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'is work gives information about the development of refined plate theory to study the static bending behavior of functionally
graded material (FGM) plates. 'e significant advantage of our proposed theory is that only one unknown variable exists in its
displacement formula and governing equation. To illustrate the accuracy and effectiveness of this theory, an analytical approach
based on the Navier solution is employed to obtain the solution for static bending of simply supported FGM plates. A good
agreement for static bending of FGM plates with other literature results has been instituted. 'is work also investigates the
deflection, in-plane normal, and shear stresses of sinusoidally loaded FGM rectangular plates with four simply supported edges.
'e influence of some parameters on the bending performance of FGM plates is also carefully considered.

1. Introduction

Because of many advantageous features of functionally
graded material (FGM), it has had numerous applications in
some fields of engineering, for example, transportation,
mechanics, and other structural applications, and the use of
this structure is growing very rapidly, so it has attracted a
great amount of concern from many researchers. Numerous
theories on the plate have been established to investigate the
dynamic and static responses as well as buckling of plates
made of advanced composite material.

Firstly, the classical plate theory (CPT) has been applied
to investigate the thin FGM plate by many researchers. In
this plate theory, the transverse shear stress is neglected, so it
cannot be applied to analyze moderate and thick plates.
Javaheri and Eslami [1] used CPT to research the buckling of
FGM plates subjected to in-plane compressive load.
Mohammadi and his coworkers [2] analyzed the buckling
behavior of FGM plates using CPT and the Levy solution.
'ermal buckling of FGM plates was investigated by
Ghannadpour et al. [3], in which, the finite strip method
based on CPT was used. Damanpack and his colleagues [4]

used the boundary element method based on CPT to in-
vestigate static bending of thin FGM plates. Nevertheless,
CPT theory accommodates to analyze thin plates only be-
cause it does not consider the effects of shear deformation.

Secondly, to overcome the disadvantage of CPT, the
Reissner–Mindlin plate theory or the first shear deformation
theory (FSDT), in which the transverse shear deformation is
assumed to be constant through the thickness of the plate,
was developed to be capable of analyzing moderate and thick
plates. Croce and Venini [5] used the Reissner–Mindlin
plate theory to develop a hierarchic family of finite elements
to analyze the static bending of FGM plates in a thermal
environment subjected to mechanical loadings. Nguyen and
his coworkers [6] applied the FSDT and the Galerkin so-
lution to investigate the postbuckling behavior of FGM
plates under a combination of mechanical loadings and
thermal loadings, in which, the material properties of the
plates depend on the temperature. Hosseini-Hashemi and
his coworkers employed FSDT [7] and the Reissner–Mindlin
plate theory [8] to investigate FGM plates in case of free
vibration. Nguyen and his colleagues [9] applied the FSDTto
develop a plate model to study the FGM plates. Shimpi and
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his collaborators [10] utilized a new theory based on FSDT,
and 'ai and his coworkers [11] established a simple theory
based on FSDT which can be used to analyze the free vi-
bration and static bending of shear deformation FGM plates.
In [12], an application of a simple theory based on FSDT for
the investigation of FG sandwich plates was carried out.
Nguyen et al. [13] developed a refined simple FSDT to
analyze the FGM plate. In this work, Nguyen presented a
new shape function to describe the distribution of shear
strain as well as shear stress of the plate through its thickness.
A combination of the FSDT and isogeometric analysis was
developed by Yu and Yin et al. [14, 15] to analyze the FGM
plates. Tan-Van et al. [16] employed a modern meshless
method based on FSDT to research the FGM plates. Because
of its constant shear stress, FSDT needs a correction coef-
ficient. However, this coefficient depends on the material
and boundary condition.

To deal with the shortcoming of the FSDT, many sci-
entists focus on developing higher-order shear deformation
plate theories (HSDT). 'e first good example is the HSDT
which was developed by Reddy [17] which was applied to
study the plates made of FGM. 'e success of this theory is
that it needs no correction coefficient and also the shear
stresses are equal to zeros on the upper surface and the lower
surface. Some other noteworthy HSDT has been carried out
by many researchers such as Javaheri and Eslami [18],
Bodaghi and Saidi [19], Ferreira et al. [20], and Talha and
Singh [21] which have been employed to analyze FGM
plates. Besides, HSDT has been combined with isogeometric
for analysis of FGM plates by Tran et al. [22], composite
sandwich plates by Nguyen-Xuan [23], and FGM plates by
'ai et al. [24]. Zenkour [25, 26] developed generalized shear
deformation theory and a HSDT with trigonometric func-
tion as well as 3D elasticity solutions to investigate thick
FGM plates. Bui and his associates [27] applied HSDT and
the finite element method (FEM) to investigate mechanical
behaviors of the plate made of FGM in the high-temperature
environment. Do et al. [28] used HSDT to analyze the
bidirection FGM plate by FEM. Mantari and Guedes Soares
[29–32] presented some other plate theories such as gen-
eralized HSDT and generalized hybrid HSDT to exponen-
tially study FGM plates and FGM shells. Arefi and his
coworkers [33] applied a two-variable sinusoidal shear de-
formation theory and a physical neutral surface to investi-
gate FGM plates with the piezoelectric layer resting on the
Winkler–Pasternak foundation. Tornabene and his col-
leagues [34] studied double-curved, singly curved, revolu-
tion shells and plates using a generalized HSDT in
combination with the local generalized differential quad-
rature method. Mechab and his coworkers [35] applied a
new theory to inspect the static bending and dynamic re-
sponse of FGM plates, in which, the number of variable
unknowns of the theory is four. Benachour et al. [36] in-
vestigated the free vibration of plates made of FGM by
applying a new plate theory which contains four variable
unknowns. Using a novel method where the transverse
displacement was separated into two parts, Shimpi [37]
developed a new two-variable and single-variable refined
plate theory (RPT) to study isotropic plates. His idea was

developed and applied to investigate orthotropic plates by
Shimpi and Patel [38], 'ai and Kim [39], and Mechab et al.
[40] with two unknown variables. Another extended work by
Shimpi et al. was presented in [41], in which a single-variable
refined theory with an inertia associated term in its dis-
placement field is applied to study free vibrations of isotropic
plates. Filippi et al. [42] developed a number of plate ele-
ments based on an improved theory based on a zig-zag
power function to analyze metallic and composite layered
structures with viscoelastic layers. In another extended work
by Carrera and his colleagues [43], a comprehensive of
classical, higher-order, zig-zag, and variable kinematic shell
elements were established for analysis of composite multi-
layered structures. Alaimo et al. [44] presented a develop-
ment of an advanced analytical formulation for damped free
vibration and frequency response analysis of composite plate
structures embedding viscoelastic layers model. In this work,
the governing equations were derived by using the principle
of virtual displacement and layer-wise models which asso-
ciated to linear up to fourth-order variations of the unknown
variables in the thickness direction.

Because the RPT is very simple in its formulas, it has had a
large number of appliances in a lot of works to investigate
many kinds of the plate including isotropic and orthotropic
plates. However, according to the experiences of the authors,
there are no works using this theory to investigate the plate
with a continuous varying of properties such as FGM. In the
current work, a development is operated to modify RPT, so
this theory consists of only one unknown variable, and then it
is employed to investigate the static bending problem of FGM
plates. 'e Navier solution is occupied to solve the governing
equation of fully simple supported FGM plates. 'e proposed
theory is verified by validity studies. Besides, the investigation
about the effects of some parameters on the static bending
behavior of the plate is also considered and debated.

2. Material Properties of FGM Plates

'e FGM plate was made by mixing two or more different
ingredients with a continuous variation in the thickness of
the plate. In this study, FGM plates with the power-law
function (P-FGM) and exponential function (E-FGM) as
shown in Figure 1 were considered.

For a P-FGM plate, the volume of ceramic is obtained
using the following formula:

Vc �
1
2

+
z

h
 

p

, (1)

in which p is the power-law index and h is the thickness of
the plate. 'e material properties of a P-FGM can be de-
termined as

P(z) � Pm + Pc − Pm( Vc, (2)

where Pc andPm are, respectively, Young’s modulus or
density of the ceramic and metal.

'e material properties of E-FGM can be determined as

P(z) � P0e
p(z/h+1/2)

, (3)
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whereP0 is Young’s modulus or density of thematerial at the
lower surface of the FGM plate and p is the material
parameter.

3. New Single-Variable Refined Plate Theory

3.1. Assumption of New Single-Variable Refined Plate(eory.
'e assumption of new single-variable refined plate theory
based on the RPT of Shimpi [37] is given as follows:

(1) 'e displacement w is separated into two parts, the
first part is the bending part wb and the second part is
the shear part ws:

w � wb + ws. (4)

(2) 'e normal stress σz is very small in contrast with
other normal stresses. 'us, the normal stress σz is
negligible. 'erefore, by applying Hooke’s law for a
linearly elastic material, the relation between normal
stresses σx, σy and strains εx, εy is written as

σx �
E(z)

1 − ](z)2
εx + ](z)εy ,

σy �
E(z)

1 − ](z)2
εy + ](z)εx .

(5)

(3) 'e displacements u in the x-direction and v in the
y-direction are divided into two parts, which are the
bending part and the shear part:

u � ub + us,

v � vb + vs.
(6)

'e first parts ub as well as vb are similar to the dis-
placements given by the CPT, which are

ub � −z
zwb

zx
,

vb � −z
zwb

zy
.

(7)

'e second parts us and vs give rise to shear strain
cxz, cyz and therefore to shear stresses τxz, τyz which have
distribution through the depth and are equal to zero at the
top and bottom surfaces of the plate. Consequently, the
expression for us and vs can be obtained as

us � f(z)
zws

zx
,

vs � f(z)
zws

zy
,

(8)

where f(z) is the shear distributed profile function, and this
function describes the spreading of the shear stresses τxz, τyz

throughout the thickness. In this study, the shear distributed
shape function f(z) of Shimpi [37] as given in the following
formula is used:

f(z) � −
5z3

3h2 +
z

4
. (9)

It is noticed that us and vs do not provide to moment
Mx, My, and Mxy .

3.2. Expressions for Displacement of Proposed (eory. By
using the assumptions which are discussed above, for the
case of the plate, the expressions of displacement are

u � −z
zwb

zx
+ f(z)

zws

zx
,

v � −z
zwb

zy
+ f(z)

zws

zy
,

w � wb + ws.

(10)

'e formulas for strain fields are

εx � −z
z2wb

zx2 + f(z)
z2ws

zx2 ,

εy � −z
z2wb

zy2 + f(z)
z2ws

zy2 ,

cxy � −z 2
z2wb

zxzy
  + f(z) 2

z2ws

zxzy
 ,

cxz �
zws

zx
g(z),

cyz �
zws

zy
g(z),

(11)

where g(z) � 1 + f′(z).
'e formulas for normal stresses σx and σy are obtained

by using equation (11) and equation (5). 'e formulas for
τxy, τxz, and τyz are calculated by using equation (11) and
the following constitutive equations:

τxy � G(z)cxy,

τxz � G(z)cxz,

τyz � G(z)cyz.

(12)

Metal

Ceramic

z

y

h
x

a

b

 

Figure 1: Model of an FGM plate.
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Subsequently, the expressions for normal stresses and
shear stresses are

σx �
E(z)

1 − ](z)2
−z

z2wb

zx2 + f(z)
z2ws

zx2 + ](z) −z
z2wb

zy2 + f(z)
z2ws

zy2  ,

σy �
E(z)

1 − ](z)2
−z

z2wb

zy2 + f(z)
z2ws

zy2 + ](z) −z
z2wb

zx2 + f(z)
z2ws

zx2  ,

τxy �
E(z)

2(1 + ](z))
−2z

z2wb

zxzy
+ 2f(z)

z2ws

zxzy
 .

(13)

τyz �
g(z)E(z)

2(1 + ](z))

zws

zy
,

τxz �
g(z)E(z)

2(1 + ](z))

zws

zx
.

(14)

Equation (13) and equation (14) can be rewritten as

σx �
−zE(z)

1 − ](z)2
z2wb

zx2 + ](z)
z2wb

zy2  +
f(z)E(z)

1 − ]2

·
z2ws

zx2 + ](z)
z2ws

zy2 ,

σy �
−zE(z)

1 − ](z)2
z2wb

zy2 + ](z)
z2wb

zx2  +
f(z)E(z)

1 − ]2

·
z2ws

zy2 + ](z)
z2ws

zx2 ,

τxy �
−zE(z)

1 − ](z)2
(1 − ](z))

z2wb

zxzy
+

f(z)E(z)

1 − ](z)2

· (1 − ](z))
z2ws

zxzy
.

(15)

τyz �
g(z)E(z)

2(1 + ](z))

zws

zy
,

τxz �
g(z)E(z)

2(1 + ](z))

zws

zx
.

(16)

'e moments and shear forces are obtained as
Mx

My

Mxy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

� 
h/2

−h/2
z

σx

σy

τxy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dz, (17)

Qx

Qy

  � 
h/2

−h/2

τxz

τyz

 dz. (18)

Based on the assumption of the present theory, the
moments and shear forces are

Mx � 
h/2

−h/2

−z2E(z)

1 − ](z)2
z2wb

zx2 + ](z)
z2wb

zy2 dz,

My � 
h/2

−h/2

−z2E(z)

1 − ](z)2
z2wb

zy2 + ](z)
z2wb

zx2 dz,

Mxy � 
h/2

−h/2

−z2E(z)

1 − ](z)2 
(1 − ](z))

z2wb

zxzy
 dz.

(19)

Qx � 
h/2

−h/2

E(z)

2(1 + ](z))
g(z)

zws

zx
dz,

Qy � 
h/2

−h/2

E(z)

2(1 + ](z))
g(z)

zws

zy
dz.

(20)

After integrating equation (19) and equation (20) over
the thickness h, the moments and shear forces are expressed
as the following formulas:

Mx � −α
z2wb

zx2 − α1
z2wb

zy2 ,

My � −α
z2wb

zy2 − α1
z2wb

zx2 ,

Mxy � −α
z2wb

zxzy
+ α1

z2wb

zxzy
.

(21)

Qx � β
zws

zx
,

Qy � β
zws

zy
.

(22)

'e coefficients α, α1, and β are calculated as
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α � 
h/2

−h/2

z2E(z)

1 − ](z)2
dz, (23)

α1 � 
h/2

−h/2

z2](z)E(z)

1 − ](z)2
dz, (24)

β � 
h/2

−h/2

E(z)

2(1 + ](z))
g(z)dz. (25)

We can see that if ] does not depend on z-direction, then
α1 � ]α. 'e expressions for moments do not include ws,
and the expressions for shear forces do not include wb.

'e equilibrium equations are
zσx

zx
+

zτxy

zy
+

zτxz

zz
� 0,

zσy

zy
+

zτxy

zx
+

zτyz

zz
� 0,

zτxz

zx
+

zτyz

zy
+

zσz

zz
� 0.

(26)

Multiply the first two equations with respect to z and
then integrating with respect to z through the thickness, we
get

zMx

zx
+

zMxy

zy
� Qx,

zMxy

zx
+

zMy

zy
� Qy,

zQx

zx
+

zQy

zy
� −q.

(27)

Substituting equation (21) and equation (22) into
equation (27), one gets

−
z

zx
α

z2wb

zx2 + α1
z2wb

zy2  −
z

zy
α − α1( 

z2wb

zxzy
  − β

zws

zx
� 0,

−
z

zx
α − α1( 

z2wb

zxzy
  −

z

zy
α

z2wb

zy2 + α1
z2wb

zx2  − β
zws

zy
� 0,

β
z2ws

zx2 + β
z2ws

zy2 + q � 0,

(28)

and the first two equations of equation (28) become

zws

zx
� −

α
β

z

zx

z2wb

zx2 +
z2wb

zy2 ,

zws

zy
� −

α
β

z

zy

z2wb

zx2 +
z2wb

zy2 ,

(29)

or

ws � −
α
β

z2wb

zx2 +
z2wb

zy2  � χ ∇wb( , (30)

in which χ � −α/β and ∇ is the Laplace operator,
∇ � z2/zx2 + z2/zy2.

It is clear that equation (30) reveals the relation between
the bending part and the shear part of transverse dis-
placement, and it is similar to Shimpi’s theory. However, in
this theory, the coefficient χ not only depends on the
thickness but also depends on the varying material prop-
erties, and it is an implicit integral expression. 'is is a
significant particular different point of this theory in
comparison with Shimpi’s theory. Consequently, this theory
is compatible to investigate FGM plates. If Young’s modulus
and Poisson ratio of the material are constant, the implicit
integral expression χ becomes an explicit expression of
Young’s modulus, Poisson ratio, and the thickness h, so it is
completely identical with the plate theory of Shimpi.

By means of introducing equation (30) into equation
(10), the new displacement formulas of the proposed theory
are

u � −z
zwb

zx
+ f(z)

z

zx
χ ∇wb(  ,

v � −z
zwb

zy
+ f(z)

z

zy
χ ∇wb(  ,

w � wb + χ ∇wb( .

(31)

It can see that the formulas of displacement of the
proposed theory consist of only one unknown variable, the
bending component wb.

3.3. Expressions for Strains, Stresses, Moments, and Shear
Forces. By the way of introducing equation (31) into
equation (11), new expressions for strains of proposed
theory are obtained as

εx � −z
z2wb

zx2 + f(z)
z2

zx2 χ ∇wb(  ,

εy � −z
z2wb

zy2 + f(z)
z2

zy2 χ ∇wb(  ,

cxy � −z 2
z2wb

zxzy
  + f(z) 2

z2

zxzy
χ ∇wb(   ,

cyz � g(z)
z

zy
χ ∇wb(  ,

cxz � g(z)
z

zx
χ ∇wb(  .

(32)

By introducing equation (31) into equation (15) and
equation (16), the expressions for stresses of the proposed
theory can be obtained as
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σx �
−zE(z)

1 − ](z)2
z2wb

zx2 + ](z)
z2wb

zy2  +
f(z)E(z)

1 − ]2

·
z2

zx2 χ ∇wb(   + ](z)
z2

zy2 χ ∇wb(   ,

σy �
−zE(z)

1 − ](z)2
z2wb

zy2 + ](z)
z2wb

zx2  +
f(z)E(z)

1 − ]2

·
z2

zy2 χ ∇wb(   + ](z)
z2

zx2 χ ∇wb(   ,

τxy �
−zE(z)

1 + ](z)

z2wb

zxzy
+

f(z)E(z)

1 + ](z)

z2

zxzy
χ ∇wb(  .

(33)

τyz �
g(z)E(z)

2(1 + ](z))

z

zy
χ ∇wb(  ,

τxz �
g(z)E(z)

2(1 + ](z))

z

zx
χ ∇wb(  .

(34)

By introducing equation (31) into equation (21) and
equation (22), the expressions for moments as well as shear
forces are taken as

Mx � −α
z2wb

zx2 − α1
z2wb

zy2 ,

My � −α
z2wb

zy2 − α1
z2wb

zx2 ,

Mxy � −α
z2wb

zxzy
+ α1

z2wb

zxzy
.

(35)

Qx � β
z

zx
χ ∇wb(  ,

Qy � β
z

zy
χ ∇wb(  .

(36)

3.4. Governing Equation. Substituting equation (35) and
equation (36) into equation (27), it becomes

α ∇∇wb(  − q � 0. (37)

'is is a simple governing differential equation of the
static bending problem of a plate. It is clear that the gov-
erning equation of the plate consists of only one unknown
variable which is the bending component wb. 'e coefficient
α is an implicit integral expression of Young’s modulus,
Poisson ratio, and the thickness h. In case of the homoge-
neous plate, coefficient α becomes an explicit expression of
Young’s modulus, Poisson ratio, and the thickness h, and the
governing differential equation of this theory is completely
identical to that of Shimpi.

4. Analytical Solutions

In this work, the Navier procedure is applied to analyze a
rectangular FGM plate, and the boundary condition of the

plate is simply supported at all edges.'e solution is implicit
as the following formula:

wb(x, y) � 
∞

k�1


∞

r�1
Wbkr sinφx sinψy, (38)

where φ � kπ/a, ψ � rπ/b, and Wbkr are the quantities which
must be determined. 'e distributed load can expand in the
form of double trigonometric series as

q(x, y) � 

∞

k�1


∞

r�1
Qkr sinφx sinψy, (39)

in which

Qkr �
4

ab


a

0


b

0
q(x, y)sinψx sinψydx dy. (40)

Substituting equation (38) and equation (39) into
equation (37), the analytical solution for the bending
component of transverse displacement is

Wbkr �
Qkr

α φ2 + ψ2( 
2, (41)

and with sinusoidally distributed load, the coefficient Qkr is

Qkr � q0, k � r � 1, (42)

and with uniformly distributed load, the coefficient Qkr is

Qkr �
16q0

krπ2.
(43)

5. Illustrative Examples and Discussion

Continuously, some examples will be considered to dem-
onstrate the accurateness and effectiveness of the proposed
theory which will be applied to investigate some problems of
FGM plates. 'e following nondimensional formulas are
used in the rest of this work:

w �
10Ech

3

q0a
4 w

a

2
,
b

2
 ,

σx �
h

q0a
σx

a

2
,
b

2
,
h

2
 ,

σy �
h

q0a
σy

a

2
,
b

2
,
h

3
 ,

τxy �
h

q0a
τxy 0, 0, −

h

3
 ,

τxz �
h

q0a
τxz 0,

b

2
, 0 ,

τyz �
h

q0a
τxz

a

2
, 0,

h

6
 .

(44)
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Table 1: Effects of power-law index on the nondimensional stresses and displacements of a P-FGM square plate (a/h� 10) subjected to a
uniformly distributed load.

p Source w σx σy τyz τxz τxy

Ceramic [26] 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850
Present 0.4666 2.8917 1.9107 0.4497 0.5059 1.2771

1 [26] 0.9287 4.4745 2.1692 0.5446 0.5114 1.1143
Present 0.9260 4.4403 2.1655 0.5124 0.4688 1.1417

2 [26] 1.1940 5.2296 2.0338 0.5734 0.4700 0.9907
Present 1.1875 5.1781 2.0320 0.5021 0.4010 1.0290

3 [26] 1.3200 5.6108 1.8593 0.5629 0.4367 1.0047
Present 1.3098 5.5473 1.8593 0.4726 0.3573 1.0518

4 [26] 1.3890 5.8915 1.7197 0.5346 0.4204 1.0298
Present 1.3762 5.8199 1.7210 0.4414 0.3382 1.0827

5 [26] 1.4356 6.1504 1.6104 0.5031 0.4177 1.0451
Present 1.4215 6.0739 1.6124 0.4153 0.3359 1.1008

6 [26] 1.4727 6.4043 1.5214 0.4755 0.4227 1.0536
Present 1.4583 6.3254 1.5238 0.3963 0.3432 1.1098

7 [26] 1.5049 6.6547 1.4467 0.4543 0.4310 1.0589
Present 1.4911 6.5751 1.4492 0.3841 0.3550 1.1142

8 [26] 1.5343 6.8999 1.3829 0.4392 0.4399 1.0628
Present 1.5215 6.8209 1.3854 0.3774 0.3683 1.1165

9 [26] 1.5617 7.1383 1.3283 0.4291 0.4481 1.0662
Present 1.5501 7.0607 1.3308 0.3749 0.3814 1.1178

10 [26] 1.5876 7.3689 1.2820 0.4227 0.4552 1.0694
Present 1.5774 7.2931 1.2843 0.3752 0.3936 1.1187

Metal [26] 2.5327 2.8932 1.9103 0.4429 0.5114 1.2850
Present 2.5329 2.8917 1.9107 0.4497 0.5059 1.2771

Table 2: Effects of power-law index on the nondimensional stresses and displacements of a P-FGM square plate (a/h� 10) subjected to a
sinusoidally distributed load.

p Source w σx σy τyz τxz τxy

Ceramic [26] 0.2960 1.9955 1.3121 0.2132 0.2462 0.7065
Present 0.2961 1.9943 1.3124 0.2122 0.2387 0.7067

1 [26] 0.5889 3.0870 1.4894 0.2622 0.2462 0.6110
Present 0.5870 3.0533 1.4856 0.2418 0.2212 0.6148

2 [26] 0.7573 3.6094 1.3954 0.2763 0.2265 0.5441
Present 0.7529 3.5585 1.3935 0.2369 0.1892 0.5493

3 [26] 0.8377 3.8742 1.2748 0.2715 0.2107 0.5525
Present 0.8307 3.8114 1.2746 0.2230 0.1686 0.5589

4 [26] 0.8819 4.0693 1.1783 0.2580 0.2029 0.5667
Present 0.8731 3.9984 1.1794 0.2083 0.1596 0.5740

5 [26] 0.9118 4.2488 1.1029 0.2429 0.2017 0.5755
Present 0.9021 4.1731 1.1048 0.1960 0.1585 0.5831

6 [26] 0.9356 4.4244 1.0417 0.2296 0.2041 0.5803
Present 0.9257 4.3462 1.0439 0.1870 0.1620 0.5881

7 [26] 0.9562 4.5971 0.9903 0.2194 0.2081 0.5834
Present 0.9468 4.5184 0.9927 0.1813 0.1675 0.5911

8 [26] 0.9750 4.7661 0.9466 0.2121 0.2124 0.5856
Present 0.9662 4.6880 0.9489 0.1781 0.1738 0.5932

9 [26] 0.9925 4.9303 0.9092 0.2072 0.2164 0.5875
Present 0.9846 4.8536 0.9115 0.1769 0.1800 0.5949

10 [26] 1.0089 5.0890 0.8775 0.2041 0.2198 0.5894
Present 1.0020 5.0142 0.8797 0.1770 0.1858 0.5964

Metal [26] 1.6070 1.9955 1.3121 0.2132 0.2462 0.7065
Present 1.6072 1.9943 1.3124 0.2122 0.2387 0.7067
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5.1. Validity Study. In this first example, a P-FGM plate is
investigated, and the plate is made of two components: the
first component is aluminum (Al) and the second component
is alumina (Al2O3). 'e plate has the length of a, the width of
b, and length-to-thickness ratio of a/h � 10. 'e load which
acts upon the plate are uniformly distributed load or sinu-
soidally load. 'e material properties of aluminum are
Em =70GPa and ]m = 0.3 and those of alumina are
Ec = 380GPa and ]c = 0.3. 'e nondimensional values of
transverse displacement and nondimensional values as well as
distribution of stresses are compared with those of the study
by Zenkour [26]. 'e results of Zenkour are calculated using
the sinusoidal shear deformation theory (SSDT). Table 1 il-
lustrates the comparison of the results of the plate under
uniform load, and Table 2 indicates the comparison of the
results in the case of the sinusoidally loaded plate. According
to Tables 1 and 3, it can see that the results of the current work
are very similar to the solutions of Zenkour using SSDT.

Incessantly, an E-FGM plate which has a length-to-
thickness ratio of a/h � 2 and a/h � 4 is considered.
Young’s modulus of it is obtained by a function of the
exponent, while Poisson’s ratios are assumed constant and
equal to 0.3. 'e plate is subjected to bisinusoidal load.
Table 2 indicates the numerical results which are calculated
by the proposed theory and those of Zenkour [25] using a

solution of 3D elasticity theory as well as Mantari and
Guedes Soares [29] using HSDT. According to this illus-
tration, the numerical results of the plates using the pro-
posed theory are similar with published data for both
moderate and thick plates.

According to above two examples, it can be concluded
that a new theory which is developed by authors is ac-
curate and effective, and also it can be applied to in-
vestigate FGM plates in both cases of thin and thick
plates.

5.2. Static Bending Behavior of FGM Plates. sthis section, a
P-FGM plate which is made of aluminum (Al) as the metal
and zirconia (ZrO2) as the ceramic subjected to sinusoidally
distributed load is investigated. 'e material properties of
constituents are

Al: Em � 70GPa, ]m � 0.3,
ZrO2: Ec � 200GPa, ]c � 0.3.

'e numerical results which are computed by using the
new theory are publicized in Table 4. In this example, both
thick and thin plates are considered for several values of
other parameters.

Table 3: Effects of material parameter p on the nondimensional displacements of an E-FGM square plate (a/h� 10) subjected to a si-
nusoidally distributed load.

a/h b/a Method
p

0.1 0.3 0.5 0.7 1 1.5

2

1
[25] 0.5769 0.5247 0.4766 0.4324 0.3727 0.2890
[29] 0.6363 0.5752 0.5195 0.4687 0.4018 0.3079

Present 0.6422 0.5795 0.5214 0.4679 0.3959 0.2965

2
[25] 1.1944 1.0859 0.9864 0.8952 0.7727 0.6017
[29] 1.2776 1.1553 1.0441 0.9431 0.8093 0.6238

Present 1.2835 1.1589 1.0442 0.9390 0.7980 0.6037

3
[25] 1.4430 1.3116 1.1913 1.0812 0.9334 0.7275
[29] 1.5341 1.3874 1.2540 1.1329 0.9725 0.7506

Present 1.5400 1.3907 1.2535 1.1278 0.9594 0.7276

4
[25] 1.5515 1.4101 1.2807 1.1624 1.0035 0.7824
[29] 1.6458 1.4885 1.3455 1.2157 1.0437 0.8060

Present 1.6518 1.4917 1.3447 1.2101 1.0298 0.7818

5
[25] 1.6065 1.4601 1.3261 1.2035 1.0391 0.8102
[29] 1.7025 1.5397 1.3919 1.2576 1.0798 0.8340

Present 1.7084 1.5429 1.3910 1.2518 1.0655 0.8092

4

1
[25] 0.3490 0.3168 0.2875 0.2608 0.2253 0.1805
[29] 0.3602 0.3259 0.2949 0.2668 0.2295 0.1785

Present 0.3605 0.3259 0.2944 0.2657 0.2275 0.1751

2
[25] 0.8153 0.7395 0.6708 0.6085 0.5257 0.4120
[29] 0.8325 0.7534 0.6819 0.6173 0.5319 0.4150

Present 0.8328 0.7532 0.6810 0.6155 0.5285 0.4094

3
[25] 1.0134 0.9190 0.8335 0.7561 0.6533 0.5121
[29] 1.0325 0.9345 0.8459 0.7659 0.6601 0.5154

Present 1.0329 0.9343 0.8449 0.7638 0.6562 0.5091

4
[25] 1.1012 0.9985 0.9056 0.8215 0.7098 0.5564
[29] 1.1211 1.0147 0.9186 0.8317 0.7169 0.5599

Present 1.1215 1.0145 0.9174 0.8295 0.7128 0.5532

5
[25] 1.1459 1.0391 0.9424 0.8548 0.7386 0.5790
[29] 1.1663 1.0556 0.9556 0.8653 0.7458 0.5825

Present 1.1666 1.0553 0.9544 0.8629 0.7416 0.5758
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Table 4: Effects of power-index on the nondimensional displacements of a P-FGM rectangular plate subjected to a sinusoidally distributed
load.

a/h a/b
p

Ceramic 1 2 3 5 10 Metal

2
1 0.6754 1.0136 1.1975 1.3152 1.4641 1.6393 1.9298
0.5 1.3497 2.0538 2.4071 2.6199 2.8844 3.2084 3.8563
0.2 1.7964 2.7480 3.2110 3.4826 3.8175 4.2352 5.1325

4
1 0.3790 0.5909 0.6830 0.7316 0.7894 0.8673 1.0830
0.5 0.8755 1.3774 1.5840 1.6861 1.8049 1.9732 2.5015
0.2 1.2264 1.9351 2.2216 2.3602 2.5200 2.7506 3.5041

10
1 0.2961 0.4725 0.5390 0.5682 0.6004 0.6511 0.8459
0.5 0.7428 1.1880 1.3535 1.4247 1.5026 1.6273 2.1222
0.2 1.0669 1.7075 1.9446 2.0460 2.1567 2.3349 3.0482

100
1 0.2804 0.4502 0.5118 0.5374 0.5648 0.6104 0.8012
0.5 0.7177 1.1523 1.3100 1.3754 1.4456 1.5621 2.0506
0.2 1.0368 1.6645 1.8924 1.9867 2.0882 2.2565 2.9622

a/h = 10

0

0.5

1

1.5

2

2.5

3

3.5

w—

1 1.5 2 2.5 30.5
a/b

Ceramic
p = 1

p = 5
Metal

Figure 2: Nondimensional deflection w of the P-FGM plate related
with a/b.
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Figure 3: Nondimensional deflection w of the P-FGM plate related
with a/h.
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Figure 5: Distribution of τxy along the depth of the P-FGM plate.
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Figure 4: Distribution of σx along the depth of the P-FGM plate.
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'e results in Table 4 show that the deflection of the
P-FGM plate rises as there is an increase the power-law
index, especially when it varies in a range of 0 to 2. 'is also
shows that the risk ceramic plate is harder than the riskmetal
plate. It is true that the highest value of the deflection is
achieved in the case of the metallic plate, but the smallest
value of the deflection is achieved in the case of the ceramic
plate. 'e reason is that the elastic modulus of the metal is
less than that of ceramic. In addition, when the aspect ratio
increases, the deflection decreases. Moreover, the deflection
of the plate increases when a/h is increased. Figures 2 and 3
showmore clearly the effects of a/b and a/h on the deflection
of the P-FGM plate. Figure 2 shows the nondimensional
results of deflection of the P-FGMplate gathering to the ratio

of a/h. According to Figure 2, the side-to-thickness ratio has
principal responsibility to the bending behavior of the plate.
As a/h ratio rises in a range of 2 to 4, the deflection decreases
rapidly.When it is greater than 4, the deflection approximate
unchanged with its increase. 'e exhibition in Figure 3
shows that the deflection decreases when the aspect ratio
increases especially when this ratio varies from 0 to 1.

Figures 4–7 performed the distributions of the stresses
in z-direction of the plate. As exhibited in Figures 4 and 5,
the in-plane normal stresses and the longitudinal tan-
gential stress are nonlinearly distributed along with the
thickness of the P-FGM plate; the neutral surface is not
placed at the midsurface of the P-FGM plate, and it differs
from a homogeneous plate. On the upper surface, the

z/
h

a/h = 10
p = 2
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–0.4

–0.3

–0.2

–0.1

0
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0.3
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Figure 7: Distribution of τyz along the depth of the P-FGM plate.
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Figure 6: Distribution of τxz along the depth of the P-FGM plate.
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normal stress is tensile, while it is compressive stress on
the lower surface. In addition, the maximum value of the
tensile longitudinal tangential stress occurs at a point on
the lower surface, while the maximum compressive lon-
gitudinal tangential stress occurs at a point on the upper
surface. Figures 6 and 7 represent the dissemination of the
shear stresses throughout the depth of the plate. It can
easily see that the plate is free of shear strains and stresses
at both upper and lower surfaces. Nevertheless, the shear
stresses of an FGM plate are not parabolic, and they are
not highest on the midplane as in the case of the ho-
mogeneous plate. When the aspect ratio increases, the
shear stress increases as given in Figure 7.

'e nondimensional distribution of normal stress
σx(x, y, h/2), in-plane longitudinal tangential stress
τxy(x, y, −h/3), shear stress τxz(x, y, 0), and shear stress
τyz(x, y, h/6) in the xy plane of the plate are shown in
Figure 8. It shows that the normal stress and shear stresses
are symmetric, but the longitudinal tangential stress is
unsymmetrical. 'e in-plane normal stress (σx) is
maximum at the central point and is minimum at four
corners of the plate, and this also appears with shear
stress (τyz). It is clear that σx is compressive stress over

the upper surface of the plate. In opposite sides, the shear
stress (τxz) is maximum at four corners of the plate and is
minimum at the central point. Not to mention, the
maximum longitudinal tangential stress (τxy) appears at
two opposite corners of the plate while the minimum
value of longitudinal tangential stress appears at two
other corners.

6. Conclusions

In this study, a new single-variable refined plate theory which
consists of only one unknown variable in its displacement
formula and its governing equation was developed. 'e
proposed theory was successfully verified against the available
literature in many cases of P-FGM and E-FGM.'e proposed
theory was applied to analyze P-FGM plates subjected to
mechanical load in several cases of thick and thin plates.
Furthermore, a large parametric investigation was aimed at
checking the sensitivity of the static bending of P-FGM plates
to different mechanical and geometrical properties. 'is
comprehensive parametric investigation was presented as
benchmark results for future works.
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Figure 8: Distribution of nondimensional stresses in the xy plane of the P-FGM plate with a � b, a/h � 10, andp � 5: (a) in-plane normal
stress σx(x, y, h/2); (b) in-plane longitudinal tangential stress τxy(x, y, −h/3); (c) shear stress τxz(x, y, 0); (d) shear stress τyz(x, y, h/6).
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