Mathematical Problems in Engineering

ANN architecture specifications for modelling of open-cell aluminum under compression

Marek Dudzik, ${ }^{1}$ and Anna Małgorzata Stręk, ${ }^{2}$
${ }^{1}$ Cracow University of Technology, Faculty of Electrical and Computer Engineering, Department of Traction and Traffic Control, ul. Warszawska 24, 31-155 Kraków, Poland; marekdudzik@pk.edu.pl.
${ }^{2}$ Cracow University of Technology, Faculty of Civil Engineering, Institute of Structural Mechanics, ul. Warszawska 24, 31-155 Kraków, Poland; anna.strek@pk.edu.pl.

Correspondence: marekdudzik@pk.edu.pl (M.D.), anna.strek@pk.edu.pl (AM.S.)

Supplementary Materials

Figure A.1. Values of $M S E, M S E_{[5]}$ in dependence of the number of neurons in the hidden layer for networks for 11-samples input, sample no. 1 excluded.

Figure A.2. Values of $M S E, M S E_{[5]}$ in dependence of the number of neurons in the hidden layer for networks for 11 -samples input, sample no. 8 excluded.

Figure A.3. Values of $M S E, M S E_{[5]}$ in dependence of the number of neurons in the hidden layer for networks for 11 -samples input, sample no. 12 excluded.

Figure A.4. Values of $M A R E, M A R E_{[5]}, R M S$ and $R M S_{[5]}$ for networks with 11 -sample input in dependence of the number of neurons in the hidden layer; data for sample no. 1 excluded from inputs.

Figure A.5. Values of $\operatorname{MARE}, \operatorname{MARE}_{[5]}, R M S$ and $R M S_{[5]}$ for networks with 11 -sample input in dependence of the number of neurons in the hidden layer; data for sample no. 8 excluded from inputs.

Figure A.6. Values of $\operatorname{MARE}, \operatorname{MARE}_{[5]}, R M S$ and $R M S_{[5]}$ for networks with 11 -sample input in dependence of the number of neurons in the hidden layer; data for sample no. 12 excluded from inputs.

Figure A.7. A linear fit between network's outputs and targets for all learning stages separately and combined. For the network taught on 12 -specimens set, with 4 neurons in the hidden layer; $M A R E \leq 10 \%$ individually for the first time

Figure A.8. A linear fit between network's outputs and targets for all learning stages separately and combined. For the network taught on 12 -specimens set, with 47 neurons in the hidden layer; best MARE .

Figure A.9. A linear fit between network's outputs and targets for all learning stages separately and combined. For the network taught on 11-specimens set (sample no. 1. excluded) with 5 neurons in the hidden layer; $M A R E \leq 10 \%$ individually for the first time.

Figure A.10. A linear fit between network's outputs and targets for all learning stages separately and combined.
For the network taught on 11 -specimens set (sample no. 1. excluded) with 8 neurons in the hidden layer; $M A R E \leq 5 \%$ individually for the first time.

Figure A.11. A linear fit between network's outputs and targets for all learning stages separately and combined. For the network taught on 11-specimens set (sample no. 1. excluded) with 47 neurons in the hidden layer; best MARE.

Figure A.12. A linear fit between network's outputs and targets for all learning stages separately and combined. For the network taught on 11-specimens set (sample no. 8. excluded) with 4 neurons in the hidden layer; $M A R E \leq 10 \%$ individually for the first time.

Figure A.13. A linear fit between network's outputs and targets for all learning stages separately and combined. For the network taught on 11-specimens set (sample no. 8. excluded) with 8 neurons in the hidden layer; $M A R E \leq 5 \%$ individually for the first time.

Figure A.14. A linear fit between network's outputs and targets for all learning stages separately and combined. For the network taught on 11 -specimens set (sample no. 8. excluded) with 48 neurons in the hidden layer; best MARE.

igure A.15. A linear fit between network's outputs and targets for all learning stages separately and combined. For the network taught on 11 -specimens set (sample no. 12. excluded) with 5 neurons in the hidden layer; MARE $\leq 10 \%$ individually for the first time.

Figure A.16. A linear fit between network's outputs and targets for all learning stages separately and combined. For the network taught on 11 -specimens set (sample no. 12. excluded) with 7 neurons in the hidden layer; $M A R E \leq 5 \%$ individually for the first time.

Figure A.17. A linear fit between network's outputs and targets for all learning stages separately and combined. For the network taught on 11 -specimens set (sample no. 12. excluded) with 50 neurons in the hidden layer; best MARE.

Figure A.18. Error histograms for networks for which $M A R E \leq 10 \%$ individually for the first time. (a) The 12samples input, 4 neurons; (b) The 11 -samples input (no. 1 excl.), 5 neurons; (c) The 11 -samples input (no. 8 excl.), 4 neurons; (d) The 11 -samples input (no. 12 excl.), 5 neurons.

Figure A.19. Error histograms for networks for which MARE $\leq 5 \%$ individually for the first time. (a) The 11samples input (no. 1 excl.), 8 neurons; (b) The 11 -samples input (no. 8 excl.), 8 neurons; (c) The 11 -samples input (no. 12 excl.), 7 neurons.

Figure A.20. Error histograms for networks for the best MARE. (a) The 12 -samples input, 47 neurons; (b) The 11 -samples input (no. 1 excl.), 47 neurons; (c) The 11 -samples input (no. 8 excl.), 48 neurons; (d) The 11samples input (no. 12 excl.), 50 neurons.

Figure A.21. Relative errors for networks for which MARE $\leq 10 \%$ individually for the first time. (a) The 12samples input, 4 neurons; (b) The 11 -samples input (no. 1 excl.), 5 neurons; (c) The 11 -samples input (no. 8 excl.), 4 neurons; (d) The 11 -samples input (no. 12 excl.), 5 neurons.

Figure A.22. Relative errors for networks for which $M A R E \leq 5 \%$ individually for the first time. (a) The 11 samples input (no. 1 excl.), 8 neurons; (b) The 11 -samples input (no. 8 excl.), 8 neurons; (c) The 11 -samples input (no. 12 excl.), 7 neurons.

(b)

Figure A.24. Regression line from testing of the network taught on 11 -specimens set (sample 1 excl.).
(a) Structure with 5 neurons; (b) Structure with 47 neurons.

Figure A.25. Regression line from testing of the network taught on 11 -specimens set (sample 8 excl.). (a) Structure with 4 neurons; (b) Structure with 48 neurons.

(a)

(b)

Figure A.26. Regression line from testing of the network taught on 11 -specimens set (sample 12 excl.). (a) Structure with 5 neurons; (b) Structure with 50 neurons.

Figure A.27. Error histogram from testing of the network taught on 11 -specimens set (sample 1 excl.). (a) Structure with 5 neurons; (b) Structure with 47 neurons.

Figure A.28. Error histogram from testing of the network taught on 11 -specimens set (sample 8 excl.). (a) Structure with 4 neurons; (b) Structure with 48 neurons.

Figure A.29. Error histogram from testing of the network taught on 11 -specimens set (sample 12 excl.). (a) Structure with 5 neurons; (b) Structure with 50 neurons.

Figure A.30. Relative errors from testing of the network taught on 11 -specimens set (sample 1 excl.). (a) Structure with 5 neurons; (b) Structure with 47 neurons.

(a)

(b)

Figure A.31. Relative errors from testing of the network taught on 11 -specimens set (sample 8 excl.). (a) Structure with 4 neurons; (b) Structure with 48 neurons.

Figure A.32. Relative errors from testing of the network taught on 11 -specimens set (sample 12 excl.). (a) Structure with 5 neurons; (b) Structure with 50 neurons.

Figure A.33. A linear fit between network's outputs and targets for all learning stages separately and combined for the network taught on 11 -specimens set (no. 8 excl.), with 4 neurons in the hidden layer. Case with 200 initial experimental data only.

Figure A.34. Error histogram for the network taught on 11 -specimens set (no. 8 excl.), with 4 neurons in the hidden layer. Case with 200 initial experimental data only.

Figure A.35. Relative errors for the network taught on 11 -specimens set (no. 8 excl.), with 4 neurons in the hidden layer. Case with 200 initial experimental data only.

Figure A.36. Regression line from testing of the network taught on 11 -specimens set with 4 neurons. Case with 200 initial experimental data only, sample 8 .

Figure A.37. Error histogram from testing of the network taught on 11 -specimens set with 4 neurons. Case with 200 initial experimental data only, sample 8.

Figure A.38. Relative errors from testing of the network taught on 11 -specimens set with 4 neurons. Case with 200 initial experimental data only, sample 8.

