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In the risk assessment of water inrush in karst tunnel, it is most important to provide an available theoretical model for qualifying
the epistemic uncertainties due to a lack of knowledge and information. Firstly, a mechanical model dependent on geology is
introduced associating with four parameters, i.e., the elastic modulus (E), the Poisson ratio (μ), the water differential pressure (q),
and the tunnel radius (a). .en, a mathematical model representing epistemic uncertainty is represented with probability theory
and possibility theory..emethodology was computerized to calculate the distribution of the margin and uncertainty and then to
determine the ratio of “margin/uncertainty.” Analyses involving possibility theory and possibility theory are illustrated with the
same engineering example used in the presentation indicated above to illustrate the use of probability to represent aleatory and
epistemic uncertainty in QMU analyses. .e comparison between the uses of possibility theory and probability theory for the
representation of aleatory and epistemic uncertainty indicates that the possibility is not only has a better mathematical structure
than probability theory but also has some challenges.

1. Introduction

Risk and uncertainty are very important factors for decision-
making [1]. .erefore, there is considerable research
assessing the risk of water inrush. In general, quantitative
analyses of water inrush occurring in tunnels during con-
structing are performed using mathematical and mechanical
models that provide a representation of water inrush in
tunnels based on a number of hypotheses and parameters.
.e model may be stochastic (e.g., fuzzy comprehensive
evaluation, analytic hierarchy process, and attribution
synthetic evaluation system) [2–4] or deterministic (e.g.,
mechanical model of outburst prevention layer) [5–7].

Stochastic models of water inrush risk are generally
associated with qualitative and semiquantitative analysis.

Several indexes related to geology or construction may be
considered in these models, and the weight coefficient is
calculated through experience of the experts. For example,
the attribution mathematics model is based on influencing
factors and attribution measures calculated through a
function derived from experience of the experts or data [2].
Fault tree analysis relies on approaches including extracting
information from databases, solving stochastic differential
equations, or relying on expert judgment to compute
probabilities of basic events [3]. A fuzzy comprehensive
evaluation system is another method constructed to evaluate
risk using fuzzy mathematics theory [4], indices are deter-
mined based on the principles, and the weight of every index
is distributed using analytic hierarchy process (AHP) or
expertise. Based on the karst distribution pattern and the
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karst water inrush resisting rock strata, the assessment
model for the karst water inrush risks is established [5]. Due
to the great difference among influencing factors under
different hydrogeological conditions, the risk prediction of
water inrush of karst tunnels based on the BP neural network
is adopted [6].

.e models mentioned above are based on indices,
weight coefficient, expert judgment, and so on, which are
subjective parameters. .e deterministic models overcome
the aforementioned limitations, such as the mechanical
model of the outburst prevention layer [7]. Using several
variables, an analytical solution to assess the ground water
inflow rate into a tunnel is presented using a mathematical
derivation that considers excavation-induced rock perme-
ability reduction in the vicinity of a tunnel based on the
hydromechanical coupling effect [8].Deterministic models
may consider influencing parameters such as water pressure
and hydraulic conductivity [9, 10].

However, in practice, water inrush risk in tunnels cannot
be characterized via analysis because the knowledge of the
underlying phenomena for the water inrush is limited. .is
leads to uncertainties in the analysis, which cannot be de-
scribed or foreseen due to intrinsic variability of water in-
rush itself or due to the lack of knowledge and information.
Furthermore, this leads in practice to uncertainty on both
values of the model parameters and on the hypotheses,
which support the model structure. Such uncertainties
propagate within the model and causes variability in its
output, for example, when many values are plausible for a
parameter, the output of the model is different. .e quan-
tification and characterization of the resulting output un-
certainty is an important issue when the model of water
inrush is used to guide decision-making. .is topic is dis-
cussed as the uncertainty analysis of water inrush.

.is paper aims at quantifying margins and uncertainties
derived from uncertainties in the analysis input. We illus-
trate the ideas of uncertainty analysis by assuming that the
deterministic model of water inrush in a tunnel is described
as f(X), which depends on the input quantities X� {x1, x2,...,
xn} and on the function f; the quantity of interest Y (Y is
defined by the minimum safe thickness) is computed by
using the deterministic model Y� f(X). .erefore, the un-
certainty analysis of Y is described as a representation of X
and propagation through function f. Typically, the uncer-
tainty about X and f are treated separately. .e represen-
tation of X has been developed using the probability theory
in another article [11] and using the mechanical function f. If
the representation of X is obtained using different methods,
the propagation is different under different conditions for
the same function f.

.ere are two types of uncertainty in risk assessment:
aleatory and epistemic uncertainty, which can be distin-
guished easily [12]. Aleatory uncertainty is related to the
material properties of a component or system, which refers
to the phenomena occurring in a random way. .us, the
probability method offers a sound and efficient approach to
describe such uncertainty. Epistemic uncertainty is derived
from the lack of knowledge about the properties or the
behavior of the systems, which manifests in the

representation of system behavior, in terms of both un-
certainties of the hypotheses assumed and parameter un-
certainty in fixed but poorly known values.

.e representation of uncertainty of water inrush risk is
provided in another paper. In the probabilistic approach,
uncertainties are represented by probability associated with
margins. However, it is challenged under the conditions of
limited or lacking knowledge because a specific probability
assignment is not provided due to the lack of knowledge and
limited information. Furthermore, in a decision-making
context, a probability assessment based on subjective
judgment may not be satisfactory..is is related to a number
of research studies in the other fields, which has led to the
development of alternative representations [13]. Two rep-
resentations may be suitable for water inrush risk assess-
ment: possibility theory and evidence theory.

As indicated in the discussion of [14], there are also some
questions for the use of possibility theory in the risk analyses
of water inrush in the karst tunnel. .ese questions include
(1) the transition of disseminated information into possi-
bility theory structure, (2) the accumulation of information
for different sources into suitable possibility theory structure
[15], (3) the propagation of multidimensional possibility
spaces [15–18], and (4) the communication of intuitions and
views drawn from risk analysis of water inrush in the karst
tunnel that uses possibility theory to characterize uncer-
tainty [19, 20]. Although there are some challenges existing
on the use of possibility theory for representation of epi-
stemic uncertainty, it is also important to notice that similar
challenges exist on the use of probability theory of repre-
sentation of epistemic uncertainty.

.e remainder of this manuscript is organized as
follows. In Section 2, the mechanical model of water
inrush in the karst tunnel (i.e., the deterministic model or
function) is illustrated, followed by description of the
model of water inrush, the use of possibility in the rep-
resentation of epistemic uncertainty, and the QMU
analysis only that involves only epistemic uncertainty in
Section 3..en, the differences among the representations
of probability theory, possibility theory, and evidence
theory are discussed in Section 4. In Section 5, a summary
is provided to conclude the paper.

2. Mechanical Model of Water Inrush in a
Tunnel Used for Illustration

.emechanical model used in this paper is based on geology
with no defects, defined by the model of outburst prevention
layer in a tunnel face, and measured with the safe thickness
of the outburst prevention layer. In particular, the behavior
of the water inrush is described by the equation [21]

l �

����������

3a3(1 − μ)q
40E

3

􏽳

, (1)

where E is elastic modulus, μ is Poisson ratio, q is water
differential pressure, and l is the tunnel radius.

.e vector eM of epistemic uncertain input is described
as
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eM � eM1, eM2, eM3, eM4􏼂 􏼃 � [E, μ, a, q]. (2)

It is clear and convenient that eM1, eM2, eM3, and eM4 are
used instead of E, μ, a, and q to note the element of eM.
Furthermore, the risk of water inrush is assumed to operate
under conditions on an unstated vector of aleatory uncer-
tainty, which is considered a fixed realization. In this con-
text, one might correspond to specified conditions for the
system. .us, the representation of the safe thickness l is
described as the notation of l(a, eM) with the incorporation
of a and eM..e aleatory uncertainty in this context does not
exist, and therefore, only epistemic uncertainty is
considered.

Uncertainty structures only with epistemic uncertainty
are specified for E, μ, a, and q based on possibility and ev-
idence theory..en, the resultant uncertainty structures for l
and related quantities are described.

.e appropriate or possible values for E, μ, a, and q are
assumed to belong to the intervals, respectively, as shown in
equations (3)–(6):

εM1 � E: Emn ≤E≤Emx􏼈 􏼉 � E: 1.8GPa≤E≤ 3.2GPa{ },

(3)

εM2 � μ: μmn ≤ μ≤ μmx􏼈 􏼉 � μ: 0.22≤ μ≤ 0.28􏼈 􏼉, (4)

εM3 � a: amn ≤ a≤ amx􏼈 􏼉 � a: 4.7m≤ a≤ 5.3m{ }, (5)

εM4 � q: qmn ≤ q≤ qmx􏼈 􏼉 � q: 2.2GPa≤ q≤ 3.8GPa􏼈 􏼉. (6)

.e only information about the appropriate values for
E, μ, a, and q is assumed to be known as described by
equations (3)–(6); no more information is provided.

3. QMU with Epistemic Uncertainty:
Characterization with Possibility Theory

3.1. Uncertainty Representation Using Possibility 7eory.
Possibility theory [22] is based on the specification of a pair
(X, π), where (i) X is the set of possible values for x and (ii) π
is a function defined such that 0≤ πX(x)≤ 1 for x ∈ X and
sup π(x): x ∈ X{ } � 1. .e function can be seen as a
measure of the amount of “confidence” assigned to each
element of x and is referred to as the possibility distribution
function for x. .e possibility distribution πX(x) reflects the
degree of similarity between x and the true value, and it
indicates the distance between x and the true value. .us, in
some cases, this may be determined objectively using a
defined measurement procedure [23]. In other cases, it may
be based on the subjective judgment of an expert or analyst.
.erefore, πX(x) � 0 means that water inrush is considered
as an impossible accident, while πX(x) � 1 means water
inrush is possible or just unsurprising, normal, or usual [24].
However, it is much weaker than when the probability is
equal to 1.

Rationally, epistemic uncertainty can be described using
possibility distribution because a possibility distribution
defines a family of probability distributions [25–27].
.erefore, the probability distributions are bounded above

by the so-called possibility function and below by so-called
necessity function.

3.2. Uncertainty Representation for a Variable. Possibility
theory refers to two measures: possibility and necessity. In
particular, possibility and necessity for a subset A of X are
defined by

Π(A) � sup
x∈X

πX(x), (7)

N(A) � 1 − Π(A) � inf
x∉X

1 − πX(x)( 􏼁. (8)

In keeping with the possibility distribution function,
Π(A) can supply a measure of the existence of information
that does not oppose the proposition that A contains the
appropriate value for X, and N(A) can supply a measure of
the existence of uncontradicted information that supports
the proposition that A contains the appropriate value for
X.

In possibility theory, relationships are satisfied as [28]

Π(A) + N(A) � Π(A) + N(A) � 1, (9)

N(A) ≤Π(A), (10)

Π(A) + Π(A)≥ 1, (11)

N(A) + N(A)≤ 1, (12)

max Π(A),Π(A)􏼈 􏼉 � 1, (13)

min N(A), N(A)􏼈 􏼉 � 0, (14)

Π(A)≤ 1⇒N(A) � 0, (15)

N(A)≥ 0⇒Π(A) � 1. (16)

For possibility theory, four subintervals are considered
for each of the intervals εMi, i� 1, 2, 3, and 4, as described by
equations (3)–(6):

Εi1 � c, b −
(b − c)

4
􏼢 􏼣, (17)

εi2 � c +
(b − c)

4
, b􏼢 􏼣, (18)

εi3 � c +
(b − c)

8
, b −

3(b − c)

8
􏼢 􏼣, (19)

εi4 � c +
3(b − c)

8
, b −

(b − c)

8
􏼢 􏼣, (20)

where [c, b] corresponds to [Emn, Emx], [μmn, μmx],
[amn, amx], and [qmn, qmx] for i� 1, 2, 3, and 4, respectively.
In turn, the possibility distribution function πEM,i(eMi) is
given by
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πEM,i eMi( 􏼁 � 􏽘
4

j�1

δij eMi( 􏼁

4
, (21)

δij eMi( 􏼁 �
1, if eMi ∈ εij,

0, otherwise.
􏼨 (22)

According to equations (3)–(6) and (16)–(21), the
possibility distributions πEM,i(eMi), i� 1, 2, 3, 4, for E, μ, a,
and q are described, as shown in Figure 1.

3.3. Uncertainty Propagation. According to the uncertainty
propagation framework suggested in the previous section, a
model is assumed whose output is a function (as shown in
equation (1)), concerning n uncertain variables
Xj, j � 1, 2, . . . , 4, (i.e., X1 � E, X2 � μ, X3 � a, and X4 � q)
which are “possibilistic.” .is means that uncertainty is
described by possibility distributions (or fuzzy distributions)
[29] πE(x1), πμ(x2), πa(xj), and πq(xn). In such a case, the
propagation of uncertainty can be defined by fuzzy interval
analysis (FIA) in possibility theory [30]. In summary, it can
be seen that convolutions defining fuzzy arithmetic essen-
tially reduce to interval arithmetic repeated many times,
once for each level of possibility; however, unlike interval
analysis, fuzzy arithmetic [31] provides a possibility distri-
bution rather than a simple range.

In particular, the steps of the uncertainty propagation
procedure are operated by FIA as follows [32]:

(1) Suppose α � 0.
(2) Use the line α to cut the possibility distributions

πE(x1), πμ(x2), πa(x3), and πq(x4) separately. .en,
the α−cuts AE

α , A
μ
α, Aa

α, andA
q
α of the “possibilistic”

variables Xj, j � 1, 2, 3, 4, are selected, and thus, the
interval of possible values xj,α, xj,α, j � 1, 2, 3, 4, as
shown in Figure 2.

(3) According to the interval of possible values
xj,α, xj,α, j � 1, 2, 3, 4, and l � Y � f(X) �

f(E, μ, a, q). Xj is a random sample eMi (i� 1, 2, . . .,
nSE� 1000); then, compute the values of Y, and
select the smallest and largest values of Y, which are
denoted by yα and yα. Similarly, the variable range
Xj is selected within the intervals
xj,α, xj,α, j � 1, 2, 3, 4:

yα � inf
j,Xj∈ xj,α ,xj,α

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
f X1, X2, X3, X4( 􏼁,

(23)

yα � sup
j,Xj∈ xj,α ,xj,α

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

f X1, X2, X3, X4( 􏼁.
(24)

(4) .us, the values yα and yα calculated above in step 3
are considered as the lower and upper limits (i.e., the
smallest and largest values) of the α−cuts AY

α of y.
(5) Next, if α< 1, set α � α + Δα (e.g.,Δα � 0.001) and

return to step 2, above; otherwise, stop the algorithm.

.en, the possibility distribution πY(Y) of
Y � f(X1, X2, X3, X4) is provided across the accu-
mulation of the values yα and yα from each α−cuts
(notice that since Δα � 0.001, then Nα � (q + 1) �

1/(Δα + 1) � 1/(0.001 + 1) � 1001 values of are
considered in the computational procedure,
i.e., Nα � 1001α − cuts of the possibility distribu-
tions πE(x1), πμ(x2), πa(x3), and πq(x4) are se-
lected. .us, the possibility distribution πY(Y) of
Y � f(X1, X2, X3, X4) is constructed as the collec-
tion of its Nα � (q + 1) � 1/(Δα + 1) � 1/
(0.001 + 1) � 1001α−cuts intervals |Yα, Yα|).

According to equations (1), (3)–(6), and (17)–(22) and
Figure 1, the possibility distributions πl for l can be computed
based on the propagation procedure, as shown in Figure 2.

It is importance noting that performing an interval
analysis on α−cuts assumes total dependence between the
parameters involving epistemic uncertainty. In fact, this
propagation procedure implies potent dependence between
the sources of information (e.g., the experts or observers)
that provide the input possibility distributions because the
same confidence level (1 − α) is selected to construct the
α−cuts for all uncertain variables [33].

3.4. Epistemic Uncertainty without a Specified Bound. As
discussed previously, the possible values for l(a, eM) are
considered, which are

l � l a, eM( 􏼁: eMi � [E, μ, a, q], (25)

where eM is considered a fixed realization associated with
aleatory uncertainty. l has an uncertainty form deriving
from the uncertainties of εM. .en, the uncertainty of
l(a, eM) can be characterized by an interval (i.e.,
[Π(A), N(A)]).

According to equations (6) and (7) and the possibility
distribution πl shown in Figure 2, the cumulative distri-
butions and complementary cumulative distributions of
possibility values for l(a, eM) are described in Figures 3 and
4, respectively.

.e cumulative distributions and complementary cu-
mulative distributions have step sizes of 0.25 because the
possibility distribution function for l(a, eM) has step sizes of
0.25 (Figure 2), which is computed through the possibility
distributions πEM,i(eMi), i� 1, 2, 3, 4, and uncertainty
propagation procedure (equations (6) and (7) and
(17)–(24)).

Taking the possible value of 1.8 for l(a, eM) as an ex-
ample (dash lines in Figures 5 and 6), all information known
about the value of 1.8 is involved in the interval
[inf(l), sup(l)] � [1.626, 2.586], which indicates the possible
values for l(a, eM). In the interval analysis results, there is
nothing else known about 1.8 or the confidence levels of the
other potential values for l(a, eM) near the location of 1.8.
.at is to say, no more information is provided for giving to
the possibility of whether the inequality l(a, eM)≤ 1.8 is true
or the inequality l(a, eM)≥ 1.8 is true.
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As shown in Figure 5, more information about the
possible value of 1.8 for l(a, eM) is now discussed. At the
beginning, the condition that measures of credence exist for
the potential values of l(a, eM) less than or equal to 1.8 is
considered.

Suppose the measures of credence exist for a set, which is
described as

l1.8 � l: l ∈ l and l≤ 1.8􏽮 􏽯. (26)

.en, the measures can be described as equation (26) for
possibility theory:

Nl l1.8( 􏼁,Πl l1.8( 􏼁􏼂 􏼃 � [0.0, 0.75]. (27)

Possibility and necessity, which are denoted by Nl(l1.8)

and Πl(l1.8), respectively, are two measures of credence
combined with the set l1.8:

0 � N l1.8( 􏼁≤Πl l1.8( 􏼁 � 0.75, (28)

where Nl(l1.8) means a measure of presentation that does
not contradict information supporting the proposition that
the suitable value for l(a, eM) is contained in l1.8, andΠl(l1.8)

means a measure of presentation for the information which
does not refute the proposition that the suitable value for
l(a, eM) is contained in l1.8.

.e condition that measures of the credence exist for
potential values of l(a, eM) greater than 1.8 is now con-
sidered. Suppose the measures of credence exist for a set,
which can be described as
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Figure 1: Possibility distributions: (a) πE for E (b) πμ for μ, (c) πa for a, and (d) πq for q. .ey should be listed as (a) possibility distribution
πEM,i for E; (b) possibility distribution πEM,i for μ; (c) possibility distribution πEM,i for a; and (d) possibility distribution πEM,i for q.
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Figure 2: Possibility distributions πl of output l obtained by FIA
with α−cuts intervals.
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l
c
1.8 � l: l ∈ l and l≥ 1.8􏽮 􏽯. (29)

.en, the measures can be described as equation (29) for
possibility theory:

Nl l
c
1.8( 􏼁,Πl l

c
1.8( 􏼁􏼂 􏼃 � [0.25, 1.0]. (30)

As discussed above, Nl(lc1.8) � 0.25 provides a measure
of credence in the possibility theory, which is the presen-
tation of no contradicted information supporting the
proposition that the suitable value for l(a, eM) is contained
in lc1.8. Likewise, Πl(lc1.8) � 1.0 provides a measure of the
credence in the possibility theory, which is the presentation
of information that does not refute the proposition that the
suitable value for l(a, eM) is contained in lc1.8.

.e relationships existing between measures of confi-
dence for suitable values and measures of confidence for the
complements of the suitable values are indicated as equa-
tions (31) and (32), holding as indicated in equation (8):

1 � Nl l1.8( 􏼁 +Πl l
c
1.8( 􏼁 � 0.0 + 1.0, (31)

1 � Nl l
c
1.8( 􏼁 + Πl l1.8( 􏼁 � 0.25 + 0.75. (32)

Extrarelationships are considered for possibility theory
as indicated in equations (8)–(16). On the whole, it is more
nuanced for the representation of epistemic uncertainty with
possibility theory than with probability theory because
possibility theory provides discrimination between infor-
mation that does not contradict a proposal and information
that supports a proposal.

3.5. Epistemic Uncertainty with a Specified Bound. QMU
analysis with a fixed bound concerning the value for l(a, eM)

is considered. Two types of bounds are considered,
bounding l(a, eM) from below (e.g., lb1 � 1.55 and lb2 � 1.75,
seen in Figure 7) and from above (e.g., lb3 � 2.4 and lb4 � 2.6,
seen in Figure 8).

As shown in Figure 7, all possible values for l(a, eM) are
above the bound lb1 � 1.55, but this is different for the bound
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Figure 5: CPoF and CNF of uncertainty associated with l(a, eM)
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lb2 � 1.75. .e possibility and necessity below the bound
lb2 � 1.75 are 0.75 and 0.0, respectively.

Similarly, as shown in Figure 8, all possible values for
l(a, eM) are below the bound lb4 � 2.6, but this is different
for the bound lb3 � 2.4. .e possibility and necessity ex-
ceeding the bound lb3 � 2.4 are 0.75 and 0.0, respectively.

According to the cumulative distributions and com-
plementary cumulative distributions of l(a, eM), the margins
between l(a, eM) and bounds lbk, k � 1, 2, 3, and 4, are de-
fined as

lmk a, eM( 􏼁 �
l a, eM( 􏼁 − lbk, for k � 1, 2,

lbk − l a, eM( 􏼁, for k � 3, 4,
􏼨 (33)

where lmk(a, eM)≥ 0 means that a bound is satisfied and
lmk(a, eM)< 0 means that a bound is not satisfied. .erefore,
it is good for a positive margin and bed for a negative
margin. Because l(a, eM) is uncertain, the margins
lmk(a, eM), k � 1, 2, 3, 4, are uncertain too. .e uncertainty
structure of lmk(a, eM), k � 1, 2, 3, 4, propagated by uncer-
tainties assumed for eM (i.e., E, μ, a, and q) is described as
Figure 9. Furthermore, a complete QMU representation
associated with a complete representation of margins

lmk(a, eM), k � 1, 2, 3, 4, and uncertainty is described by the
representation shown in Figure 9.

Sometimes, a QMU representation can be provided by
the ratio of “margin/uncertainty,” defined by equation (34)
and depicted as Figure 10.

lnk a, eM( 􏼁 �
lmk a, eM( 􏼁

lbk

�

l a, eM( 􏼁 − lbk􏼂 􏼃

lbk

, for k � 1, 2,

lbk − l a, eM( 􏼁􏼂 􏼃

lbk

, for k � 3, 4.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(34)

.e form of the representation described as the ratio of
“margin/uncertainty” contains not only the margin but also
the bounding value that some individuals may like. How-
ever, the form does not describe the actual size of the margin,
and an important amount of information is lost because the
margin is presented as a multiple of the bounding value.

According to discussions above, QMU representation
with possibility theory is a good attempt to reduce the
complicated analysis to a single number when the knowledge
is limited.

4. Relationship between Epistemic
Uncertainty with Probability Theory and
Possibility Theory

As discussed above, the possibility distribution representing
epistemic uncertainty can describe a family of probability
distribution. .e possibility function defines the boundary
above the probability distributions and the necessity func-
tion defines the boundary below the probability
distributions.

According to the previous section and the representation
of epistemic uncertainty with probability theory discussed in
[11], the differences in uncertainty associated with margins
lmk(a, eM), k � 1, 2, 3, 4, between the possibility and proba-
bility theories are shown in Figure 11. Similarly, the dif-
ferences in uncertainty connected with another denotation
defined as normalized margins (i.e., the ratio of “margin/
uncertainty”) can be described in Figure 12.

As shown in Figures 11 and 12, the possibility of margins
is the probability bound above and the necessity is the
probability bound below. Simultaneously, there are some
differences in the representation of epistemic uncertainty
characterized by the possibility and probability theories.

4.1. Possibility and Necessity Can Be Described as Probability
Bounds. As shown in Figure 2, the possibility distribution
can be viewed as a nested set of confidence intervals, denoted
by AY

α � |yα, yα| � y, πY(Y)≥ α􏼈 􏼉. N(|yα, yα|) is the degree
of certainty that the value of an uncertain variable is con-
tained in AY

α , while πY(Y) is continuous. In particular, the
quantity of the uncertainty is a most conservative estimate at
the possibility level of α � 0 because the range of values is the
widest, which means that the range would contain the true
value in the interval. Similarly, the great optimism
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Figure 7: Bounding l(a, eM) from below: lb1 � 1.55 and lb2 � 1.75.
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corresponds to the possibility level of α � 1 because the
range of values is the narrowest, which would be the best
estimate of the uncertainty. If 0< α< 1, the ranges of values
are intermediately expressed by possibility.

Suppose a nested of intervals Ai with degrees of necessity
N(Ai) containing values of uncertain variables, where
Ai ∈ Ai+1, i � 1, 2, . . . , m − 1; then, the body of evidence
[(A1, N(A1)), (A2, N(A2)), . . . , (Am, N(Am))] is formed.
.e possibility distribution obeys

πY(y) �

1,

min
i: y∉Ai

1 − N Ai( 􏼁,

if y ∈ Ai( 􏼁,

otherwise.

⎧⎪⎨

⎪⎩
(35)

.erefore, the subjective probability pY(A) is at least
equal to N(A). In particular, the α-cut of the continuous
possibility distribution can be described as

p uncertain variable ∈ yα, yα

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≥ 1 − α, (36)

which is equivalent to the inequality

p uncertain variable ∉ yα, yα

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤ α. (37)

.us, any necessity/possibility function can be inter-
preted as lower/upper probabilities from specific probability
families (i.e., degrees of possibility can be described as upper
probability bounds and degrees of necessity can be described
as lower probability bounds).

Formally, πY is denoted as a possibility distribution
including necessity and possibility functions of [N,Π]. .e
probability family can be defined as

pY,∀Ameasureable: N(A)<pY(A)􏼈 􏼉and

pY,∀Ameasureable: pY(A)<Π(A)􏼈 􏼉.
(38)

It also can be described as

sup
pY

pY(A) � Π(A),

inf
pY

pY(A) � N(A).
(39)

.us, we know that pY ∈ ⌊pY
, pY⌋, p

Y
� N, and pY � Π.

4.2. Qualitative Comparisons of Probability 7eory and Pos-
sibility7eory. As discussed above, possibility and necessity
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Figure 9: Uncertainty connected with margins lmk(a, eM), k � 1, 2, 3, 4, defined in equation (32) characterized by possibility summarized
with CPoF and CNF: (a) lm1(a, eM) for lm1 � 1.55, (b) lm2(a, eM) for ln2 � 1.75, (c) lm3(a, eM) for lm3 � 2.4, and (d) lm4(a, eM) for lm4 � 2.6.
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Figure 10: Uncertainty connected with normalized margins lnk(a, eM), k � 1, 2, 3, 4, defined in equation (33) characterized by possibility
summarized with CPoF and CNF: (a) ln1(a, eM) for ln1 � 1.55, (b) ln2(a, eM) for ln2 � 1.75, (c) ln3(a, eM) for ln3 � 2.4, and (d) ln4(a, eM) for
ln4 � 2.6.
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Figure 11: Continued.
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Figure 11: Uncertainty connected with margins lmk(a, eM), k � 1, 2, 3, 4, characterized by possibility summarized with CPoF and CNF and
by probability summarized with CDF: (a) lm1(a, eM) for lm1 � 1.55, (b) lm2(a, eM) for ln2 � 1.75, (c) lm3(a, eM) for lm3 � 2.4, and (d)
lm4(a, eM) for lm4 � 2.6.
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Figure 12: Uncertainty connected with normalized margins lnk(a, eM), k � 1, 2, 3, 4, characterized by possibility summarized with CPoF
and CNF and by probability summarized with CDF: (a) ln1(a, eM) for ln1 � 1.55, (b) ln2(a, eM) for ln2 � 1.75, (c) ln3(a, eM) for ln3 � 2.4, and
(d) ln4(a, eM) for ln4 � 2.6.
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are two measures from the possibility theory. .e funda-
mental difference in the two structures is that the possi-
bilistic one is based on the families of nested sets and the
probabilistic one is based on singletons. Furthermore, the
difference in distributions is described as follows: the largest
values are required to be 1 in the possibility theory but to add
to 1 in the probability theory. Each theory is suitable for
different models in different mathematical properties.

5. Summary and Prospects

With adequate uncertainty representation, the risk of water
inrush in karst tunnels can be suitably assessed. .e im-
portant decisions will be based on the analysis according to
the implications and effects of uncertainty, which must be
represented by an appropriate form. QMU may be an ap-
propriate method for the representation of uncertainty with
possibility.

In addition, possibility is an appropriate mathematical
structure that can characterize uncertainty. Risk analyses for
water inrush in karst tunnels include the representations of
both aleatory and epistemic uncertainties.

Both aleatory and epistemic uncertainties were repre-
sented by the probability theory. However, many other
mathematical structures have been presented instead of
probability theory; for example, interval analysis, evidence
theory, and possibility theory. In this paper, possibility for
the representation of aleatory uncertainty and epistemic
uncertainty is described, and then, it is demonstrated under
the conditions of QMU..rough an example, it is illustrated
that the possibility theory is better than the probability
theory in the representation of epistemic uncertainty for risk
analyses of water inrush in karst tunnels.

In particular, if the distributions of the parameters are
known andmore information is given, the probability theory
may be a good mathematical structure for the representation
of uncertainty. However, only little information of water
inrush in the karst tunnel is available during construction.
.us, the possibility theory is a better mathematical struc-
ture than the probability theory because it (1) allows more
uncertainty information than interval analysis, (2) permits
the assumption of less detailed information than the
probability theory, and (3) describes a differentiation be-
tween the amount of convenient knowledge supporting a
proposition that water inrush of the karst tunnel will occur
and the amount of convenient knowledge that does not
refute the proposal.
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