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For the robot system with the uncertain model and unknown environment parameters, a control scheme combining impedance
and finite time is proposed. In order to obtain accurate force control performance indirectly by using position tracking, the control
scheme is divided into two parts: an outer loop for force impedance control and an inner loop for position tracking control. In the
outer loop, in order to eliminate the force tracking error quickly, the impedance control based on force is adopted; when the robot
contacts with the environment, the satisfactory force tracking performance can be obtained. In the inner loop, the finite-time
control method based on the homogeneous system is used. (rough this method, the desired virtual trajectory generated by the
outer loop can be tracked, and the contact force tracking performance can be obtained indirectly in the direction of force. (is
method does not need the dynamics model knowledge of the robot system, thus avoiding the online real-time calculation of the
inverse dynamics of the robot. (e unknown uncertainty and external interference of the system are obtained online by using the
time-delay estimation, and the control process is effectively compensated, so the algorithm is simple, the convergence speed is fast,
and the practical application is easy. (e theory of finite-time stability is used to prove that the closed-loop system is finite-time
stable, and the effectiveness of the algorithm is proved by simulations.

1. Introduction

Industrial robots are widely implemented in various fields
and can perform complex tasks. In the production process
that requires contact with the environment, the position
control can no longer meet the requirements, such as pol-
ishing and deburring. It is not only necessary to control the
end position of the robot but also to control the force
generated when the robot contacts with the environment
[1, 2]. In order to achieve compliant control, Hogan pro-
posed impedance control [3]. By adjusting the mass,
damping, and stiffness parameters at the end of the robot, it
holds the force and position within a frame andmaintains an
ideal mechanical impedance relationship. Compared with
hybrid force/position control [4], impedance control is an
indirect method with strong robustness for some uncer-
tainties and interference factors.

(e accuracy of impedance control depends on the
accurate understanding of the robot model and environment

knowledge. However, in the actual robot-environment
system, due to the existence of uncertainties and interference
terms, it is difficult to get an accurate dynamic model and
environmental parameters, which leads to great position and
force errors in impedance control. It cannot be applied in
many occasions with high control accuracy requirements,
which is a major defect of impedance control relative to
hybrid force/position control [5]. Seraji et al. proposed direct
and indirect adaptive tracking impedance control methods,
both of which have better force tracking effect when the
environmental parameters are unknown, but they are not
conducive to practical application due to adjusting too many
adaptive gain parameters [6]. For the position tracking error
caused by the imprecise dynamic model of the robot, Seul
thinks that the expected force should be added to track the
contact force directly, and the controller should have enough
robustness to deal with the uncertainty of stiffness and
position in the unknown environment, so an adaptive im-
pedance control algorithm is proposed [7–9]. In order to
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reduce the force tracking error caused by the uncertainty of
the environmental position, Duan et al. [10] proposed an
adaptive variable impedance control method based on the
online adjustment of the impedance parameters of the
tracking error, in order to compensate the unknown envi-
ronment and the dynamic expected force, and achieved a
better control effect. Inspired by the fact that human beings
can adjust the limb impedance to interact with various
environments stably, Dong et al. established an estimation
model for the uncertainty and interference term of the robot,
thus improving the interaction ability between the robot and
the environment [11]. Li et al. used the method of iterative
learning to obtain the parameters of impedance control and
realized the contact control between the robot and an un-
known environment [12]. Although the above method can
achieve high-precision force tracking and position tracking,
the calculation of debugging parameters should be strict;
otherwise, the system stability will be seriously affected. In
addition, recent studies have shown that it is difficult to
improve the robustness of modeling errors without losing
the accuracy of the desired impedance. (is is known as the
“accuracy/robustness paradox” in impedance control [13].

In order to ensure the stability and robustness and realize
the precise control of the robot’s position and force at the
same time, adaptive slidingmode control is proposed in [14],
which has good tracking performance in the case of small
chattering. In [15], the traditional nonsingular terminal
sliding mode control strategy is developed, and a continuous
terminal sliding mode controller is designed to realize the
continuous finite-time stable tracking control of a nonlinear
robot system. In [16], the continuous sliding mode tracking
problem of the robot under parameter uncertainty and
external disturbance is studied. A chatter-free integral ter-
minal sliding mode control scheme is proposed, which
combines the integral terminal sliding mode surface with the
observer.[17]. (is strategy is very attractive to the robot
system designed for position adjustment and has been
widely used. In this strategy, impedance control is used to
determine the virtual desired trajectory. (en, the position
control loop is used to track the virtual desired trajectory,
and the control target becomes trajectory tracking, which
has been widely studied in the past decades.

Due to the uncertainty and disturbance of the robot
model [18], many classical nonlinear control methods are
applied to the position control of the inner loop, such as
sliding mode, backstepping, and adaptive. Different from the
asymptotic convergence of traditional control methods, fi-
nite-time control means that the system state can converge
to the equilibrium point in finite time [19, 20], so it has faster
instantaneous response characteristics and higher tracking
accuracy and has better robustness and anti-interference
performance, especially suitable for the high-quality control
of the nonlinear industrial robot system [21]. At present, it
has been widely used in the field of industrial control
[22, 23]. (e common finite-time control methods include
the homogeneous system method, finite-time Lyapunov
function construction method, and terminal sliding mode
control [24–26]. (e sliding mode control method of the
nonsingular terminal based on time-delay estimation

proposed in [27] does not need the knowledge of the dy-
namic model of the robot, and the algorithm is simple and
effective but uses saturation function to eliminate “chat-
tering” and sacrifices the control accuracy. In [28], a finite-
time stable robot control method proposed by combining
PD and gravity compensation strategy is globally stable in
the sense of state feedback but locally finite-time stable in the
sense of output feedback. In [29], a kind of nonlinear PD
controller proposed for the robot is globally finite-time
stable. It only replaces the linear position error term of
traditional PD control with the fractional power form of
error but obtains better control performance. In [30], a
global finite-time tracking control scheme based on the
inverse dynamics method is proposed, which is also a
modification of the traditional inverse dynamics method of
the robot. (e global finite-time stability is proved by the
principle of LaSalle invariant set and the theory of finite-time
stability, and the simulation results show that the method
has faster response speed. In [31], based on the terminal
sliding mode control, using the advantages of fast terminal
sliding mode control and the neural network, a finite-time
tracking control scheme of the robot is proposed. At present,
the control methods combined with finite time are adaptive
[32], sliding mode [33], observer [34], and so on. Time-delay
estimation [35] is applied to estimate unknown robot dy-
namics and external interference. In order to ensure the
correctness of the time-delay function, the time delay Lmust
be small enough, usually set as the sampling time. Current
hardware and computer technology fully meet the re-
quirements, but the time-delay estimation method has been
rarely used in the nonlinear robot control system since it was
proposed. In the current literature, there is no finite-time
control method for the position control of the robot’s inner
loop. On the basis of [30], using the method of time-delay
estimation, we design a continuous finite-time stable control
strategy, which can also obtain high-precision trajectory
tracking control without knowing the dynamics model of the
robot.

In order to solve the problem of position/force control
when the robot is interacted with an uncertain model and
unknown environmental parameters, a dual-loop control
strategy based on impedance control and finite-time control
is proposed in this paper. (e outer loop is force-based
impedance control, which is used for force compliance
control and virtual ideal trajectory generation; the inner loop
is the position control based on finite time, which solves the
problem of model uncertainty and unknown environmental
parameters and makes the end trajectory of the robot track
the virtual ideal trajectory generated by the outer loop. (is
method does not depend on the model of the robot and
environment. By setting impedance parameters and finite-
time control parameters, it can achieve an ideal control
effect. Based on the Lyapunov stability theorem, the stability
of the closed-loop system is proved. (erefore, we believe
that this paper has the main contributions in the following:

(1) In order to facilitate the position/force tracking
impedance control of the robot system, a double
closed-loop control structure is proposed, that is, the
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outer loop for force impedance control and the inner
loop for position tracking control

(2) In the outer loop, we implement impedance control
to make the contact force between the end of the
robot and the environment show compliance and
generate the virtual desired trajectories

(3) In the inner loop, finite-time control is applied to
solve the unknown parameters and dynamic
uncertainties

(is paper includes the following contents. In Section 2,
the system model is introduced, including the kinematics
model and dynamic model. In Section 3, the details of the
proposed algorithm are presented. In Section 4, simulations
with different control objectives are conducted to verify the
feasibility of the proposed method. In Section 5, concluding
remarks are given.

2. Theoretical Foundations

2.1. Finite-Time Stability. Since the finite-time control sys-
tem is a non-Lipshitz continuous system, common theories
to determine the stability of the system, such as Lyapunov
inverse theorem or invariant set principle, cannot be applied
directly. (e finite-time homogeneous theory and the finite-
time Lyapunov stability theory and related concepts to
determine the finite-time stability theorem are introduced as
follows.

Consider the following systems:
_x � f(x), f(0) � 0, (1)

where x ∈ Rn and f: U⟶ Rn is a continuous function
defined in the domain U to the n-dimensional space Rn.

Definition 1. Let f(x): Rn⟶ Rn be a vector function; for
any ε> 0, there exists (r1, r2, . . . , rn) ∈ Rn, where
ri > 0 (i � 1, 2, . . . , n), so that f(x) satisfies

fε εr1x1, . . . , εrn xn(  � εk+ri fi(x), i � 1, 2, . . . , n, (2)

where k≥ −max ri, i � 1, 2, . . . , n  and f(x) is considered
to have homogeneous degree k with respect to
(ri, r2, . . . , rn).

Definition 2. Let V(x): Rn⟶ R be a continuous scalar
function; for any σ > 0, there is (r1, r2, · · · , rn) ∈ Rn, where
ri > 0 (i � 1, 2, . . . , n), so that f(x) satisfies

Vi εr1(x), . . . , εrn xn(  � εσV(x), ∀x ∈ R
n
. (3)

(en, V(x) is said to have homogeneous degree σ with
respect to (ri, r2, . . . , rn).

(e criterion theorems of finite-time stability are as
follows:

Theorem 1. If the system represented by equation (1) has
homogeneous degree k< 0 and is globally asymptotically
stable, then the system is globally finite-time stable, and x � 0
is the equilibrium point of the system.

Theorem 2. 2e closed-loop system with global asymptotic
stability and local finite-time stability is globally finite-time
stable.

2.2. Kinematics and Dynamics Model. (e kinematics
equation of the robot is

X � P(q). (4)

Among them, X ∈ Rm represents the position in the
task space, q ∈ Rn represents the position of the joint
angle, and P(·) is a mapping matrix of forward kinematics,
which usually represents the transformation relationship
between task space and joint space. Equation (4) is dif-
ferentiated to obtain the velocity vector at the end of the
robot:

_X � J _q, (5)

where J ∈ Rm×n represents the Jacobian matrix. Equation (5)
is differentiated to obtain the acceleration vector at the end
of the robot:

€X � J€q + _J _q. (6)

From equations (4)–(6), the relationship between joint
space velocity and acceleration can be obtained:

_q � J
∗ _X + I − J

∗
J( υ, (7)

€q � J
∗
( €X − _J _q) + I − J

∗
J( υ, (8)

where J∗ � JT(JJT)− 1 represents the pseudo-inverse of the
Jacobian matrix J and υ is any vector. In this paper, we take
the minimum norm solution, at this time, υ � 0.

For amulti-input andmultioutput n-DOF joint robot, its
dynamic equation can be expressed as follows:

M(q)€q + C(q, _q) _q + G(q) + J
T
Fe � τ, (9)

where, q, _q, €q ∈ Rn are the joint angle, angular velocity, and
angular acceleration vectors, respectively, τ ∈ Rn is the
control torque of each joint, Fe ∈ Rn is the contact force
vector between the end of the robot and the environment,
M(q) ∈ Rn×n is the symmetric positive-definite inertia
matrix, C(q, _q) ∈ Rn is the Coriolis force and centripetal
force matrix, and G(q) ∈ Rn is the gravity vector.

From equations (5)–(9), we can get

M€q + H(q, _q, €q) + J
T
Fe � τ, (10)

H(q, _q, €q) � (M(q) − M)€q + C(q, _q) _q + G(q), (11)

where M is the estimated value of M(q). H(q, _q, €q) is an
uncertain term and expression.

2.3. Problem Statement. In this paper, a control strategy
combining the inner loop and outer loop is developed for
controlling the robot-environment interaction, as shown in
Figure 1. Particularly, the target impedance model is defined
as
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Md
€Xd − €Xc  + Bd

_Xd − _Xc  + Kd Xd − Xc(  � Fe,

(12)

where Md, Bd, and Kd represent the desired inertia,
damping, and stiffness matrices, Xd represents the desired
trajectory, and Xc represents the virtual desired trajectory
for the loop of position control. We should find the im-
pedance parameters to achieve the desired interaction
performance and consider the environment dynamics.
However, in many situations, accurate models of the en-
vironment are almost impossible to obtain. In this regard, we
aim to apply the finite-time law for position control, which
can make the system track the virtual desired trajectory. As
position control is applied to make X⟶ Xc as t⟶∞,
the impedance model becomes

Md
€Xd − €X  + Bd

_Xd − _X  + Kd Xd − X(  � Fe. (13)

Note that, according to equation (12), only the virtual
desired trajectory Xc is refined, and the external loop of
impedance control cannot affect the control performance of
the inner loop. In the following sections, the proposed
impedance control and position control are described in
detail.

3. Control Scheme

We take the following control strategy. Fe is measured by a
six-axis force/moment sensor installed at the end of the
robot, and q is measured by an angle encoder installed on the
robot body.

3.1. Impedance Control. In the outer loop of impedance
control, the control objective is to generate an ideal given
trajectory with a balanced trajectory. (e following im-
pedance equation can be established [30]:

Md
€Xc + Bd

_Xc + KdXc � −Fe + Md
€Xd + Bd

_Xd + KdXd,

(14)

where Xc(0) � Xd(0) and _Xc(0) � _Xd(0).
Among them, Md(t), Bd(t), and Kd(t) are positive

definite matrices, which are the inertia matrix, damping

matrix, and stiffness matrix of the expected impedance
model, respectively. (e diagonal elements of these ex-
pected impedance model matrices describe the mechan-
ical characteristics required in the contact process of the
robot and can be selected accordingly to the given op-
eration tasks.

3.2. Design of the Finite-Time Controller. (e purpose of
finite-time trajectory tracking control of the robot is to make
the trajectory X of the robot effectively track the expected
virtual control trajectory Xc and make the tracking error e

converge to 0 in finite time, where e(t) and _e(t) are defined
as follows:

e � X − Xc,

_e � _X − _Xc.
(15)

In order to facilitate the design and analysis of the
controller, we define the vector of Sat](ξ) � (sat(ξ1),
. . . , sat(ξn)T), where sat(ξi) is the saturation function:

Sat(x) �

1, x> 1,

x, |x|≤ 1,

−1, x< − 1.

⎧⎪⎪⎨

⎪⎪⎩
(16)

(e vector Sig(·)α is defined as follows:

Sig(X)
α

� Sig(X)
α

� X1



αsgn X1( , . . . , Xn



αsgn Xn(  

T
.

(17)

where X � [X1, . . . Xn]T, 0< α< 1, and sgn(·) is a standard
symbolic function defined as follows:

sgn(x) �

1, x> 0,

0, x � 0,

−1, x< 0.

⎧⎪⎪⎨

⎪⎪⎩
(18)

(e control law of the robot is designed as follows:

τ � MJ
∗
(u − _J _q) + H(q, _q, €q) + J

T
Fe, (19)

where

Impedance 
control

Finite-time 
control Robot Environment

Kinematic

τ
Xd, Xd, Xd

∙ ∙∙

Xc, Xc, Xc
∙ ∙∙

X, X
∙

Fe

q

Figure 1: Control block diagram.
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u � Xc − KpSat Sig(e)
α1(  − KbSat Sig( _e)

α2( , (20)

where Kp and Kb are normal number diagonal matrices,
0< α1 < 1, and α2 � 2α1/(α1 + 1). H(q, _q, €q) is the estimated
value of H(q, _q, €q), which is obtained online through time-
delay estimation, as shown in the following equation:

H(q, _q, €q) � Ht−L(q, _q, €q), (21)

where Ht−L(q, _q, €q) is defined as the time-delay estimate of
H(q, _q, €q) and L is the estimated delay time. In practical
application, the minimum L that can be set is the sampling
period. According to equation (11),

Ht−L(q, _q, €q) � τt−L − J
T
Fe 

t−L
− M€qt−L. (22)

Combined with the above equations (19)–(22), the
control law can be expressed as follows:

τ � τt−L − M€qt−L + MJ
∗ €Xc − KpSat Sig(e)

α1( 

−KbSat Sig( _e)
α2(  − _J _q + J

T
Fe.

(23)

It can be seen that the control law does not need the
knowledge of the dynamics model of the robot, so the al-
gorithm is simple. According to equation (23), H(q, _q, €q)

with actual dynamic terms can be estimated in real time by
using the past control input and joint acceleration. Gen-
erally, joint acceleration at t − L time can be calculated by the
following equation:

€qt−L �
qt−L − 2qt−2L + qt−3L

L2 . (24)

Obviously, equation (24) is also quite simple, so it is
particularly suitable for robot control.

3.2.1. Global Finite-Time Stability Analysis. For the above
finite-time control law, we have the following global con-
tinuous finite-time stability theorem.

Theorem 3. For given industrial robot system (9), a control
law (23) based on time-delay estimation is adopted to realize
the global finite-time stability of the position and speed
tracking errors of the closed-loop system, namely,

lim
t⟶T X0( )

e(t) � 0,

lim
t⟶T X0( )

_e(t) � 0,
(25)

where T(X0) is the convergence time function of the
initial state X0 of the system, and X0 � X(0) �

e(0)T e(0)T 
T ∈ R2n.

The proof of the theorem is divided into two steps. First,
it is proved to be globally asymptotically stable according to
the LaSalle invariant set principle; second, it is proved to be
globally finite-time stable according to Theorem 1 or (e-
orem 2.
(1) Global Asymptotic Stability. By substituting the control
input (23) into dynamic equation (9) of the robot and
combining equation (20), we can get

€e � −KpSat Sig(e)
α1(  − KbSat Sig( _e)

α2( 

− M
− 1

H(q, _q, €q) − Ht−L(q, _q, €q) .
(26)

Here, δ is defined as the time-delay estimation error,
namely,

δ � M
− 1

H(q, _q, €q) − Ht−L(q, _q, €q) . (27)

When the robot works in the unsaturated region,
equation (26) can be written as

€e � −KpSig(e)
α1 − KbSig( _e)

α2 − δ. (28)

When the robot works in the saturated region, equation
(26) can be written as €e � −δ. Obviously, we can only discuss
equation (28) to meet the requirements.

The following nonnegative Lyapunov functions are used:

V �
1
2

_e
T

_e +
1

α1 + 1


n

i�1
kpi ei



α1+1

, (29)

where kpi is the ith diagonal element of the diagonal matrix
Kp and ei is the ith component of the tracking error e.

For V, the derivative of time t is obtained:
_V � _e

T
€e + _e

T
KpSig(e)

α1 . (30)

If equation (28) is brought in, the following can be
obtained:

_V � _e
T

€e + KpSig(e)
α1 

� _e
T

−KpSig(e)
α1 − KbSig( _e)

α2 − δ + KpSig(e)
α1 

� − _e
T

KbSig( _e)
α2(  + δ

� − _e
T

Kb| _e|
α2 sgn( _e) + δ .

(31)

It can be seen that if

δi


≤ kbi _ei



α2 , (32)

where kbi is the ith diagonal element of the diagonal matrix
Kd, then _V≤ 0. According to the principle of the LaSalle
invariant set, the system is asymptotically stable. Jin et al.
[27] show that the time-delay estimation error δ is bounded.

According to equation (28), δ is a bounded nonlinear
term related to e; equation (32) means that when e � 0, δ � 0
must be met. (erefore, if the appropriate constant matrix
M and delay time L can be selected for equation (32), the
stability of the system can be guaranteed.
(2) Finite-Time Stability. In order to prove that the time-
delay error δ is a bounded system interference, we first
assume that δ � 0, and let x1 � e, x2 � _x1 � _e, and
x � (xT

1 , xT
2 )T. (en, equation (31) can be rewritten as

_x1 � x2,

_x2 � −KpSig x1( 
α1 − KbSig x2( 

α2 .

⎧⎨

⎩ (33)

Obviously, x � 0 is the equilibrium point of equation
(28). According to Definition 1, it is easy to prove that the
homogeneous degree of system (28) with respect to r1 � 2
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and r2 � α1 + 1 is k � α1 − 1< 0. From (eorem 1, it can be
seen that closed-loop system (17) is globally finite-time
stable. However, due to the existence of the time-delay es-
timation error δ, the steady-state error of the system even-
tually converges to the regionΩwithin the finite time, and the
convergence regionΩ of the steady-state error of the system is
in nonlinear proportion to the control gain Kb of the system
and in nonlinear proportion to the upper bound d of δ [36].
(erefore, as long asKd is adjusted to ensure that kbi > kbi, the
required tracking accuracy and antidisturbance index can be
met. Since the sampling period of most servo systems can
reach 0.2ms, Ht−L(q, _q, €q) is very close to h(q, _q, €q), and the
ideal state close to δ � 0 can be obtained in practical appli-
cation, so the above assumption δ � 0 is in line with the reality.

In conclusion, for given nonlinear robot system (9), the
finite-time control law (13) based on time-delay estimation
proposed by the author is adopted. (e system converges to
the neighbourhood Ω of e(t) � 0 and _e(t) � 0 in finite time.

4. Simulation Study

In this chapter, simulations are designed to verify the
proposed control algorithm and its performance. (e
simulations include a series of typical application sce-
narios, covering most of the actual situations. (e sim-
ulations are conducted in the Matlab/Simulink
environment. (e robot model and the contact model are
obtained in Section 2, and the parameters are shown in
Table 1. For simplicity, the simulation assumes that the
contact exists only in the Y direction. (e control block
diagram is shown in Figure 1.

(e contact between the robot and the environment
includes two stages: contact space and free space. In the
contact space, the magnitude of the contact force is related to
the relative displacement, relative velocity, stiffness, and
damping of the contact surface. In the free space, the contact
force is 0. Definition error is

Table 1: Model parameters of the robot.

Identifier Length (m) Distance (m) Angle (°) Mass (kg) Inertia matrix (kg · m2)
1 0 0 0 0.1 [0, 0.35, 0, 0, 0, 0]
2 0 1.08 −90 17.4 [0.13, 0.524, 0.539, 0, 0, 0]
3 0.1505 0.0203 90 4.8 [0.066, 0.086, 0.0125, 0, 0, 0]
4 0.645 0 −90 0.82 [1.8e− 3, 1.3e− 3, 1.8e− 3, 0, 0, 0]
5 0 0 0 0.34 [0.3e− 3, 0.4e− 3, 0.3e− 3, 0, 0, 0]
6 0 0 0 0.09 [0.15e− 3, 0.15e− 3, 0.04e− 3, 0, 0, 0]
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Figure 2: Position tracking on planes.
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Figure 6: Continued.
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∇x � x − xe,

Fe � Be · F1(Δx,Δ _x) + Ke · F2(Δx),
(34)

where xe represents the contact position, Be and Ke rep-
resent the damping and stiffness of the contact surface,
respectively, Fe represents the contact force, and Δx rep-
resents the relative distance. If Δx is positive or negative
when penetrating the contact surface, Δ _x is its derivative.
When Δx> 0, F1(Δx,Δ _x) � Δ _x, F2(Δx) � Δx, and Δx≤ 0,
F1(Δx,Δ _x) � 0 and F2(Δx) � 0.

(e main content includes impedance with finite-time
control (IFTC, the proposed method in this paper), adaptive
variable impedance control (AVIC, proposed by Seul et. al.
[7]), and the typical impedance control (IC). (e interfer-
ence is not considered.

(e basic parameters are as follows: the initial position is
(1.10, −0.150, 0.645), and the initial attitude angle is (0, 0, 0).
Impedance coefficients are Md � (1, 1, 1, 1, 1, 1),
Bd � (30, 30, 30, 30, 30, 30), and Kd � (10, 10, 10, 10, 10, 10).
Finite-time parameters are Kb � (20, 20, 20, 20, 20, 20) and
Kp � (500, 500, 500, 500, 500, 500).
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4.1. Force/Position Tracking on Planes. When the contact
surface between the robot and the environment is plane, the
position of the contact surface Xe can be expressed by the
following equation: €Xe � 0, _Xe � 0, Xe � −0.130. In this
simulation, in order to verify the working state of the robot
in different contact surfaces, we assume that the stiffness of
the contact surface will change. (erefore, the damping
coefficient and stiffness coefficient of the environmental
contact surface can be expressed as Be � diag
([0, 2, 0, 0, 0, 0]); 0< t≤ 2, Ke � diag([0, 1000, 0, 0, 0, 0]);
2< t≤ 4, Ke � diag([0, 3000, 0, 0, 0, 0]); 4< t≤ 6, Ke � diag
([0, 5000, 0, 0, 0, 0]); 4< t, and Ke � diag ([0, 7000,

0, 0, 0, 0]).
(e simulation results are shown in Figures 2–7. Fig-

ures 2 and 3, respectively, show the position tracking tra-
jectory and position error of the three control algorithms. It

can be seen that they all can get satisfactory results by
adjusting the control parameters at 1.2 s, 1.5 s, and 0.6 s,
respectively, for the IC, AVIC, and IFTC. Compared with
the IC and AVIC, the biggest advantage of the IFTC is that
there is no position overshoot, which is a very good phe-
nomenon for the contact between robot end and environ-
ment. Figure 4 shows the contact forces of the three control
algorithms, in which the IC has no ability to track the contact
forces, while the IFTC algorithm has the least force oscil-
lation. Figures 5–7, respectively, represent the control signals
of the first three joints, i.e., the joint torque obtained by the
control algorithm.

4.2. Force/Position Tracking on the Slope Surface. When the
contact surface between the robot and the environment is
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slope, we assume that the environment position is €Xe � 0,
_Xe � 0.01, Xe � −0.130 + 0.01t. At the beginning of the
simulation, the robot has been in full contact with the en-
vironment. (e damping coefficient and stiffness coefficient
of the environment are Be � diag([0, 2, 0, 0, 0, 0]);

Ke � diag([0, 1000, 0, 0, 0, 0]).
(e purpose of this simulation is to verify and compare

the performance of three control algorithms when the robot
moves in a slowly changing environment. Figures 8 and 9
show the position tracking trajectory and position error of
the robot. (e stable tracking time of the three control al-
gorithms (IC, IFTC, and AVIC) is 1.2 s, 0.3 s, and 1.4 s,

respectively. We can conclude that the IFTC algorithm has
the shortest stable time and the smallest error. Figure 10
shows the contact force, and it can be seen that the IFTC
algorithm first reaches the force stable state. Figures 11–13,
respectively, represent the control signals of the first three
joints, i.e., the joint torque obtained by the control
algorithm.

4.3. Force/Position Tracking on the Sinusoidal Surface.
When the contact surface is sinusoidal, the location of the
environment Xe is selected: €Xe � −0.01 sin(t),
_Xe � 0.01 cos(t), Xe � −0.130 + 0.01 sin(t). In order to

0 1 2 3 4 5 6 7 8
t(s)

0

200

400

To
l (

N
m

)

IFTC

(c)
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Figure 19: (e torque of the third joint on the sinusoidal surface.
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achieve better results, the starting point of the end of the
manipulator is in contact with the environment. (e coef-
ficient of the environment is as follows:
Be � diag([0, 2, 0, 0, 0, 0]); Ke � diag([0, 1000, 0, 0, 0, 0]).

(e purpose of these simulations is to test the robustness
of the three methods for position tracking and force tracking
on complex surfaces (sinusoidal surfaces as an example).
Figures 14 and 15 show the position tracking results and
their errors. All of the three methods can achieve good
results at 1.0 s, 1.4 s, and 0.4 s, respectively, for IC, AVIC, and
IFTC. Figure 16 shows the force tracking results.(e contact
force of IFTC is the most stable. Figure 17, Figure 18, and
Figure 19 are the joint torque control signals, from which it
can be seen that AVIC even appears severe vibration. (e
simulation results show that IFTC has good robustness.

5. Discussion

(e above simulation results show that, under different
environment conditions, the three control algorithms can
achieve satisfactory position tracking effect; from the above
three groups, we can draw the following conclusions. First of
all, these three control methods can make the robot track the
given trajectory. If the appropriate parameters are set, the
satisfactory tracking effect can be obtained. Secondly, for the
classical impedance control algorithm, it does not have the
ability of force tracking. (irdly, since AVIC mainly focuses
on the tracking of contact force in the design of control
strategy, the setting of the impedance parameter should be
considered, when using; otherwise, the system will be un-
stable; from the simulation results, the force tracking results
of IFTC are better.

(e simulation results show that the control method can
achieve good tracking effect in both uncertain environment
and uncertain model.

6. Conclusion

Aiming at the position/force control problem of the robot
when the model and position are uncertain, this paper
proposes a new method of impedance with finite-time
control. (e introduction of finite-time control ensures the
stability of the system in finite time. On the one hand, it
improves the response speed; on the other hand, it ensures
the tracking accuracy and has better robustness and anti-
interference performance. It does not need the complex
dynamics knowledge of the robot, and the calculation is
simple. (eoretical analysis and simulation results show that
the control method proposed by the authors is effective. (e
effectiveness of the algorithm is proved by a series of sim-
ulations. Furthermore, a real robot platform is being built,
after which the algorithm will be strictly verified by
experiments.
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