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)e quality of acquired images can be surely reduced by improper exposures. )us, in many vision-related industries, such as
imaging sensor manufacturing and video surveillance, an approach that can routinely and accurately evaluate exposure levels of
images is in urgent need. Taking an image as input, such a method is expected to output a scalar value, which can represent the
overall perceptual exposure level of the examined image, ranging from extremely underexposed to extremely overexposed.
However, studies focusing on image exposure level assessment (IELA) are quite sporadic. It should be noted that blind NR-IQA
(no-reference image quality assessment) algorithms or metrics used to measure the quality of contrast-distorted images cannot be
used for IELA.)e root reason is that though these algorithms can quantify quality distortion of images, they do not knowwhether
the distortion is due to underexposure or overexposure. )is paper aims to resolve the issue of IELA to some extent and
contributes to two aspects. Firstly, an Image Exposure Database (IEpsD) is constructed to facilitate the study of IELA. IEpsD
comprises 24,500 images with various exposure levels, and for each image a subjective exposure score is provided, which
represents its perceptual exposure level. Secondly, as IELA can be naturally formulated as a regression problem, we thoroughly
evaluate the performance of modern deep CNN architectures for solving this specific task. Our evaluation results can serve as a
baseline when the other researchers develop even more sophisticated IELA approaches. To facilitate the other researchers to
reproduce our results, we have released the dataset and the relevant source code at https://cslinzhang.github.io/imgExpo/.

1. Introduction

Exposure is the total amount of light falling on a photo-
graphic medium when capturing an image [1]. Improper
exposure will inevitably reduce the quality of the acquired
images, e.g., bringing contrast reduction.)us, how to assess
exposure levels of images (videos) and to correct ill-exposed
images (videos) are of paramount importance in the research
area of multimedia.

An exposure distortion is understood as the overall
quality degradation caused by improper exposure. In
many industrial fields, a method that can accurately
assess the exposure levels of images is in urgent need
[2–5]. For example, almost all the modern digital cameras
can work in “autoexposure” mode [2]. When the user is
taking images with this mode, the camera will auto-
matically adjust relevant hardware parameters (such as

the aperture, the shutter speed, and the electronic gain
[6]) using a particular autoexposure algorithm to make
the collected images have proper exposure levels. Obvi-
ously, in order to verify the performance of an autoex-
posure algorithm, a method that can accurately assess the
exposure levels of acquired images is indispensable.
Another example commonly encountered is in video
surveillance. For video surveillance, it is very common
that lighting conditions are out of the adaptive capacity of
the camera. Hence, it is quite necessary to continuously
monitor the exposure level of the acquired video to de-
termine its quality [4].

At present, commonly adopted approaches of judging
whether an image is properly exposed are based on the
experience of the photographers. )ese kinds of schemes
are of course costly and inefficient, lack robustness, and
cannot be applied to systems requiring real-time
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exposure level scores. Hence, there is an urgent need to
develop computational image exposure metrics.

)is work tries to solve the problem of IELA (Image
Exposure Level Assessment) to some extent. )e ultimate
goal is to obtain a computerized model that can objectively
and effectively predict the overall exposure level of any given
image, and the prediction results are anticipated to correlate
well with human subjective judgements. )e
target algorithm should quantify exposure in a meaningful
manner, which means that the same predicted exposure
score should preferably correspond to the same exposure
level across different image contents. Such an IELA algo-
rithm has many potential applications. For example, it could
be explored to measure or to optimize the performance of
autoexposure models, which are of paramount importance
for imaging sensor manufacturing industries.

In order to more clearly demonstrate the objectives of
our work, in Figure 1, we present six images and give their
exposure scores predicted by our proposed approach IEMSN
(short for “Image Exposure Metric with ShuffleNet”; refer to
Section 4 for details). It should be pointed out that exposure
scores predicted by IEMSN can vary continuously from −1 to
+1. “−1” implies that the assessed image is extremely
underexposed, “0” implies that it is correctly exposed, and
“+1” implies that it is extremely overexposed. )e more the
exposure score deviates from “0,” the more serious the
exposure distortion is. Using IEMSN, the predicted exposure
scores of Figures 1(a)–1(f) are −0.8870, −0.5043, −0.2577,
0.1368, 0.4739, and 0.5697, respectively. )is example
demonstrates that IEMSN’s prediction results of images’
exposure levels correlate consistently with human
judgements.

)e rest of this article is organized as follows. Section 2
introduces the related work, our motivations, and our
contributions. Section 3 presents details of IEpsD (short for
“Image Exposure Database”), which is our newly established
benchmark dataset for the study of IELA. Section 4 presents
our DCNN-based image exposure level assessment model,
IEMX. Experimental results and related discussions are
presented in Section 5. Finally, conclusions are provided in
Section 6.

2. Related Work and Our Contributions

In this section, we first review some representative studies
most relevant to our work, including existing approaches for
IELA, approaches for no-reference (NR) quality assessment
of contrast-distorted images, and approaches for blind NR
image quality assessment (NR-IQA). )en, our motivations
and contributions are presented.

2.1. Existing Approaches for IELA. At present, the work that
specializes in IELA is quite sporadic. Human experience
suggests that an image’s exposure level could be charac-
terized by its luminance histogram. It is generally believed
that the histogram of a correctly exposed image spreads over
the whole range of luminance; by contrast, histograms of
overexposed (underexposed) images are shifted to the bright

(dark) sides. Moreover, the higher the exposure distortion is,
the more significant will be the shift. Several IELA metrics
were proposed in the literature just based on this hypothesis.
In Liu et al.’s patent [7], three quantities “center,” “centroid,”
and “effective width” are first extracted from the image’s
luminance histogram and then the exposure level is derived
from them using predefined rules. Based on the similar idea
as Liu et al.’s invention, Rychagov and Efimov [8] patented a
method for exposure estimation by comparing the mean of
the illuminance histogram with predefined thresholds. In
Romaniak et al.’s approach [4, 9], the average luminance of
three blocks with the highest mean luminance is regarded as
the luminance upper bound LU and the average luminance
of three blocks with the lowest mean luminance is regarded
as the luminance lower bound LL. )en, the exposure metric
is calculated as (LU + LL)/2.

2.2. Approaches for NR Quality Assessment of Contrast-Dis-
torted Images. In most cases, improper exposure can reduce
the contrast of the acquired images. Hence, studies focusing
on NR quality assessment of contrast-distorted images are
quite relevant to our work. )e recent progress made in this
area is briefly reviewed here.

On seeing that a database specially dedicated to contrast-
distortion assessment was lacking, Gu et al. [10] established a
database comprising contrast-changed images and their
associated subjective ratings.

With respect to quality assessment models of contrast-
distorted images, existing schemes can be roughly classified
into two categories: the ones based on supervised learning
(SL) and the ones not based on SL. Representative ap-
proaches based on SL include [11–14]. In [12], Fang et al.
first derived five NSS models (in the form of probability
density functions) based on the moment (mean, standard
deviation, skewness, and kurtosis) and entropy features from
images in SUN2012 [15]. )en, for any given image, a set of
five likelihood features can be extracted based on learned
NSS models. Finally, they adopted SVR (support vector
regression) to find the mapping between the feature vectors
and the perceptual quality scores. Inspired by Fang et al.’s
idea [12], both Ahmed et al.’s work [11] andWu et al.’s work
[13] followed the similar “features + SVR” framework. In
[11], Ahmed and Der extended the 5-D feature vector
proposed in [12] to a 6-D one by introducing a new di-
rectional contrast feature derived from the curvelet domain.
In [13], for feature extraction, Wu et al. extracted a 7-D
feature vector (the image mean, the image variance, the
image skewness, the image kurtosis, the image entropy, the
mean of the phase congruency map [16], and the entropy of
the phase congruency map) from each image. In Xu and
Wang’s approach [14], a 4-D feature vector, consisting of the
perceptual contrast of the image, the skewness, the variance,
and the intensity distribution number, is extracted from each
image. Concerning the regression model mapping the fea-
ture vectors to perceptual quality scores, they resorted to a
three-layer BP neural network.

Panetta et al.’s approach [17] and Gu et al.’s approach
[18] are two eminent schemes for quality assessment of
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contrast-distorted images, which are not based on SL. In
Panetta et al.’s approach [17], the image is first partitioned
into blocks. )en, a local quality measure is derived for each
block from its maximum and minimum luminance values.
Finally, an overall single measure is obtained from local
measures based on the PLIP (parameterized logarithmic
image processing) model [19]. In [18], Gu et al. first removed
predictable regions from the image and then they regarded
the entropy of regions with maximum information as the
local quality measure. )ey also derived a global quality
measure by comparing the image’s histogram with the
uniformly distributed histogram of maximum information.
Finally, an overall quality score was generated as the
weighted mean of local and global measures.

2.3. Approaches for Blind NR-IQA. Another research area
related to our work is blind NR-IQA, which aims to devise
algorithms to predict the image’s perceptual quality without
knowing its high-quality reference nor its quality distortion
type. Hence, the recent progress made in this area will be
reviewed as well.

)ere exist several publicly approved databases in the
area of NR-IQA. Among them, LIVE [20], CSIQ [21], LIVE
Multiply Distorted (MD) [22], TID2013 [23], CID2013 [24],
and LIVE Challenge [25] are most commonly used in recent
studies.

With respect to blind NR-IQA models, most of the
existing ones are “opinion aware,” meaning that they are
obtained by training on a dataset comprising quality-dis-
torted images and the corresponding subjective scores.
Typical approaches belonging to this category include
[26–33], and they have similar architectures. At the training
phase, the set of feature vectors is first extracted from the

training images, and then a regression model that maps the
feature vectors to the associated subjective scores is learned.
At the testing phase, given an image f to be assessed, its
feature vector is extracted first and then is input into the
learned regression model at the training phase to predict f’s
objective quality score. Different kinds of regression models
are adopted in these methods, including the SVR
[28, 31–33], the BP (backpropagation) neural networks [27],
and the deep neural networks [26, 29, 30, 34].

Having noticed the disadvantages of opinion-aware
blind NR-IQA models with respect to the generalization
ability and training sample collection, some researchers
proposed adding new vectorized labels to aid evaluation
[35], and some researchers began to develop opinion-un-
aware IQA models. )ese kinds of models do not rely on
quality-distorted training images nor subjective scores.
Some eminent studies in this research direction have been
reported. In [36], Mittal et al. proposed the Natural Image
Quality Evaluator (NIQE) model. Given an image f to be
evaluated, NIQE first extracts from it a set of local features
and then fits them to a multivariate Gaussian (MVG) model.
)e perceptual quality of f is expressed as the distance
between its MVG model and the MVG model learned from
the image set composed of high-quality natural images.
Inspired by [36], Zhang et al. [37] introduced three addi-
tional types of quality-aware features. At the test stage, on
each patch of a test image, a best-fit MVG model is com-
puted online. )e overall quality score of the test image is
then obtained through pooling the patch scores by averaging
them. In [38], Xue et al. synthesized a virtual image set, in
which the perceptual scores of the quality-distorted images
were provided by FSIM (a full-reference IQA algorithm)
[39]. )en, an NR-IQA model was learned from the
established dataset by patch-based clustering. In [40], Wu

(a) (b) (c)

(d) (e) (f )

Figure 1: (a–f) Six images with various exposure levels. )eir exposure scores predicted by our approach IEMSN are −0.8870, −0.5043,
−0.2577, 0.1368, 0.4739, and 0.5697, respectively. )e output range of IEMSN is from −1 to +1. “−1” implies that the image is extremely
underexposed, “0” implies that it is properly exposed, and “+1” implies that it is extremely overexposed.
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et al. first extracted local features using LBP (Local Binary
Pattern) [41] and then obtained statistics from local image
patterns, which are believed to have the capability to dis-
criminate high-quality natural images from distorted ones.
In Wu et al.’s approach [42], a feature fusion scheme is first
introduced by combining the image’s statistical information
from multiple domains and color channels. )en, the pre-
dicted image quality is generated by label transfer (LT),
where a query image’s KNNs (k-nearest neighbors) are
searched for from some annotated images. Gu et al.’s ap-
proach [43] is based on vector regression and an object-
oriented pooling strategy. By extending LBP, Freitas et al.
designed the OCPP (Orthogonal Color Planes Pattern)
descriptor, and they used the statistics of the OCPP de-
scriptor to characterize image quality [44].

2.4. Our Motivations and Contributions. )rough the liter-
ature survey, it can be found that though IELA is a problem
of paramount importance, systematic and in-depth studies
in this field are still lacking.

First, all the existing IELA metrics [4, 7–9] are derived
from luminance histograms, and accordingly, their shared
drawback is that they are not image content-independent. In
most cases, a useful IELA metric is expected to be content-
independent. However, existing IELA metrics do not satisfy
this requirement because they are totally defined on lumi-
nance histograms. As shown in Figures 2(a)–2(c), three
images have the same image content, but their histograms
have different distribution patterns because of their different
exposure levels. )e histogram of the properly exposed
image (Figure 2(a)) expands over the whole luminance
range, while the histogram of the overexposed (under-
exposed) image moves to the right (left) as shown in
Figure 2(b) (Figure 2(c)). Existing IELA methods [4, 7–9]
were designed precisely based on the assumption that im-
ages’ perceptual exposure levels could be well characterized
by their luminance histograms. However, this assumption
becomes problematic when applied to images taking from
various scenes. As shown in Figures 2(d)–2(f ), though all
three images are exposed correctly, their histogram distri-
bution patterns differ apparently from each other owing to
their different contents. As a consequence, when dealing
with images similar to Figures 2(d)–2(f ), IELA metrics
totally based on luminance histograms [4, 7–9] would yield
erroneous prediction results. In a word, the outputs of
[4, 7–9] depend on image contents, and consequently, their
accuracy in measuring the image exposure level is quite
limited.

Second, blind NR-IQA algorithms or metrics used to
measure the quality of contrast-distorted images cannot be
used for IELA. When an image with improper exposure is
fed into these algorithms, they can quantify its quality
degradation caused by improper exposure, but the evalua-
tion results cannot indicate whether the degradation is due
to underexposure or overexposure. )is fact is further il-
lustrated by examples shown in Figure 3. By perceptual
evaluation, it can be found that the images in Figures 3(a)–
3(c) are underexposed, properly exposed, and overexposed,

respectively. )eir objective scores evaluated by “NIQMC”
[10], “CS-BIQA” [33], and “IEMSN” are presented in Table 1.
NIQMC is a state-of-the-art metric to measure the quality of
contrast-distorted images, and a higher NIQMC score in-
dicates higher contrast. CS-BIQA is a representative modern
blind NR-IQA model, and a lower CS-BIQA score indicates
higher quality. IEMSN is our proposed IELA model (refer to
Section 4 for details) trained on our established dataset used
for the IELA study (refer to Section 3 for details). From
Table 1, it can be seen that NIQMC and CS-BIQA can
characterize an image’s quality degradation quite well.
However, whether the examined image is underexposed or
overexposed cannot be reflected from their results. By
contrast, the proposed IELA model IEMSN can accurately
and unambiguously evaluate the exposure levels of given
images. )e interpretation of IEMSN’s output can be found
in Section 1.

)ird, there is no publicly available benchmark dataset
specially designed to study the IELA problem. To design and
evaluate IELA approaches, such a dataset is actually
indispensable.

)is work attempts to fill the aforementioned research
gaps partially. )e major contributions are briefed as
follows.

(1) To facilitate training and testing IELA models, a
benchmark dataset, namely, IEpsD (Image Exposure
Database), has been established. IEpsD contains
24,500 images with different exposure levels. 3,500 of
them were collected from the real-world while the
other 21,000 ones were synthesized from properly
exposed source images by using our exposure sim-
ulation pipeline. For each image in IEpsD, a corre-
sponding subjective score is provided to represent its
perceptual exposure level. To our knowledge, IEpsD
is the first large-scale benchmark dataset established
for the study of IELA. In our experiments, synthetic
images in IEpsD are used for training IELA models,
while real-world ones of IEpsD are used for testing.
For more details about IEpsD, refer to Section 3.

(2) )e problem of IELA can be formulated as a re-
gression problem from the input image to its sub-
jective exposure score, which can be naturally solved
by DCNNs (Deep Convolutional Neural Networks
[45]). Hence, in this paper, a DCNN-based model
IEMX (Image Exposure Metric using X) is proposed
for IELA, which can learn an end-to-end mapping
from images to their subjective exposure scores. Here
“X” denotes a concrete DCNN architecture used. In
experiments, a thorough evaluation has been con-
ducted to assess the performance of modern DCNN
architectures for IELA in the framework of IEMX
(refer to Section 5 for details).

We have released IEpsD and the relevant source code at
https://cslinzhang.github.io/imgExpo/ to facilitate the other
researchers to reproduce our results.

A preliminary version of this manuscript has been
presented on ICME 2018 [46]. )e following improvements
are made in this version: (1) the database IEpsD is
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substantially extended and a more reasonable way to per-
form the subjective evaluation of exposure levels is adopted;
(2) the performance of blind NR-IQA models and metrics
used to measure the quality of contrast-distorted images for
addressing the problem of IELA is thoroughly investigated
and analyzed; (3) thorough performance evaluation of
modern DCNN architectures in the framework of IEMX is
conducted; and (4) more competing IELA models are
evaluated in experiments.

3. IEpsD: A Benchmark Dataset for IELA

As stated in Section 2, in view of the fact that a database specially
dedicated to IELA still lacks in the community, we are moti-
vated to establish such a dataset in this work. )is section will
discuss details about the establishment of our image exposure
dataset IEpsD and its practical use. By collecting and synthe-
sizing images of various exposure levels from different shooting
scenes, IEpsD finally contains 24,500 images. Additionally, for
each image in IEpsD, we provide it with a subjective score which
is expected to represent its perceptual exposure level.

)ree phases were involved in constructing IEpsD, in-
cluding collection of real-world images, generation of
synthetic images, and finally subjective evaluation.

3.1. Collection of Real-World Images. In order to accurately
quantify an IELA algorithm’s prediction accuracy on real
data, IEpsD should include a large number of real-world

(a) (b) (c)

(d) (e) (f )

Figure 2: (a–c) )ree images having the same contents but different exposure levels, along with their luminance histograms. (a) is properly
exposed, while (b) and (c) are overexposed and underexposed, respectively. (d)–(f ) are three images that are all properly exposed; however,
their luminance histograms are quite different from each other due to their different contents.

(a) (b) (c)

Figure 3: By perceptual evaluation, the images in (a), (b), and (c) are underexposed, properly exposed, and overexposed, respectively. )eir
objective scores predicted by different metrics are presented in Table 1.

Table 1: Objective scores of images in Figure 3 obtained by dif-
ferent metrics.

Method Figure 3(a) Figure 3(b) Figure 3(c)
NIQMC [10] 3.9419 5.7086 3.8369
CS-BIQA [33] 3.3835 2.3440 2.7031
IEMSN −0.4560 0.0601 0.5697
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images. When taking these images, the shooting scenes need
to be as diverse as possible, meaning that they should cover
different kinds of objects (humans, plants, animals, human-
made objects, etc.), different periods of the day (morning,
noon, afternoon, evening, and night), different lighting
conditions, and different shooting distances. Taking these
factors into consideration, we finally collected images from
500 shooting scenarios which were carefully planned. An
iPhone7 Plus mobile phone was used for image collection.

For digital cameras, exposure levels can be modulated in
three ways. )e first way is by enlarging or shrinking the
aperture. )e larger the iris aperture is, the more the light
reaches the imaging sensor in a fixed period of time. )e
second way is by adjusting the ISO sensitivity.)e last way is
by varying the exposure time. To simplify data collection
operations, we only changed the exposure time and kept the
other factors unchanged to obtain 7 different exposure re-
sults, ranging from extremely underexposed to extremely
overexposed.

In the end, 3,500 (7× 500) real-world images were collected,
and we denote the dataset formed by them by IEpsD_R.
)umbnails of 28 sample images selected from IEpsD_R are
shown in Figure 4. In Figure 4, from top to bottom, images in
each row belong to one specific shooting scenario; from left to
right, the exposure levels are changing from “extremely over-
exposed” to “extremely underexposed.”

3.2. Generation of Synthetic Images with Various Exposure
Levels. To get an IELA model with a satisfying generaliza-
tion capability, a large-scale dataset, comprising a large
number of images with various exposure levels, is indis-
pensable for training. Unfortunately, establishing such a
real-world dataset is extremely costly and laborious. In order
to resolve this contradiction, we propose to use synthetic
images for training IELA models. Actually, in the com-
munity of computer vision, researchers have recently found
that the use of synthetic images can effectively alleviate the
problem of insufficient real training data. )is has spurred
the development of pipelines for synthesizing photo-realistic
images. Synthetic data have already been explored to train
models to tackle the problems such as object detection [47],
semantic segmentation [48], optical flow estimation [49],
and so on. In this paper, we propose a novel method for
generating synthetic images with various exposure levels
from properly exposed source images.

Suppose that I is a given properly exposed source image. A
synthetic image I with a different exposure level could be
created bymodulating I’s illumination and saturation channels.
In order tomanipulate the illumination and saturation channels
separately, we first convert I from the RGB space to the HSV
space. Denote the illumination channel and the saturation
channel of I by Iv and Is, respectively. Similarly, denote the
illumination channel and the saturation channel of I by Iv and
Is, respectively. Iv is generated by adjusting Iv as

Iv(x) � Iv(x) + θ, (1)

where x denotes the spatial location and θ is a global pa-
rameter controlling the amount of illumination adjustment.

θ should be positive when simulating an overexposed image,
while it should be negative when simulating an under-
exposed one.

In addition, Is needs to be adjusted to Is accordingly. As
suggested by Romaniak et al. [4], the mapping function
between I(x)’s exposure level Ein(x) and its saturation value
Is(x) conforms to an inverse asymmetric logit function (I-
ALF) given by the following equation:

Ein(x) �
ln Is(x)

1/c
 /1 − Is(x)

1/c
  − b

a
, (2)

where a, b, and c are three given constants. I(x)’s exposure
level Eout(x) can be obtained by shifting Ein(x) by a desired
offset eps, i.e.,

Eout(x) � Ein(x) + eps. (3)

At last, I(x)’s saturation value Is(x) can be calculated by
the following asymmetric logit function (ALF):

Is(x) �
ea∗Eout(x)+b

1 + ea∗Eout(x)+b
 

c

. (4)

Putting equations (2)–(4) together, we can get the for-
mula for adjusting Is to Is as

Is(x) �
eln Is(x)1/c− ln 1− Is(x)1/c( )+a∗ eps

1 + eln Is(x)1/c−ln 1−Is(x)1/c( )+a∗ eps
⎛⎝ ⎞⎠

c

. (5)

In our implementation, a is set to −3.2 and c is set to 0.4.
By altering the values of parameters θ and eps, we can

synthesize a series of I’s variants with different exposure
levels. Specifically, to construct IEpsD, seven exposure levels
were synthesized. Alternatively, in other words, from each
properly exposed source image, seven images (including the
source image itself ) having different exposure levels, ranging
from “extremely underexposed” to “extremely over-
exposed,” were synthesized. Sample synthetic images gen-
erated by our proposed scheme are shown in Figure 5. In
Figure 5, images in the first column are the properly exposed
source images, based on which the synthetic ones are
generated. Columns 2–4 are the synthetic results of over-
exposed images while columns 5–7 show the synthetic re-
sults of underexposed ones. By visual inspection, it can be
found that using our proposed scheme, the appearance of
synthetic images looks quite natural and correlates well with
human perception.

To establish the synthetic image dataset, we collected a
set of properly exposed images from the Internet. Four
volunteers (postgraduate students from Tongji University,
Shanghai, China) were involved, and each of them was asked
to search for 1000 high-quality images covering four cate-
gories: people, plants, animals, andman-made objects.)en,
each of the 4000 collected images was visually examined by
seven volunteer observers (undergraduate students from
Tongji University). If no fewer than five of the seven ob-
servers confirmed that the image being examined was
properly exposed, then the image was retained.)rough this
way, 3000 images were thus selected, and they were used as
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source images for generating the synthetic ones. Note that
none of the images used here is included in IEpsD_R. Finally,
using our proposed synthetic image generation model,
21,000 (7× 3000) synthetic images were generated, and we
denote the dataset formed by them by IEpsD_S.

To demonstrate the reliability of the synthetic images in
the established dataset, the comparison between the real
images and the generated images in terms of the brightness,
which could reflect the applicability of simulated exposure
levels to some extent, is conducted.

Figure 6 shows the comparison of the average brightness
distributions between the real images and the synthetic
images. )e X-coordinate is the normalized average
brightness value of the image. )e Y-coordinate is the
number of images. )e seven colors of the bar represent

different exposure levels. It can be found from the figure that
the distributions of the average brightness of the real images
and the synthetic images under various exposure levels are
similar, which indicates that the algorithm proposed in this
paper for generating synthetic images is reasonable and
effective.

)e final dataset IEpsD comprises two parts, IEpsD_R
(formed by real-world images) and IEpsD_S (formed by
synthetic images).

3.3. Subjective Evaluation for IEpsD. When the image set
IEpsD is ready, the next step is to assign a subjective score to
each image in IEpsD, which can reflect its perceptual ex-
posure level.

Figure 5: Sample synthetic images. Images in the first column are the source images. Images in columns 2–4 are synthetic overexposed
images while images in columns 5–7 are synthetic underexposed ones.

Figure 4: 28 sample images selected from IEpsD_R with different exposure levels. Images in each row are taken from one specific shooting
scenario. From left to right, the exposure levels are changing from “extremely overexposed” to “extremely underexposed.”

Mathematical Problems in Engineering 7



)e subjective evaluations were conducted following a
single-stimulus strategy [50]. )e reason for choosing a single-
stimulus methodology instead of a double-stimulus one was
that the number of images to be assessedwas extremely huge for
a double-stimulus study (we evaluated a total of 24,500 images).
Subjective evaluations were performed on identical worksta-
tions.Monitors of workstations were all 22-inch LCDmonitors,
and their screen resolutions were all set to 1920 × 1080.
Evaluations were conducted in an indoor environment with
normal illuminations. Matlab software was developed to assist
the subjective study. )e lab setup is illustrated in Figure 7.
Subjects taking part in the subjective evaluation were all un-
dergraduate students of Tongji University, and they were in-
experienced with image exposure level assessment.)e number
of subjects evaluating each image was 20.

For each participant, we explained to him/her the goal of the
experiment and also the experimental procedure. We also
showed each participant the approximate range of image ex-
posure levels and the corresponding scoring results in a short
training session. It needs to be noted that we used different
images in the training session from those used in the actual
experiment. During the subjective evaluation, images were
displayed to a subject in random order, and for different
subjects, the randomization processes were different. A subject
reported his/her judgement of the exposure level by dragging a
slider on a quality scale. )e quality scale was marked both
numerically and textually and was divided into five equal
portions, which were labeled as “Extremely Underexposed,”
“Underexposed,” “Normally Exposed,” “Overexposed,” and
“Extremely Overexposed,” respectively. After the subject eval-
uated the image, by uniformly mapping the entire quality scale
to the range [−50, 50], the position of the slider was converted

into an integer exposure score. By this way, raw exposure scores
obtained from subjects were integers falling in the range [−50,
50]. )e closer the score is to “0”, the more likely the image is
exposed normally. A score smaller than “0” means the exam-
ined image is underexposed, and a score above “0” means the
image is overexposed. Moreover, the more the exposure score
deviates from “0,” the more serious the exposure distortion is.

Next, some postprocessing steps were applied to sub-
jects’ raw scores. At first, to eliminate the influence of
different subjective evaluation standards of subjects, the raw
scores dij were normalized as

zij �
dij − di

σi

, (6)

where dij is the exposure score of the image Ij given by the
ith subject, di is the mean score of the ith subject, σi is the
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Figure 6: (a))e average brightness distribution of real images and (b) the average brightness distribution of synthetic images generated by
our proposed algorithm.

Figure 7: )e lab setup for the subjects to evaluate the image’s
perceptual exposure level.
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standard deviation of his/her scores for all images, and zij is
the normalized score of the image Ij given by the ith subject.

)en, we used a strategy similar to the one mentioned in
[51] to filter out those heavily biased subjective scores, which
satisfied

zij − zj >T · σj, (7)

where zj is the mean of the normalized scores of Ij, T is a
threshold constant, and σj is the standard deviation of Ij’s
normalized scores. )e mean of the remaining evaluation
scores of Ij was deemed as Ij’s subjective exposure score sj:

sj �
1

Nj

 zij, (8)

where Nj is the number of valid subjective scores for Ij.
Finally, sj is linearly rescaled to the range [−1, 1].

Now, for each image Ij in IEpsD, we get a subjective score
sj that reflects its perceptual exposure level.

3.4. Practical Use of IEpsD. In addition to being used for
IELA research, our dataset also has great potential in lots of
relevant fields like high dynamic range (HDR) and image
exposure correction.

HDR images can provide more dynamic range and
image details and reflect the visual effects better in the real
environment than ordinary images. )e most common way
to capture HDR images is to take a series of low dynamic
range (LDR) images at different exposures and then merge
them into an HDR image [52]. IEpsD contains sequences of
images which are very diverse and often contain complex
scenes with multiple objects. Such images usually possess the
same content while having different exposure levels, so they
can be used to generate HDR images and to conduct related
studies.

For image exposure correction, IEpsD can be used as a
benchmark dataset to evaluate correction methods via full-
reference image quality assessment (FR-IQA) metrics. It
provides properly exposed, overexposed, and underexposed
images and associated subjective scores.

4. IEMX: A DCNN-Based IELA Model

In this section, we discuss how to build an IELA model. It is
desired that such a model can accurately and efficiently
predict the perceptual exposure level of a given image. Such a
problem can be naturally formulated as a regression
problem, which can be well addressed by DCNN (Deep
Convolutional Neural Network) models [45] in an end-to-
end manner, mapping from input images to their associated
exposure levels.

As is widely known, in the last five or six years, thanks to
the emergence and maturity of DCNN, the field of multi-
media processing has developed rapidly. In essence, DCNN
is a representation learning technology [45]. During train-
ing, by providing a large amount of raw data to the DCNN
model, it can automatically discover the suitable internal
representation of data. Today, in many technical fields,
DCNN-based approaches usually perform much better than

non-DCNN-based ones due to the availability of larger
training sets, deeper models, better training algorithms, and
more powerful GPUs.)e first CNN was invented by LeCun
in 1989 [53], and since the year of 2012, more elegant and
powerful DCNN architectures have been continuously
proposed in the literature, such as AlexNet [54], VGG [55],
GoogLeNet [56], ResNet [57], DenseNet [58], and Shuf-
fleNet [59].

We denote the proposed DCNN-based IELA model by
IEMX, where “IEM” is short for “Image Exposure Metric”
and “X” represents the concrete DCNN model used (in this
paper, four specific DCNN models are investigated in the
framework of IEMX, including GoogLeNet [56], ResNet
[57], DenseNet [58], and ShuffleNet [59]). For training
IEMX, the established dataset IEpsD_S described in Section 3
is used. )e lost function is defined as

L(W) �
1
N



N

j�1

1
2
IEMX W; Ij  − sj

�����

�����
2

2
+
λ
2
‖W‖

2
F, (9)

where W denotes the weights of the network, λ is a regu-
larization parameter, Ij is the jth training image whose
subjective exposure level is sj, ‖W‖F returns W’s Frobenius
norm, and N is the number of training samples in IEpsD_S.
Implementation details of IEMX are presented in Section 5.1.
)e general framework of IEMX is presented in Figure 8.

5. Experimental Results and Discussion

5.1. ImplementationDetails of IEMX. Four state-of-the-art or
representative DCNN architectures, including GoogLeNet
[56], ResNet [57], DenseNet [58], and ShuffleNet [59], are
investigated in the framework of IEMX, and the corre-
sponding concrete IELA models are referred to as IEMGN,
IEMRN, IEMDN, and IEMSN, respectively.

IEMXs were trained on IEpsD_S. For training IEMX, we
used the fine-tuning strategy, i.e., IEMX was fine-tuned from
the deep model pretrained on ImageNet [60] for the task of
image classification. Actually, for GoogLeNet, ResNet,
DenseNet, and ShuffleNet, the models pretrained on
ImageNet were provided by their authors and we used them
directly in IEMX. TensorFlow [61] was used as our deep
learning platform. Key hyperparameters used when training
IEMXs were set as “optimizer”� “ADAM” [62], “learning
rate”� 0.001, “batch size”� 8, and “weight decay”� 0.0001.

5.2. Test Protocol. )e collected dataset IEpsD_R was used to
evaluate the approaches’ capability for predicting the image’s
perceptual exposure level. )e performance of representa-
tive blind NR-IQA models, QA models for contrast-dis-
torted images, and models specially designed for IELA was
thoroughly studied and analyzed.

Four widely accepted metrics are adopted to evaluate the
performance of the competing methods.)e first two are the
Spearman rank-order correlation coefficient (SROCC) and
the Kendall rank-order correlation coefficient (KROCC).
Both of them compute the correlation coefficients between
the objective scores predicted by the IELA models and the
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subjective exposure scores provided by the dataset. SROCC
is defined as

SROCC � 1 −
6

M
i�1 d

2
i

M M
2

− 1 
, (10)

where di is the difference between ith image’s ranks in
objective and subjective judgements and M is the number of
images in the test set. KROCC is defined as

KROCC �
Mc − Md

1/2M(M − 1)
, (11)

where Mc and Md are the numbers of concordant and
discordant pairs in the test set, respectively. SROCC and
KROCC are both nonparametric rank-based correlation
metrics, implying that they depend only on the rank of the
data points.

)e third metric is the Pearson linear correlation co-
efficient (PLCC) between subjective scores and objective
scores after a nonlinear mapping. Denote by si 

M
i�1 and

oi 
M
i�1 the set of subjective scores and the set of corre-

sponding objective scores, respectively. First, a nonlinear
mapping given by the following regression function [20] is
applied to oi:

qi ≡ f oi(  � β1
1
2

−
1

1 + exp β2 oi − β3( ( 
  + β4oi + β5,

(12)

where βi, i � 1, 2, . . . , 5 are the model parameters that could
be fitted using a nonlinear regression process to maximize
the correlation between qi 

M
i�1 and si 

M
i�1. After that, we can

compute the PLCC value by

PLCC �


M
i�1 qi − q(  oi − o( 

������������


M
i�1 qi − q( 

2
 ������������


M
i�1 oi − o( 

2
 . (13)

)e last metric is the RMSE (root mean squared error)
between si 

M

i�1 and qi 
M

i�1, which is defined as

RMSE �

�������������

1
M



M

i�1
si − qi( 

2




. (14)

Different from SROCC and KROCC, PLCC and RMSE
can measure the prediction accuracy of IELA models.

A better IELA model is anticipated to have higher
SROCC, KROCC, and PLCC values and a lower RMSE
value.

5.3. Evaluations of QAModels for Contrast-Distorted Images.
As we have stated in Section 2.2, in most cases, improper
exposure can decrease the image’s contrast. )us, the studies
focusing on quality assessment of contrast-distorted images
(QACDI) are quite relevant to our work and it is reasonable
to clearly know their performance for addressing the
problem of IELA. )erefore, in this experiment, we evalu-
ated the performance of six eminent QACDI models on
IEpsD_R. )e QACDI models evaluated included logAME
[17], NR-CDIQA [12], NIQMC [18], and methods in
[11, 13, 14]. It needs to be noted that NR-CDIQA and
models in [11, 13, 14] are based on supervised learning and
they were trained on a subset of CSIQ [21] comprising
contrast-distorted images with associated subjective quality
scores.

)e evaluation results are listed in Table 2. In addition,
we also list the results of our IELA model IEMSN in Table 2
for comparison.

5.4. Evaluations of BlindNR-IQAModels. Blind NR-IQA is a
research area closely related to IELA. In order to clearly
know whether the existing blind NR-IQA models could
address the IELA problem well, in this experiment, we
evaluated the performance of several prominent blind NR-
IQA models on IEpsD_R. )ese models include BRISQUE
[31], SSEQ [28], OG-IQA [27], NOREQI [32], CS-BIQA
[33], HyperIQA [63], NIQE [36], QAC [38], IL-NIQE [37],
LPSI [40], and TCLT [42].

Actually, existing blind NR-IQAmodels can be classified
into two categories, opinion-aware ones and opinion-un-
aware ones. )e opinion-aware models are obtained by
training on a dataset comprising distorted images and as-
sociated subjective scores while the opinion-unaware ones
do not require those kinds of training sets. BRISQUE [31],
SSEQ [28], OG-IQA [27], NOREQI [32], CS-BIQA [33], and
HyperIQA [63] are opinion-aware ones, and in this ex-
periment, we used the trained models provided by their
authors (for these five blind NR-IQA schemes, models
provided by the authors were all trained on the entire LIVE
dataset [20]). )e other five models, NIQE [36], QAC [38],

Deep convolutional neural networks X 

s

I

Figure 8: )e general framework of the proposed DCNN-based IELA model IEMX. I is the input image, and s is its predicted perceptual
exposure level. “X” is a specific DCNN model.
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IL-NIQE [37], LPSI [40], and TCLT [42], are opinion-un-
aware ones.

Results of this experiment are reported in Table 3. In
addition, we also list the results of our IELAmodel IEMSN in
Table 3 for comparison.

5.5. Evaluations of IELA Models. In this experiment, the
performance of approaches specially designed for IELA was
evaluated. )e investigated approaches included Liu et al.’s
approach [7], Rychagov and Efimov’s approach [8],
Romaniak et al.’s approach [4], IEMGN, IEMRN, IEMDN, and
IEMSN. )e latter four are the four concrete forms of our
proposed IELA model IEMX. )e evaluation results are
reported in Table 4.

In order to make a more convincing conclusion on the
performance of the models, some statistical analysis is
necessary [64]. We performed a left-tailed F-test [65] based
on the prediction residuals of each model. )e results of the
significance test are shown in Figure 9. It can be seen that our
method is much better than all other models.

5.6. Discussion. Based on the experimental results reported
in Sections 5.3 ∼ 5.5, the following conclusions could be
drawn.

(1) Existing QACDI models or blind NR-IQA models
cannot address the problem of IELA quite well. From
the results presented in Tables 2 and 3, it can be seen
that using these models, the assessment results of
images’ exposure levels do not correlate well with the
subjective evaluations. Specifically, the best-per-
forming QACDI model is Xu and Wang’s model
[14], whose SROCC value is 0.6716, and the best-
performing blind NR-IQA model is QAC, whose
SROCC value is 0.5415. Both of them perform much
worse than the approaches specially designed for
IELA, whose results are reported in Table 4.
)e poor performance of blind NR-IQA algorithms
and QACDI models should be mainly attributed to
the fact that they cannot tell whether the quality
distortion is caused by overexposure or underex-
posure. Another reason is that none of the existing
datasets commonly used to train IQA models
comprises image samples with associated subjective
exposure level scores.

(2) )e proposed DCNN-based IELA model IEMX
performs extremely well for predicting perceptual
exposure levels of real-world images. From the re-
sults listed in Table 4, it can be seen that all the
variants of IEMX can achieve high SROCC, KROCC,
and PLCC values and low RMSE values. IEMX’s
performance is greatly better than the other IELA
models evaluated for comparison. Especially, IEMSN
performs the best among all the models evaluated,
whose SROCC and PLCC values are 0.9850 and
0.9750, respectively.

(3) )e proposed method for generating synthetic im-
ages with various exposure levels is quite reasonable.
In order to provide sufficient data for training the
DCNN-based IELA model IEMX, we propose a
method to generate synthetic images with various
exposure levels as described in Section 3.2. With this
strategy, we generated the dataset IEpsD_S, based on
which IEMX was trained. )en, IEMX was tested on
IEpsD_R, consisting of real-world images. In other
words, IEMX was trained on synthetic images, but it
was tested on real-world images.)e results reported
in Table 4 demonstrate that even though IEMXs were
trained on synthetic data, they perform quite well in
predicting a real-world image’s exposure level. )is
fact implies that the scheme we proposed for gen-
erating synthetic images with various exposure levels
is quite effective. Such a scheme significantly reduces
the cost of preparing data for training IELA models.
How to effectively make use of synthetic data to solve

Table 2: Performance evaluation of QA models for contrast-dis-
torted images on IEpsD_R.

Methods SROCC KROCC PLCC RMSE
logAME [17] 0.5312 0.3727 0.6191 0.4256
NR-CDIQA [12] 0.2794 0.2367 0.3139 0.5146
NIQMC [18] −0.0399 −0.0032 0.4306 0.4892
Ahmed et al. [11] −0.1612 −0.0529 0.4730 0.4775
Wu et al. [13] −0.0194 −0.0036 0.1091 0.5388
Xu and Wang [14] 0.6716 0.4782 0.7214 0.3753
IEMSN 0.9850 0.8876 0.9750 0.1047

Table 3: Performance evaluation of blind NR-IQA models on
IEpsD_R.

Methods SROCC KROCC PLCC RMSE
BRISQUE 0.1799 0.0887 0.5148 0.4647
NIQE −0.0566 −0.0395 0.2428 0.5258
QAC 0.5415 0.3976 0.5960 0.4352
IL-NIQE 0.4399 0.2939 0.5484 0.4532
SSEQ 0.3565 0.2321 0.5264 0.4608
LPSI 0.4945 0.3510 0.5514 0.4521
TCLT 0.1425 0.0963 0.3081 0.5156
OG-IQA −0.0124 −0.0066 0.1005 0.5393
NOREQI 0.4022 0.2912 0.4117 0.4938
CS-BIQA 0.4352 0.3147 0.4905 0.4722
HyperIQA 0.4247 0.3175 0.5132 0.4567
IEMSN 0.9850 0.8876 0.9750 0.1047

Table 4: Performance evaluation of IELA models on IEpsD_R.

Methods SROCC KROCC PLCC RMSE
Liu et al. [7] 0.7810 0.6860 0.7775 0.2143
Rychagov and Efimov [8] 0.8779 0.8360 0.8716 0.2283
Romaniak et al. [4] 0.8649 0.8355 0.86612 0.2496
IEMGN 0.9827 0.8873 0.9795 0.1091
IEMRN 0.9838 0.8867 0.9713 0.1288
IEMDN 0.9841 0.8877 0.9774 0.1145
IEMSN 0.9850 0.8876 0.9750 0.1047
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vision problems should be given more attention by
researchers.

6. Conclusion and Future Work

IELA models are highly desired in some vision-related in-
dustries. However, systematic studies specially focusing on
this issue are still lacking. )is work attempts to fill this
research gap, and the contributions are from two aspects.
First, an Image Exposure Database, namely, IEpsD, con-
taining 24,500 images with multiple exposure levels, was
established. For each image in IEpsD, we provide it a sub-
jective exposure score representing its perceptual exposure
level. IEpsD can serve as a benchmark to train and test IELA
models. To the best of our knowledge, IEpsD is the first of its
kind. Second, we formulated the IELA problem as a re-
gression problem and proposed a DCNN-based solution
IEMX. Four specific DCNN architectures, GoogLeNet,
ResNet, DenseNet, and ShuffleNet, were investigated in the
framework of IEMX. Experimental results show that IEMX
yields much better exposure level prediction performance
than all the compared competing methods. Experimental
results also corroborate that blind NR-IQA models or
QACDI models could not yield acceptable performance
when being exploited to address the IELA issue. In near
future, we will consider how to embed IELA metrics into the
design of autoexposure algorithms.
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