workspaces that can be reached by the
mechanism when the feasible orientation angle is taken.
Constant orientation workspace refers to the workspace
accessible to the center position of the moving platform
when the orientation φp is a constant value, which is a subset
of reachable workspace. In order to reduce the angle error
caused by the rotation of the moving platform, the constant
orientation workspace is considered in the design.

In the process of solving the workspace, the analytic
method and the numerical method are generally adopted. ,e
analytical method is largely dependent on the research results
of the positional solution of the mechanism. It mainly employs
various geometric methods. For example the Envelop Surface
method takes each branch chain as a single open chain, then
finds its respective envelope surface, and gets the reachable
working space by intersecting the envelope surface of each

branch chain [36]. ,e solving characteristic of geometric
methods is to avoid complex mathematical operations and
draw the workspace area directly through the software, but it is
not accurate enough in the actual analysis. Numerical methods
are widely used in the search process, including the Jacobian
matrix method, limit boundary search method, network
method, region search method, etc. ,is paper uses the region
search method to solve the workspace. ,e region search
method uses the kinematic inverse solution equation to de-
termine whether there are real numbers as the judgment
conditions [37, 38].

If the quadratic function of equations (3) and (4) obtains
a real solution, then the driving distance ρi and the link angle
βi obtain a real solution, and the positional region corre-
sponding to the real solution of ρi and βi is the reachable
workspace of the 3-PRR parallel positioning platform.
,erefore, the reachable workspace of the 3-PRR parallel
positioning platform can be drawn based on the discrimi-
nant formula Δ1 � b21 − 4a1c1 ≥ 0 and Δ2 � b22 − 4a2c2 ≥ 0
[39, 40]. ,e collection of workspaces is given as

(X, Y) |Δ1 � b
2
1 − 4a1c1 ≥ 0 andΔ2 � b

2
2 − 4a2c2 ≥ 0 ,

(31)

where (X, Y) is the coordinate of the workspace, Δ1 is the
discriminant of equation (4) after eliminating βi, and Δ2 is
the discriminant of equation (3) after eliminating ρi.

4.2. Singular Type. At singular configurations, the perfor-
mance of the robot mechanismwill deteriorate or even become
uncontrollable, which is usually manifested as the locked joint
or the loss of the degree of freedom at the end of the mech-
anism platform [41]. Whether the mechanism is at a singular
configuration can be determined by whether the velocity Ja-
cobian matrix of the mechanism is a singular matrix.
According to the inverse kinematics (equation (6)), the input
and output velocity Jacobian matrix can be obtained A _X � B _ρ
or _X � J _ρ. ,e analysis of each singular classification of the 3-
PRR PPM is presented as follows [42–44]:

(1) ,e first singularity: When matrix B is singular, the
mechanism suddenly loses one or more degrees of
freedom. By calculating the determinant of equation
(8), it can be obtained that the singular case of the
mechanism is β1 � − (π/3) or (2π/3), β2 � (π/3) or
(4π/3), β3 � π or 2π. In other words, when at least
one link is perpendicular to the linear guideway, the
mechanism appears singular. If the three links are
perpendicular to the linear guideway, themechanism
is at the critical point of topological transformation.
,erefore, when at least one or at most two links are
perpendicular to the linear guideway (Figure 12), the
end of the mechanism reaches the boundary of the
workspace, which belongs to boundary singularity.

(2) ,e second singularity: When matrix A is singular,
even if the drive joint is locked, the end of the
mechanism still has degrees of freedom. By calcu-
lating the determinant of equation (7), there are
three kinds of singular situations (Figure 13).

Table 1: Parameters of the 3-PRR PPM.

Symbols Unit Parameters
L1 � 10

�
3

√
(cm) ,e distance from the origin to A

L2 � 8 (cm) Length of the intermediate link
L3 � (10

�
3

√
/3) (cm) ,e distance from the origin to C

φp � 45 (deg) ,e orientation of the platform
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Case 1. Two of the three links are collinear and the angle of
the other link is βi � φp + (4πi − 3π/6)∓kπ.

Case 2. All three links are parallel.

Case 3. ,e angles of the three links meet at the same time in
the case of βi � φp + (4πi − 3π/6)∓kπ, that is, the extension
lines of the three links meet at one point.

(3) ,e third singularity: When the first and second
kinds of singularities occur simultaneously in
the mechanism, that is, when the matrix J is
singular, the distribution of the determinant of
the Jacobian matrix J can be plotted through the
region search method, so as to obtain the dis-
tribution of the nonsingular workspace of the
mechanism.

,rough the analysis of the above three singular types,
we can define the set of singular occurrence as

βi

 (det(B) � 0 and det(A)≠ 0)‖(det(A)

� 0 and det(B)≠ 0)‖(det(J) � 0)}.
(32)

Figure 9: ,e ADAMS model of the manipulator.
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F2 virtual work
F3 virtual work

Figure 10: Compare the driving forces of the different methods.

Table 2: ,e root mean square error between the difference
methods.

Methods F1 F2 F3
DT-TMM and ADAMS 0.0018 0.0018 0.0018
DT-TMM and virtual work 0 0 0
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4.3. Parameter Design. ,e 3-PRR planar parallel manipu-
lator chooses a symmetrical configuration; that is, the center
position of the moving platform is located at the origin of the
coordinate system. Besides, the relevant parameters of the
static platform of the planar parallel manipulator are fixed,
as can be seen from Figure 2. ,e static side length is 30 cm,
the available guideway L12 is 10 cm, and the distance L11
from the center point O is 3 cm. We assume that the given
dimensions of the mechanical structure are the side length of
the static platform, the position and the orientation angle of
the linear guideway. ,e parameters to be optimized are the
length of the link L2, the size of the moving platform L3, and
the orientation φp of the moving platform. ,erefore, this
paper mainly studies the influence of variables L2, L3, and φp

on the kinematic performance of the 3-PRR PPM mecha-
nism, and the design variables are chosen as

X � L2, L3,φp . (33)

Considering that the moving platform must be smaller
than the static platform, and not too small to affect the
rigidity of the moving platform, L3 is limited to [1.5 cm,
6.5 cm]. Since the position of the slide table is 3 cm away
from the origin and the stroke of the slide track is 10 cm, the
size of L2 is limited to [3 cm, 13 cm]. When the orientation
φp is 0, the mechanism is in the third case of the second type
of singularity (Figure 13), so the orientation φp must be
greater than 0°. To avoid the intersection between the link
and the moving platform, the orientation within 90° should
be studied, so φp is limited to [5°, 85°]. Besides, to meet the
requirements of the above single parameters, the parallel
manipulator must not be located at singular configurations
for the optimization.

4.4. Performance Indices. ,e kinematic performance in-
dexes of the robot include isotropy of the Jacobian matrix,
speed and bearing capacity, stiffness, accuracy, workspace
size, redundancy, and so on. In this paper, we are mainly
concerned with integrating the kinematic into the

optimization process by using the major kinematic per-
formance indices: Global Workspace Conditioning Index
(GWCI), Global Condition Index (GCI), and Global Gra-
dient Index (GGI) as an illustration example to optimize the
size parameters of the mechanism [45]. ,rough the single
analysis and comprehensive analysis of these indicators, the
optimal size parameters are achieved for the presented PPM.

4.4.1. Global Workspace Conditioning Index (GWCI).
,e size of the machine workspace represents the robot’s
range of activity, which is an important kinematic index to
measure the robot’s working ability. ,e workspace of the
robot is defined as the set of all positions that can be reached
by the end-effector under the limitation of structure. It is not
possible to judge whether the work ability is good or bad
only by the value of accessible workspace [46].,erefore, the
global workspace condition index (GWCI) is introduced

GWCI �
J

S
ds

ΔxΔy,
(34)

where Δx,Δy are the difference between the upper and
lower boundaries of X and Y of the selected region (SR)
according to the requirements which must contain all
workspaces. Δx, Δy and SR are marked in Figure 14. S is the
workspace calculated by equation (31). ,e range of GWCI
is 0 to 1.,e larger the GWCI value, the larger the workspace
available and the stronger the working ability of the parallel
planar robot. ,erefore, GWCI must be maximized in the
optimal design of the manipulator. Figure 14 shows the SR
and Workspace for L2 � 8 cm, L3 � (10

�
3

√
/3) cm, and

φp � 45°, then GWCI� S/SR � 0.0918 for the parameters.
Figure 15 shows the relationship between design variables
and GWCI.

4.4.2. Global Condition Index (GCI). Global Condition
Index (GCI) is the reciprocal of condition number average
throughout the workspace, and it can reflect the size of the
institution of sensitivity in the working space of the average
conditions [47]. To improve the sensitivity of planar parallel
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Figure 11: ,e relationship between the platform’s motion period
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robot moving platform, and make it have good isotropic in
the workspace, GCI is chosen as the optimization index as
[48]

GCI �
J

S
(1/k(J))ds

J
S
ds,

(35)

where k(J) is the local condition number of the Jacobian
matrix. In the design of the robot mechanism, the Jacobian
matrix of the mechanism should be as small as possible. In
order to study the distribution of Jacobian condition number
in the whole workspace in a controllable scope, we can take
the reciprocal of condition number as an evaluation index,
then the scope of GCI is 0 to 1. ,e larger the GCI is, the
better the maneuverability and sensitivity of the parallel
robot become. Figure 16 shows the distribution of the re-
ciprocal condition number 1/k(J) of the Jacobian matrix for
L2 � 8 cm, L3 � (10

�
3

√
/3) cm, and φp � 45°, then GCI�

0.0610 is the integral of 1/k(J) in the entire workspace
divided by the workspace area. Figure 17 shows the rela-
tionship between the design variables and GCI.

4.4.3. Global Gradient Index (GGI). Global Gradient Index
(GGI) is used to measure the uniformity of kinematics sen-
sitivity. If the Jacobi condition number index of adjacent points
drops sharply, these configuration parameters should not be
taken [49]. To ensure consistency in the sensitivity of the
workspace, the gradient value should be as small as possible.

GGI � ∇(GCI) � maxS

∇1
k(J)

�������

�������
, (36)

where S is the workspace and k(J) is the local condition
number of the Jacobian velocity matrix. ,e larger the GGI
value is, the greater the fluctuation of kinematic sensitivity
will be, which means that the kinematic performance of the
parallel robot will fluctuate up and down in the whole
workspace. When GGI is small, the kinematic performance
of the mechanism in the workspace is stable. ,erefore, a
smaller global gradient exponent should be selected for the
entire workspace. Figure 18 shows the relationship between
the design variables and GGI.
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4.5. Optimization Methods and Results Analysis. In this
section, the genetic algorithm (GA) is used to analyze the
single optimization target and find the optimal results for
each performance index. ,en, the combined indexes are
analyzed comprehensively by a multiobjective genetic al-
gorithm to get the Pareto front.

4.5.1. Optimization Method. ,e genetic algorithm (GA) is
employed for the optimization in this work considering the
facts: (1) gradient-based algorithms need not only the value
of the objective function but also the derivative of the ob-
jective function in the optimization process. However, it is
difficult, if not impossible, to differentiate the object function
of the case in this work and (2) the GA directly takes the
objective function value as the search information.

GA is a method to search for the best solution by
simulating the natural evolution process. After the initial
population is formed through coding, the task of genetic
operation is to impose certain operation on the individuals
of the population according to their environmental fitness,
so as to realize the evolution process of survival of the fittest.

From the point of view of optimal search, genetic manip-
ulation can make the solution to the problem be optimized
from generation to generation and approximate to the
optimal solution. Its main characteristics include the fol-
lowing: (1) there is no derivative and function continuity
limit; (2) it has inherent implicit parallelism and better
global optimization ability; and (3) the probabilistic opti-
mization method is adopted to adjust the search direction
adaptively.

When there are multiple goals, one solution is best on
one goal andmaybe worst on other goals due to conflicts and
incomparability between goals. ,ese solutions while im-
proving any objective function, must weaken the solution of
at least one other objective function are called nondominant
solutions or Pareto solutions. ,e set of Pareto solutions is
called the Pareto front. All the solutions in the Pareto front
are not dominated by the solutions outside the Pareto front.
,erefore, these nondominated solutions have the least
objective conflict compared with other solutions, which can
provide a better choice space for decision-makers.

4.5.2. Single-Objective Optimization. When using GA for
single-objective optimization, the parameter settings of GA
are shown in Table 3. In the first optimization, the opti-
mization objective function is set as the maximumGWCI. In
the second optimization, the optimization objective function
is set as the maximum GCI. In the third optimization, the
optimization objective function is set as the minimum GGI.
Optimization design parameter X � [L2, L3,φp] must sat-
isfy L2 ∈ [3, 13], L3 ∈ [1.5, 6.5], φp ∈ [5, 85].,emaximum
GWCI is 0.6538 and the corresponding design variable X�

[12.992, 1.831, 7.418] (Figure 19). ,e maximum GCI is
0.3076 and the corresponding design variable X� [12.7, 1.5,
31.586] (Figure 20). ,e minimum GGI is 0.0306 and the
corresponding design variable X� [7.107, 6.484, 76.814]
(Figure 21). In Table 4, the previous value is the result of the
corresponding index when L2 � 8 cm, L3 � (10

�
3

√
/3) cm,

and φp � 45°, which is quite different from the single-ob-
jective optimization result, GWCI and GCI are much lower
and GGI is much higher. ,erefore, single-objective

0
10

0.05

5 10

1/
k 

(J)

0.1

Y (cm)
0 5

X (cm)

0.15

–5 0
–10 –5

0.02

0.04

0.06

0.08

0.1

0.12

1/k (J)

Figure 16: ,e distribution of 1/k(J) for L2 � 8 cm,
L3 � (10

�
3

√
/3) cm, and φp � 45°.

φ p
 (º

)

L3 (cm)
L2 (cm)

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

GCI

100

80

60

40

20
0
8

6
4

2
0 0

5
10

15

Figure 17: ,e relationship between the design variables and GCI.

φ p
 (º

)

L3 (cm)
L2 (cm)

1

0.8

0.6

0.4

0.2

0

GGI

100

80

60

40

20
0
8

6
4

2
0 0

5
10

15

Figure 18: ,e relationship between the design variables and GGI.

12 Mathematical Problems in Engineering



optimization can achieve the best single performance, but
other aspects are not guaranteed.

4.5.3. Multiobjective Optimization Result Analysis. When
designing the parameters of the mechanism, it is necessary

for the mechanism not only to have a large workspace, but
also high sensitivity. At the same time, the sensitivity has a
good consistency in the workspace. If only one performance
is satisfied and no other performance is considered, the
optimization result is not perfect. To sum up, this paper puts
forward multiobjective optimization.

,e performance evaluation indexes used for optimi-
zation are not uniform, and the analysis results vary greatly,
and the optimization correlation between different indexes is
small, which brings inconvenience to the selection of the
optimal design scheme. In this paper, the multiobjective
genetic algorithm is used to analyze the three optimization
objectives, and the optimization setting parameters are
shown in Table 5. ,e multiobjective optimization problem
can be expressed as

max GWCI,GCI{ }

min GGI{ }

over X � L2, L3,φp 

subject to L2 ∈ [3, 13]

L3 ∈ [1.5, 6.5]

φp ∈ [8, 85].

(37)

,rough GA multiobjective analysis, the relationship
between the three optimization goals of the Pareto optimal
solution in the standard space is shown in Figure 22 and the
relationship between the two optimization goals is shown in
Figures 23–25. ,e design parameters and optimization

Table 3: GA parameters.

Parameter Setting
Population size 50
Maximum generations 100
Encoding type Real
Selection strategy Stochastic sampling
Crossover type Scattered
Mutation type Adaptive
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Figure 19: GWCI optimization with GA.
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Figure 20: GCI optimization with GA.
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Figure 21: GGI optimization with GA.

Table 4: Single-objective optimization result.

Index L2 (cm) L3 (cm) φp(degree) Value Previous value

GWCI 12.992 1.831 7.418 0.6538 0.0931
GCI 12.7 1.5 31.586 0.3076 0.0681
GGI 7.107 6.484 76.814 0.0306 0.1368
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values corresponding to the Pareto optimal solution are
shown in Table 6.

,e solution of the multiobjective optimization problem
is not unique, but a set of equilibrium solutions, namely, the
optimal noninferior solution set or Pareto optimal solution
set. Pareto optimality is the ideal state for assigning per-
formance metrics, which means making at least one metric
better without making any of them worse. ,e Pareto op-
timal solution is only an acceptable solution to the problem.
,ere are 16 Pareto optimal solutions in this optimization
problem. According to the requirements of each optimi-
zation objective, a solution that meets the design require-
ments can be selected.

As can be seen from Figures 23–25, GCI increases with
the increase of GWCI, GGI increases with the increase of
GWCI, and GGI increases with the increase of GCI.
However, the evaluation criteria for these three objective
functions are different. For parallel manipulator, GWCI and
GCI should be large, while GGI should be small. Only in this
way can the mechanism have sufficient motion space,
flexibility, and motion consistency. ,erefore, when de-
signing a planar parallel manipulator, the three performance
indexes are equally important. ,e objective function
GWCI� 0.486, GCI� 0.145, and GGI� 0.454 are selected,
and the corresponding design parameters are determined as
L2 � 11.576 cm, L3 � 2.924 cm, φp � 42.152°.

5. Trajectory Optimization

5.1. Optimization Parameters. Once the structure parame-
ters have been optimized, we can optimize the working area
and trajectory of the moving platform to further improve the
kinematic and dynamic performance of the presented PPM.
,e optimization problem involves finding the best area
where the motion trajectory of the moving platform should
be placed and the point the moving platform should start at
the moving trajectory [50].

In this paper, we will evaluate the performance of parallel
manipulators under different trajectories. ,e trajectories
take the most common shapes: round, oval, and parabolic.
,e center position of the moving platform is taken as the
optimization variable as

Y � XP, YP . (38)

First, we analyzed the circle with a radius of 2 cm. XP �

Px0 + 2 cos(πt) and YP � Py0 + 2 sin(πt) must be in the
workspace for the parallel robot to perform its normal
trajectory,Px0 and Py0 are the centers of the moving tra-
jectory. Secondly, we analyzed the ellipse with a long axis of

4 cm and a short axis of 2 cm.XP � Px0 + 2 cos(πt) andYP �

Py0 + sin(πt) must be in the workspace for the parallel robot
to perform its normal trajectory,Px0 and Py0 are the X and Y
coordinates of the center of the ellipse. Finally, we analyzed
the trajectory as parabolic.XP � Px0 + (t − sin(t)) and YP �

Py0 + (1 − cos(t)) must be in the workspace for the parallel
robot to perform its normal trajectory,Px0 and Py0 are the
starting point of the parabola. ,e design variable can be
changed to the central position of the trajectory as, which is
expressed as

Z � Px0, Py0 . (39)

According to the calculation in equation (31), the
workspace of the planar parallel manipulator is the blue part
in Figure 26 and the location of the center of the circle that
can satisfy the trajectory in the workspace is the red part in
Figure 26.

5.2. Performance Indices. Trajectory optimization is to study
the position of trajectory with the best dynamic performance
in the process of moving. When the given trajectory is a
circle, the working space of the parallel manipulator
movement is also determined, so there is no need to consider
the global workspace condition index (GWCI). ,is part
mainly studies the sensitivity of the global condition index
(GCI) and the global gradient index (GCI) on the moving
trajectory and introduces the driving force index (DFI) to
find the position of the motion trajectory with the minimum
driving force and the maximum sensitivity [51].

5.2.1. GCI and GGI. GCI and GGI have been presented in
the previous section. ,e difference is that the workspace in
this part is that of the center position of the moving plat-
form, so the integral in the expression is changed into a line
integral [52, 53].

GCI �


S
(1/k)ds


S
ds

,

GGI � maxS

∇1
k(J)

�������

�������
,

(40)

where S refers to the track of movement, that is, the circle of
radius 2 cm. k is the condition number of the Jacobian
matrix. For GCI, the greater the value of the GCI is, the more
sensitive the movement process is. For GGI, the smaller the
GGI is, the more consistent the sensitivity becomes during
the movement. Figure 27 shows the relationship between the
center of the track and the GCI. Figure 28 shows the re-
lationship between the center of the trajectory and the GGI.

5.2.2. Driving Force Index (DFI). Dynamic mechanical force
is not only an important parameter that affects the kine-
matics and dynamic behaviors of the robot manipulator, but
also an important basis for the design of mechanical strength
and the shape of structure [54, 55]. ,erefore, mechanical

Table 5: GA parameters.

Parameter Setting
Population size 40
Maximum generations 100
Crossover ratio 1
Pareto fraction 0.35
Tournament size 2
Mutation type Adaptive
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force must be analyzed when designing new mechanical
equipment or optimizing existing robot manipulators. For
the planar parallel manipulator, the driving force of the

motor is mainly considered. In order to study the driving
force, we propose the Driving Force Index (DFI), which is
themaximum driving force required bymoving the platform
in a given motion, as the optimization objective.

f(x, y) � max|F(Xp, Yp)|, (41)

where Xp and Yp are the movement trajectory within t� 4 s,
and F can be obtained from equation (29). ,e maximum
driving force required in the three branch chains is obtained
as the optimization index. ,e smaller the driving force is,
the better the mechanical performance will be. Figure 29
shows the DFI performance graph of the planar parallel
robot moving platform.

5.3. Optimization Results and Analysis. Optimization of the
dynamic parameters can make the moving platform have
better motion performance in the process of movement. In
the optimization process, the main consideration is the value
of each performance index on the movement trajectory [56].
As can be seen from Figure 27, the trajectory center changes
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Figure 26: ,e workspace. (a) ,e circle trajectory, (b) the ellipse trajectory, and (c) the parabolic trajectory.

Table 6: Pareto optimal solutions.

Index GWCI GCI GGI L2 L3 φp

1 0.648 0.306 1.003 12.992 1.534 33.671
2 0.648 0.311 1.021 12.992 1.503 33.546
3 0.552 0.185 0.569 12.21 2.399 42.342
4 0.613 0.277 0.878 12.781 1.698 36.196
5 0.432 0.116 0.357 11.382 3.428 51.999
6 0.259 0.071 0.216 9.653 4.98 42.374
7 0.35 0.09 0.303 10.241 4.416 34.335
8 0.2 0.067 0.188 8.984 5.335 39.583
9 0.174 0.052 0.145 8.878 6.465 36.601
10 0.63 0.237 0.745 12.945 2.064 35.399
11 0.619 0.204 0.623 12.852 2.264 41.232
12 0.512 0.135 0.406 12.104 3.203 44.159
13 0.55 0.152 0.467 12.192 2.829 44.308
14 0.557 0.246 0.786 12.091 1.882 35.559
15 0.551 0.223 0.704 12.007 2.044 37.38
16 0.486 0.145 0.454 11.576 2.924 42.152
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from the origin of coordinates to the edge of the workspace,
and the sensitivity of the planar parallel manipulator in the
process of motion becomes smaller and smaller. As can be
seen from Figure 28, the sensitivity of the trajectory center of
the moving platform in the blue area is very consistent, and
the mechanical platform is relatively stable in the process of
movement. As can be seen from Figure 29, the closer the
position is to the center of the coordinate system, the smaller
the maximum driving force is required, which can reduce
the size or the energy consumption of the motor. Consid-
ering the three indexes of GCI, GGI, and DFI, the center
position of the motion trajectory is selected at (0, 0), which
has the optimal kinematic and dynamic performance.

6. Discussion and Conclusion

With the proposed methodology and procedure of opti-
mizing the structure size and motion trajectory of the
parallel planar manipulator, the robot manipulator can
achieve optimal kinematic and dynamic performance for its
applications. ,rough the optimization, the optimal pa-
rameters are obtained as L2 � 11.576 cm, L3 � 2.924 cm,
φp � 42.152, Px0 � 0, and Py0 � 0. It can be seen that the
dynamic performance has been greatly improved after op-
timization, no matter under which moving trajectory, and
the planar parallel manipulator only needs a small force to
generate the same motion trajectory while keeping high
kinematic performance. ,e maximum driving force re-
quired is 0.0174N before the optimization in the circle
trajectory and is significantly reduced to be 0.0069N after
the optimization (Figure 30). In different trajectories, the

dynamic performance is improved by using the dynamic
index (Figure 31). ,e root mean square error is used to
measure the deviation between the preoptimization value
and the postoptimization value. Since the structural opti-
mization does not involve the dynamics index when cal-
culating the driving force’s root mean square error, this
paper only enumerates the driving force for the slider in the
circular trajectory. In trajectory optimization, dynamic in-
dex is involved. In order to highlight the importance of this
index, this paper calculates the root mean square error of
circular trajectory, ellipse trajectory, and parabolic trajec-
tory, respectively. Under different trajectories (Table 7),
some driving forces will have large errors after dynamic
optimization, such as F3 of circular trajectory, which shows
the importance and effectiveness of using dynamic indexes
in robot optimization.

,e planar parallel manipulator has been widely used
as kinematics and dynamic machines, but it has two main
disadvantages: complex dynamic equations, limited
workspace, and singularity. In order to improve these two
shortcomings, the discrete time transfer matrix method
(DT-TMM) has been proposed to improve the compu-
tational efficiency and structure optimization and tra-
jectory optimization have been conducted to improve the
workspace and avoid generating singular configuration.
In order to optimize the structure size of the 3-PRR planar
parallel manipulator, GWCI, GCI, and GGI have been
taken as optimization objectives, GA is used to analyze a
single target, and multiobjective genetic algorithm is used
to find Pareto optimal solution. In order to improve the
dynamic performance of the manipulator, the driving
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Figure 31: Comparison of driving forces before and after using dynamic indicators. (a) ,e circle trajectory, (b) the ellipse trajectory, and
(c) the parabolic trajectory.
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force index is proposed and integrated into the optimi-
zation target, and the optimal moving trajectory has been
obtained by combining the kinematic indices. ,e two
major contributions of this paper to the design and
control of parallel robot manipulators can be summarized
as follows: (1) extending DT-TMM to establishing the
dynamic model with high computation efficiency, and (2)
proposing a new dynamic index and integrating the dy-
namic index into the dynamic design and motion opti-
mization with the developed dynamic modeling method
and the GA optimization technique. ,e developed
modeling method, and design and motion optimization
strategies have been demonstrated and verified with a 3-
PRR parallel manipulator, and can be extended to the
dynamic modeling, and optimization design for general
parallel manipulators with flexible components.
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