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Here we study the character and expression of n-order Pythagorean matrix using number theory. .eories of Pythagorean matrix
are obtained. Using related algebra skills, we prove that the set which constitutes all n-order Pythagorean matrices is a finitely
generated group of matrix multiplication and gives a generated tuple of this finitely generated group (n≤ 10) simultaneously.

1. Introduction and Theme

If integers a, b, and c satisfy a2 + b2 � c2, then we call a, b, c{ }

a Pythagorean array; if Pythagorean array is written in vector
form, then we call it a Pythagorean vector [1]. A Pythagorean
vector is called primitive [2] if and only if a, b, and care
coprime.

It is well known that every Pythagorean vector is either of
the form ((k(m2 − n2))2kmn(k(m2 + n2))) or of the form
(2kmn(k(m2 − n2))(k(m2 + n2))) with k, m, n ∈ Z. Frisch
and Vaserstein [3] pointed that there exists a parametri-
zation of Pythagorean vectors by a single triple of integer-
valued polynomials.

Estimates for the number of Pythagorean vectors with a
given constraint are studied in [4–6]. Benito and Varona [4]
found asymptotic estimates for the number of Pythagorean
vectors with legs less than n. Omland [5] obtained the
number of Pythagorean vectors with a given inradius.
Okagbue et al. [6] gave statistical and algebraic properties of
primitive Pythagorean vectors from the first 331 primitive
Pythagorean vectors.

For any fixed primitive Pythagorean vector (a, b, c) such
that a2 + b2 � c2, Jesmanowicz’ [7] studied the Diophantine
equation ax + by � cz and conjectured the equation has a
unique solution. .e authors of [8–11] obtained some
conclusions on Jesmanowicz’s conjecture.

.e authors of [12–14] constructed the following three
interesting matrices and obtained the following theorem.

Theorem 1. If F1 �

1 2 2
2 1 2
2 2 3

⎛⎜⎝ ⎞⎟⎠, F2 �

− 1 − 2 − 2
2 1 2
2 2 3

⎛⎜⎝ ⎞⎟⎠,

F3 �

1 2 2
− 2 − 1 − 2
2 2 3

⎛⎜⎝ ⎞⎟⎠, (a, b, c) is a 3-dimensional Pythago-

rean vector, and the vector satisfies a2 + b2 � c2, then
(a, b, c)F1, (a, b, c)F2, and (a, b, c)F3 are still 3-dimensional
Pythagorean vectors.

Start with (3, 4, 5) or (4, 3, 5) and multiply F1, F2, or F3
by it in any order any number of times. .is yields another
primitive Pythagorean vector (x, y, z), that is, a triple of
positive integers without a common factor satisfying
x2 + y2 − z2 � 0. Furthermore, every primitive Pythagorean
vector can be obtained uniquely this way. In other words, all
primitive Pythagorean vectors can be given a tree-order
structure with each edge representing a multiplication by Fj.
Cha et al. [15] studied such trees that are applicable to any
integral quadratic form.

Generally, 3-order integral square matrix A satisfies the
following condition:

(i) α � (a, b, c) is a 3-dimensional Pythagorean vector,
then β � (a, b, c)A still is a Pythagorean vector

(ii) |A|2 � 1, then square matrix A is a 3-order Py-
thagorean matrix [16]

Let T3 be a set which is constituted by all 3-order
Pythagorean matrices, namely, T3 � F ∣ F ∈ Z3×3, F is a
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three-order Pythagorean matrix}. Hence, we can calcu-
late that the determinant values of F1, F2, and F3 are 1; in
other words, F1, F2, and F3 are Pythagorean matrices,
namely, F1 ∈ T3, F2 ∈ T3, and F3 ∈ T3.

Niu [17] researched algebraic properties of the set T3 and
proposed the following theorem.

Theorem 2. T3 constitutes a group about the matrix
multiplication.

In this paper, we further study algebraic properties and
number-theoretic properties of the set T3. Is T3 a finitely
generated group? If T3 is a finitely generated group, then
what are the generators of the finitely generated group? We
prove our main theorem (.eorem 12). .e theorem shows
that T3 is a finitely generated group, and the generators of
the finitely generated group T3 are given.

Furthermore, we also attempt to extend the Pythagorean
vector and 3-order Pythagorean matrices to higher-order
case and research algebraic properties and number-theoretic
properties of the set formed from all n-order Pythagorean
matrices (n> 3). .en, we get .eorem20.

.is paper is organized as follows..e goal of Section 2 is
to give some lemmas needed to prove themain conclusion of
this paper. After we give some algebraic properties and
number-theoretic properties of the set T3 in Section 3, we
prove our main theorem (.eorem 12) in Sections 4 and 5.
Section 6 is devoted to the study of properties on n-order
Pythagorean matrices (4< n). Building on this, we prove our
another main theorem (.eorem 20) in Section 7. Finally, in
Section 8, we briefly discuss future work and prospects.

2. Some Preparations

Definition 1. If a2 + b2 � c2 and a, b, and c are coprime
numbers, then we call a, b, c{ } a 3-dimensional primitive
Pythagorean array and we call the correspondent vector a 3-
order primitive Pythagorean vector [2].

Lemma 1. If α � (a, b, c) is a 3-order primitive Pythagorean
vector, then there exist an odd integer and even integer be-
tween a and b, where c must be odd.

Lemma 2. 3e necessary and sufficient conditions of 3-order
integral square matrix A ∈ T3 are as follows:

(i) If α � (a, b, c) is a 3-order Pythagorean vector, then
β � (a, b, c)A is still a 3-order primitive Pythagorean
vector

(ii) |A|2 � 1

Lemma 3 (see [17]). Given B �

1 0 0
0 1 0
0 0 − 1

⎛⎜⎝ ⎞⎟⎠, then the

necessary and sufficient condition of 3-order integral square
matrix A ∈ T3 is ABA′ � B.

Lemma 4 (see [17]). 3e necessary and sufficient condition of
matrix A ∈ T3 is A′ ∈ T3.

Hence, we can get Lemma5 as follows from Lemma3.

Lemma 5. Given A � (aij) ∈ Z3×3, then the necessary and
sufficient condition of matrix A ∈ T3 is the following equa-
tions exist integer solutions aij:

a
2
11 + a

2
21 − a

2
31 � 1, (1)

a
2
12 + a

2
22 − a

2
32 � 1, (2)

− a
2
13 − a

2
23 + a

2
33 � 1, (3)

a11a12 + a21a22 � a31a32, (4)

a11a13 + a21a23 � a31a33, (5)

a12a13 + a22a23 � a32a33. (6)

3. Property of T3

Let G be a set of 3-order integer square matrix A and satisfy
the following two conditions:

(i) A ∈ T3

(ii) If any a, b is even in 3-dimensional primitive Py-
thagorean vector, then (a′, b′, c′) � (a, b, c)A is still
a 3-dimensional primitive Pythagorean [2] vector
and b′ is even.

.us, G ⊂ T3.
For clearer expression, we use some signs. Let

Gt � A ∣ A � (aij) ∈ Z3×3 , and A ∈ G, max|aij| � t}. Di

(i � 1, 2, . . . , 8) are the following diagonal matrices:
D1 � diag[1, 1, 1], D2 � diag[− 1, 1, 1], D3 � diag[1, − 1, 1],
D4 � diag[1, 1, − 1], D5 � diag[− 1, − 1, 1], D6 � diag[− 1, 1,

− 1], D7 � diag[1, − 1, − 1], D8 � diag[− 1, − 1, − 1], and

D9 �

0 1 0
1 0 0
0 0 1

⎛⎜⎝ ⎞⎟⎠. F4 �

1 2 2
2 1 2

− 2 − 2 − 3
⎛⎜⎝ ⎞⎟⎠, L(A1, A2, . . . , An)

express a finite group [18] about matrix multiplication, and
Zn×n express a set with all integer elements of n-order square
matrix.

Theorem 3. Let A � (aij) ∈ Z3×3 and A ∈ G, then
|a33| � maxi,j|aij|.

Proof. Because G ⊂ T3 and A ∈ G, A ∈ T3. From Lemma 5,
the above equalities (1)∼(6) are tenable.

From equality (3), we can get the following inequalities:

a33


≥ a13


,

a33


≥ a23


,

a33


≥ 1,

(7)

and if A ∈ T3, then A′ ∈ T3; therefore,
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a33


≥ a31


,

a33


≥ a32


.
(8)

When a11, a12, a21, and a22 are not equal to zero, we can
obtain the following inequalities from equality (1):

a31


≥ a11


,

a31


≥ a21


.
(9)

From equality (2), we can obtain the following
inequalities:

a32


≥ a12


,

a32


≥ a22


.
(10)

From (7)–(10), we know that equality |a33| � maxi,j|aij|

is tenable.
When at least one of the numbers in a11 and a21 is equal to

zero but all of the two numbers in a12 and a22 are not equal to
zero, we can infer from equality (2) that inequality (10) is true.

When at least one of the numbers in a11 and a21 is equal
to zero, we can get equality maxi|ai1| � 1, where |a33|≥ 1, so
|a33|≥maxi|ai1|; from inequalities (7), (8), (10), and
|a33|≥maxi|ai1|, we know that |a33| � maxi,j|aij| is tenable.

When at least one of the numbers in a12 and a22 is equal to
zero but all of the two numbers in a11 and a21 are not equal to
zero, we can infer from equality (1) that inequality (9) is true.

When at least one of the numbers in a12 and a22 is equal
to zero, we can get equality maxi|ai2| � 1, where |a33|≥ 1, so
|a33|≥maxi|ai2|; from the inequalities (7)–(9), and
|a33|≥maxi|ai2|, we know that |a33| � maxi,j|aij| is tenable.

When at least one of the numbers in a12 and a22 is equal to
zero and at least one of the numbers in a11 and a21 is equal to
zero, we get maxi|ai1| � 1, where |a33|≥ 1, so |a33|≥ maxi|ai1|;
moreover, we also get maxi|ai2| � 1, where |a33|≥ 1, so
|a33|≥maxi|ai2|. From inequalities (7), |a33|≥maxi|ai1| and
|a33|≥maxi|ai2|, we know that |a33| � maxi,j|aij| is tenable. □

Theorem 4. If A � (aij) ∈ Z3×3 and A ∈ G, then aii ≡ 1
(mod2) (i � 1, 2, 3) and aii ≡ 0 (mod2) (i≠ j; i � 1, 2, 3;

j � 1, 2, 3).

Proof. Because A ∈ G, the above equalities (1)∼(3) are tenable.
From equality − a2

13 − a2
23 + a2

33 � 1, we get a33 ≡ 1 (mod
2), a13 ≡ 0 (mod 2), and a23 ≡ 0 (mod 2). From A ∈ T3, we
know A′ ∈ T3. So, a31 ≡ 0 (mod 2) and a32 ≡ 0 (mod 2) are
tenable. Given α � (a, b, c) is an arbitrary primitive Py-
thagorean vector with even integer b, by Lemma 1, we know
a and c are odd integers. Since A ∈ G, (a′, b′, c′) � (a, b, c)A

is still a 3-order primitive Pythagorean vector with a even
integer b′. By Lemma 1, we know a′ and c′ are odd integers.
Since b is an even integer, a is an odd integer, a31 ≡ 0 (mod
2), and a′ � aa11 + ba21 + ca31, we get a11 ≡ 1 (mod 2). From
a11 ≡ 1 (mod 2), a31 ≡ 0 (mod 2), and equality (1), we know
a21 ≡ 0 (mod 2). Since a is an odd integer, b is an even
integer, a32 ≡ 0 (mod 2), and b′ � aa12 + ba22 + ca32, we get
a12 ≡ 0 (mod 2). From a12 ≡ 0 (mod 2), a32 ≡ 0 (mod 2). and
equality (2), we obtain the equality a22 ≡ 1 (mod 2). From

above, we know aii ≡ 1 (mod 2) (i � 1, 2, 3) and aij ≡ 0 (mod
2) (i≠ j; i � 1, 2, 3; j � 1, 2, 3) are tenable. □

Inference 1. (1) G constitutes a group on matrix multipli-
cation; (2) G is a subgroup of T3.

Proof

(1) Since anyA or B∈ G,A or B∈ T3, so A∗B ∈ T3. Given
α � (a, b, c) is an arbitrary 3-order primitive Pythag-
orean vector with even integer b because A ∈ G, so
(a, b, c)A is also a 3-order primitive Pythagorean
vector with second element which is an even integer,
and B ∈ G, so (a, b, c)AB is a 3-order primitive Py-
thagorean vector with second element which is an even
integer; thus, A∗B ∈ G, that is, G is a closed operator
of matrix multiplication. Matrix multiplication is clear
to meet the combination of law, and 3-order unitary
matrix is a unit element in G. Now, we prove that G is
closed for inverse matrix. Arbitrary A ∈ G, where
A � (aij) ∈ Z3×3; we know aii ≡ 1 (mod 2) (i � 1, 2, 3)
and aij ≡ 0 (mod 2) (i≠ j; i � 1, 2, 3; j � 1, 2, 3) are
tenable by .eorem 4. Given α � (a, b, c) is an arbi-
trary 3-order primitive Pythagorean vector with even
integer b, let (a′, b′, c′) � (a, b, c)A− 1; since A ∈ T3,
T3 constitutes a group on matrix multiplication, so
A− 1 ∈ T3; accordingly, (a′, b′, c′) is a primitive Py-
thagorean vector. One is an odd integer between a′ and
b′ and another is an even integer by Lemma 1. Since
(a, b, c) is an arbitrary 3-order primitive Pythagorean
vector with even integer b, we know that a is an odd
integer by Lemma 1.We obtain (a, b, c) � (a′, b′, c′)A
from the equality (a′, b′, c′) � (a, b, c)A− 1. We can
conclude that a � a′a11 + b′a21 + c′a31 because a is an
odd integer and both a21 and a31 are even integer, so a′
is an odd integer while b′ must be an even integer.
Accordingly, (a′, b′, c′) � (a, b, c)A− 1 is a 3-order
primitive Pythagorean vector with second element
which is an even integer; hence, A− 1 ∈ G.
From above, G constitutes a group on matrix mul-
tiplication. And that is what we wanted to prove.

(2) We can conclude that G is a subgroup of T3 by G ⊂ T3
and G constitutes a group on matrix
multiplication. □

4. Expression of G1 and G3

Theorem 5. G1 � D1, D2, D3, D4, D5, D6, D7, D8 .

Proof. From.eorems 3 and 4, if A ∈ G and maxi,j|aij| � 1,
then A must be one of Di (i � 1, 2, . . . , 8). Di ∈ G1,
i � 1, 2, . . . , 8, is easy to verify, so .eorem 5 is tenable. □

Theorem 6. If A � (aij) ∈ Z3×3, A ∈ G, and maxi,j|aij| � 3,
then |a33| � 3, |a31| � |a32| � |a13| � |a23| � |a12| � |a21| � 2,
and |a11| � |a22| � 1.
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Proof. From .eorem 4 we know, if A ∈ G and
maxi,j|aij| � 3, then |a33| � maxi,j|aij| � 3. By A ∈ G, the
former equations (1)∼(3) are tenable. By equation (3),
equalities |a13| � |a23| � 2 are true. From A ∈ T3, we get
A′ ∈ T3; hence, |a31| � |a32| � 2 are true. From .eorem 3,
we know that |a11| and |a22| only possibly are 1 or 3, while
from |a13| � |a23| � |a31| � |a32| � 2 and from equalities (1)
and (2), we can conclude that |a11| � |a22| � 1 are true..en,
equalities |a12| � |a21| � 2 are also true. From above, .e-
orem 6 is tenable, and that is what we wanted to prove. □

Theorem 7. G3 � A | A � DiF1Dj, Di ∈ G1, Dj ∈ G1 .

Proof. Both arbitrary Di (i � 1, 2, . . . , 8) and Dj (j � 1, 2,

. . . , 8) also ∈ G by.eorem 5. It is easy to prove that F1 ∈ G.
We obtain from Inference 1 (1) that DiF1Dj ∈ G. Also, it is
easy to verify that the maximum absolute value of elements
of matrix DiF1Dj is equal to 3. So, we get that DiF1Dj ∈ G3
for arbitrary Di (i � 1, 2, . . . , 8) and Dj (j � 1, 2, . . . , 8).

On the other hand, if A ∈ G3, then |a33| � 3, |a11| � |a22|

� 1, and |a31| � |a32| � |a13| � |a23| � |a12| � |a21| � 2.
For A, there must be Di and Dj, these three matrices

produce a new matrix C � DiADj, let C � (cij), among six
elements of column 1 and column 2 in matrix C, there are two
elements at most less than zero, and these less than zero el-
ements are not in the same row. SinceDi, Dj, and F1 belong to
G, C � DiADj ∈ G; thus, C ∈ G3. Hence |c33| � 3, |c31| �

|c32| � |c13| � |c23| � |c12| � |c21| � 2, and |c11| � |c22| � 1.
We obtain c11c12 + c21c22 � c31c32 by C ∈ G and Lemma 5, so
cij > 0 (i � 1, 2, 3; j � 1, 2).

For C, there must be Dk; they produce a new matrix
H � CDk. Let H � (hij). Column vectors 1 and 2 of H are
exactly the same as column vectors 1 and 2 of C, and one
element at most in column vector 3 ofH is less than zero. So,
we get |h33| � 3, |h31| � |h32| � |h13| � |h23| � |h12| � |h21| �

2, |h11| � |h22| � 1, and h11h13 + h21h23 � h31h33. Note that
hi1 � ci1 > 0 (i � 1, 2, 3), so hi3 > 0 (i � 1, 2, 3); hence, H � F1.

So, there exist Di, Dj, and Dk, they generate a newmatrix
F1 � DiADjDk. Let P1 � D− 1

i and P2 � (DjDk)− 1. It is easy
to verify that both P1 and P2 belong to G1, and A � P1F1P2.

From above, G3 � A | A � DiF1Dj, Di ∈ G1, Dj ∈ G1  is
obtained.

.e following theorem is obtained by direct
verification. □

Theorem 8. D1 � F1∗F− 1
1 , D2 � F1∗F− 1

2 , D3 � F1∗F− 1
3 ,

D4 � F1∗F− 1
4 , D5 � F2∗F− 1

3 , D6 � F2∗F− 1
4 , D7 � F3∗F− 1

4 ,
and D8 � F2∗F− 1

3 ∗F1∗F− 1
4 .

We can get .eorem 9 by .eorems 7 and 8.

Theorem 9. (1) G3 ⊂ L(F1, F2, F3, F4); (2) G1 ⊂ L(F1, F2,

F3, F4).

5. Representation of G and T3

Theorem 10. Arbitrary A � (aij) ∈ G if the maximum ab-
solute value of elements of matrix A is equal to y and y> 3; let

Hi � AFi (i � 1, 2, 3, 4), then there must exist a matrix Hi, its
maximum absolute values of elements are less than y.

Proof. Since Fi ∈ G (i � 1, 2, 3, 4) and A ∈ G, Hi � AFi ∈ G

(i � 1, 2, 3, 4). So, we get that the maximum absolute value of
elements of matrix A is y � |a33| by .eorem 3, while the
maximum absolute value of elements of matrix Hi is
|2a31 + 2a32 + 3a33|, matrix H2 is | − 2a31 + 2a32 + 3a33|, ma-
trix H3 is |2a31 − 2a32 + 3a33|, and H4 is |2a31 + 2a32 − 3a33|.

Cases of a31 ≥ 0, a32 ≥ 0, and a33 > 0 are considered firstly.
Since A ∈ G, we get A′ ∈ G; thus, equality − a2

31 − a2
32 +

a2
33 � 1 is tenable consequently. Also, because |a33|> 3,

a31 ≠ 0 and a32 ≠ 0; hence, it follows that a31 > 0 and a32 > 0;
thus, a33 > a31 and a33 > a32. Finally, the inequality 2a31 +

2a32 − 3a33 < a33 is true as a consequence.
We obtain a33 − a31 � (1 + a2

32)/(a33 + a31) from
− a2

31 − a2
32 + a2

33 � 1, while (1 + a2
32)/(a33 + a31)< (a32a31 +

a32a33)/(a33 + a31) � a32, so a33 − a31 < a32 or a33 < a32 + a31;
thus, − a33 < 2a31 + 2a32 − 3a33 is true.

By inequalities 2a31 + 2a32 − 3a33 < a33 and − a33 < 2a31
+2a32 − 3a33, we get |2a31 + 2a32 − 3a33|<y; in other words,
the maximum absolute value of elements of matrix H4 is less
than y, and that is .eorem 10 which we wanted to prove.

In the same way, we can prove that, under the cases
a31 ≥ 0, a32 ≤ 0, and a33 > 0, .eorem 10 is still valid. □

Theorem 11. G � L(F1, F2, F3, F4), namely, G is a finitely
generated group.

Proof. It can be seen that L(F1, F2, F3, F4) ⊂ G.
Given arbitrary A � (aij) ∈ G; if |a33|≤ 3, then |a33| � 1

or |a33| � 3 by .eorem 4. When |a33| � 1, there must be
A ∈ G1; hence, it follows that A ∈ L(F1, F2, F3, F4) by
.eorem 9. When |a33| � 3, there must be A ∈ G3; hence, it
follows that A ∈ L(F1, F2, F3, F4) by .eorem 9.

If |a33|> 3, from .eorem 10, we know that there exist
P1, P2, . . . , Pk, these matrices satisfy that Pi ∈ F1, F2, F3, F4 

(i � 1, . . . , k) and they produce a new matrix A∗P1
∗P2∗ · · ·∗Pk by multiplication of matrices, and the maxi-
mum absolute value of elements of the new matrix is less
than or equal to 3. Indeed, the new matrix A∗P1∗
P2∗ · · ·∗Pk ∈ G, so A∗P1∗P2∗ · · ·∗Pk ∈ L(F1, F2, F3, F4);
hence, A ∈ L(F1, F2, F3, F4) and then G ⊂ L(F1, F2, F3, F4).

From above, we get G � L(F1, F2, F3, F4). □

Inference 2. (1) G � L(F1, D2, D3, D4); (2) G � L(F1,

D2, D4, D5); (3) G � L(Fi, D2, D3, D4) (i � 2, 3, 4).

Proof. We only prove that equality (1) is tenable, and others
may prove similarly.

It is obvious that L(F1, D2, D3, D4) ⊂ G. Arbitrary
A � (aij) ∈ G; we get A ∈ L(F1, F2, F3, F4) by .eorem 11
and D2 � F1∗F− 1

2 , D3 � F1∗F− 1
3 , and D4 � F1∗F− 1

4 by
.eorem 8; hence, F2 � D− 1

2 ∗F1, F3 � D− 1
3 ∗F1, and

F4 � D− 1
4 ∗F1, so A ∈ L(F1, D2, D3, D4).

From above, G � L(F1, D2, D3, D4) is tenable. □

Definition 2. If H is a finitely generated group and
X1, X2, . . . , Xn satisfy H � L(X1, X2, . . . , Xn), then we call
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X1, X2, . . . , Xn is a generated tuple of H. If X1, X2, . . . , Xn is
a generated tuple of H with least element, then we call
X1, X2, . . . , Xn is a minimum generated tuple of H and we
call n is cardinality of H, expressed as n � d(H).

Theorem 12. T3 � L(F1, D2, D4, D9). In other words, T3 is a
finitely generated group; furthermore, d(T3) � 4.

Proof. It is easy to verify that D9 ∈ T3; hence,
L(F1, D2, D4, D9) ⊂ T3.

Owing to D3 � D9D2D9, G � L(F1, D2, D3, D4) ⊂
L(F1, D2, D4, D9). Now, let arbitrary A � (aij) ∈ T3 and
(x, y, z) � (3, 4, 5)A such that one in x, y is an even and
another is an odd.

(1) First, consider x is odd and y is even.
Equality y � 3a12 + 4a22 + 5a32 is obtained from
(x, y, z) � (3, 4, 5)A. Because y is an even integer, both
a12 and a32 are either even integer or odd integer.
Given (a, b, c) is an arbitrary three-order primitive
Pythagorean vector with an even integer b; note
(a′, b′, c′) � (a, b, c), so that (a′, b′, c′) is also a
three-order primitive Pythagorean vector and a, c are
odd integer..anks to b′ � aa12 + ba22 + ca32, where
b is an even integer and a12 and a32 are either odd
integers or even integers simultaneously. From the
previous reason, we know that b′ is an even integer.
So, A ∈ G; hence, A ∈ (F1, D2, D3, D4). In addition,
L(F1, D2, D3, D4) ⊂ L(F1, D2, D4, D9); therefore,
A ∈ (F1, D2, D4, D9).

(2) Now, consider x is even and y is odd.
Let (x′, y′, z′) � (x, y, z)D9 � (3, 4, 5)AD9, then x′
is an odd integer and y′ is an even integer. From
A ∈ T3 and D9 ∈ T3, we have AD9 ∈ T3. .us,
AD9 ∈ L(F1, D2, D4, D9); consequently, A ∈ L(F1,

D2, D4, D9).
From above, we get T3 ⊂ L(F1, D2, D4, D9); on this
account, T3 ⊂ L(F1, D2, D4, D9) and d(T3) � 4 are
tenable. □

Inference 3. T3 � L(F1, D2, D4, D9) � L(F1, D3, D4, D9) � L

(F1, F2, F4, D9) � L(F1, F3, F4, D9) � L(F2, F3, F4, D9).

6. Property of n-Order Pythagorean
Matrix (n≥ 4)

Definition 3. If integers a1, a2, . . . , an satisfy 
n− 1
k�1a

2
k � a2

n,
then a1, a2, . . . , an  is designated as an n-order Pythagorean
array, while vector-style expression (a1, a2, . . . , an) is named
as an n-order Pythagorean vector.

Definition 4. If an n-order square matrix A meets the fol-
lowing two conditions, then we name A as n-order Py-
thagorean matrix.

(1) If α � (a1, a2, . . . , an) is an arbitrary n-order Py-
thagorean vector and β � (a1, a2, . . . , an)A is still a
Pythagorean vector

(2) If |A|2 � 1

Definition 5. Among an n-order Pythagorean vector
(a1, a2, . . . , an), a1, a2, . . . , an are coprime numbers; then
(a1, a2, . . . , an) is named as an n-order primitive Pythago-
rean vector.

Let Tn � F | F ∈ Zn×n, F is a n − order Pythagorean

matrix} and B � diag[1, 1, . . . , 1, − 1] in this chapter. .en,
we have the following theorem.

Theorem 13. A is an n-order integer matrix, and the nec-
essary and sufficient condition of A ∈ Tn is ABA′ � B.

Proof Sufficiency condition.
If A satisfies ABA′ � B, then we can easily check that
|A|2 � 1. Let α � (a1, a2, . . . , an) be an arbitrary n-or-
der Pythagorean vector. In the expression of
β � (a1, a2, . . . , an)A, we can simplify it. Let
β � (a11, a12, . . . , a1n). Clearly, a11, a12, . . . , a1n are all
integers. Since 

n− 1
i�1 a2

1i − a2
1n � βBβ′ �

αABA′α′ � αBα′ � 
n− 1
i�1 a2

i − a2
n � 0, β is an n-order

Pythagorean vector. .ereby, A ∈ Tn.
Necessary condition.
If A � (aij) ∈ Tn and α � (c1, c2, . . . , cn) is an n-order
Pythagorean vector, then β � (c1, c2, . . . , cn)A is still an
n-order Pythagorean vector, that is to say
βBβ′ � αABA′α′ � 0.

Hence, we can get the following equality:



n− 1

i�1
a
2
1i − a

2
1n

⎡⎣ ⎤⎦c
2
1 + 

n− 1

i�1
a
2
2i − a

2
2n

⎡⎣ ⎤⎦c
2
2 + · · · + 

n− 1

i�1
a
2
ni − a

2
nn

⎡⎣ ⎤⎦c
2
n + 2 

n− 1

i�1
a1ia2i − a1na2n

⎡⎣ ⎤⎦c1c2

+ 2 
n− 1

i�1
a1ia3i − a1na3n

⎡⎣ ⎤⎦c1c3 + · · · + 2 
n− 1

i�1
a1iani − a1nann

⎡⎣ ⎤⎦c1cn + 2 
n− 1

i�1
a2ia3i − a2na3n

⎡⎣ ⎤⎦c2c3

+ · · · + 2 
n− 1

i�1
a2iani − a2nann

⎡⎣ ⎤⎦c2cn + · · · + 2 
n− 1

i�1
an− 1,iani − an− 1,nann

⎡⎣ ⎤⎦cn− 1cn � 0.

(11)
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Let α � (1, 0, . . . , 0, 1), then substitute it in equality (11),
and we can get the following equality:



n− 1

i�1
a
2
1i − a

2
1n

⎡⎣ ⎤⎦ + 
n− 1

i�1
a
2
ni − a

2
nn

⎡⎣ ⎤⎦ + 2 
n− 1

i�1
a1iani − a1nann

⎡⎣ ⎤⎦ � 0.

(12)

Let α � (1, 0, . . . , 0, − 1), then substitute it in equality
(11), and we can get the following equality:



n− 1

i�1
a
2
1i − a

2
1n

⎡⎣ ⎤⎦ + 
n− 1

i�1
a
2
ni − a

2
nn

⎡⎣ ⎤⎦ − 2 
n− 1

i�1
a1iani − a1nann

⎡⎣ ⎤⎦ � 0.

(13)

Let α � (0, 1, 0, . . . , 0, 1) and α � (0, 1, 0, . . . , 0, − 1), then
substitute it in equality (11) .en, we can get



n− 1

i�1
a
2
2i − a

2
2n

⎡⎣ ⎤⎦ + 
n− 1

i�1
a
2
ni − a

2
nn

⎡⎣ ⎤⎦ + 2 
n− 1

i�1
a2iani − a2nann

⎡⎣ ⎤⎦ � 0,

(14)



n− 1

i�1
a
2
2i − a

2
2n

⎡⎣ ⎤⎦ + 

n− 1

i�1
a
2
ni − a

2
nn

⎡⎣ ⎤⎦ − 2 

n− 1

i�1
a2iani − a2nann

⎡⎣ ⎤⎦ � 0.

⋮
(15)

Let α � (0, . . . , 0, 1, 1), then substitute it in equality (11),
and we obtain the following equation:



n− 1

i�1
a
2
n− 1i − a

2
n− 1n

⎡⎣ ⎤⎦ + 
n− 1

i�1
a
2
ni − a

2
nn

⎡⎣ ⎤⎦ + 2 
n− 1

i�1
an− 1,iani − an− 1,nann

⎡⎣ ⎤⎦ � 0.

(16)

Let α � (0, . . . , 0, 1, − 1), then substitute it in equality
(11), andwe obtain the following equation:



n− 1

i�1
a
2
n− 1i − a

2
n− 1n

⎡⎣ ⎤⎦ + 

n− 1

i�1
a
2
ni − a

2
nn

⎡⎣ ⎤⎦ − 2 

n− 1

i�1
an− 1,iani − an− 1,nann

⎡⎣ ⎤⎦ � 0.

(17)

From equations (12) and (13), we obtain



n− 1

i�1
a
2
1i − a

2
1n

⎡⎣ ⎤⎦ � − 
n− 1

i�1
a
2
ni − a

2
nn

⎡⎣ ⎤⎦,



n− 1

i�1
a1iani − a1nann � 0.

(18)

From equations (14) and (15), we get



n− 1

i�1
a
2
2i − a

2
2n

⎡⎣ ⎤⎦ � − 

n− 1

i�1
a
2
ni − a

2
nn

⎡⎣ ⎤⎦,



n− 1

i�1
a2iani − a2nann � 0,

⋮

(19)

From equations (16) and (17), we get



n− 1

i�1
a
2
n− 1i − a

2
n− 1n

⎡⎣ ⎤⎦ � − 
n− 1

i�1
a
2
ni − a

2
nn

⎡⎣ ⎤⎦,



n− 1

i�1
an− 1,iani − an− 1,nann

⎡⎣ ⎤⎦ � 0.

(20)

Also, from equalities (18), (19), . . . , (20), we obtain the
following equations:



n− 1

i�1
a
2
1i − a

2
1n � 

n− 1

i�1
a
2
2i − a

2
2n � · · · � 

n− 1

i�1
a
2
n− 1,i − a

2
n− 1,n � − 

n− 1

i�1
a
2
ni − a

2
nn,

(21)



n− 1

i�1
a1iani − a1nann � 

n− 1

i�1
a2iani − a2nann � · · · � 

n− 1

i�1
an− 1,iani

− an− 1,nann � 0.

(22)

Substituting equalities (21) and (22) into equality (11),
we can get the following equality:

2 
n− 1

i�1
a1ia2i − a1na2n

⎡⎣ ⎤⎦c1c2 + · · · + 2 
n− 1

i�1
a1ian− 1,i − a1nan− 1,n

⎡⎣ ⎤⎦

· c1cn− 1 + 2 
n− 1

i�1
a2ia3i − a2na3n

⎡⎣ ⎤⎦c2c3 + · · ·

+ 2 
n− 1

i�1
a2ian− 1,i − a2nan− 1,n

⎡⎣ ⎤⎦c2cn + · · ·

+ 2 
n− 1

i�1
an− 2,ian− 1,i − an− 2,nan− 1,n

⎡⎣ ⎤⎦cn− 2cn− 1 � 0.

(23)

Hence, we can get equation (24) by randomicity of α �

(c1, c2, . . . , cn) and equality (23):



n− 1

i�1
a1ia2i − a1na2n � · · · � 

n− 1

i�1
a1ian− 1,i − a1nan− 1,n � 

n− 1

i�1
a2ia3i − a2na3n

� · · · � 
n− 1

i�1
a2ian− 1,i − a2nan− 1,n � · · · � 

n− 1

i�1
an− 2,ian− 1,i − an− 2,nan− 1,n � 0.

(24)
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For given 
n− 1
i�1 a2

1i − a2
1n � k, we know equality (25) is

valid by equalities (21), (22), and (24):

ABA′ � kB. (25)

.anks to |ABA′| � |A|2|B| � |B| � |kB| � kn|B|, where k
is an integer, k � 1 or k � − 1 when n is an even integer, but
k � 1 when n is an odd integer. Also, because matrices B and
kB are congruence relationship from (6.15), k � − 1 is in-
appropriate while k � 1 is tenable; as a result, ABA′ � B.

It i s easy to get .eorem 14 by .eorem 13. □

Theorem 14. Given A � (aij) ∈ Zn×n, the necessary and
sufficient condition of A ∈ Tn is that aij is integer solution of
the following equations:



n− 1

i�1
a
2
ik − a

2
nk � 1, k � 1, 2, . . . , n − 1, (26)

− 

n− 1

i�1
a
2
in + a

2
nn � 1, (27)



n− 1

i�1
aipaiq � anpanq, 1≤p< q≤ n; p, q ∈ Z. (28)

Lemma 6. Given A is an n-order integer square matrix, the
necessary and sufficient condition of A ∈ Tn is A meets the
following two cases:

(1) If α � (a1, a2, . . . , an) is an arbitrary n-order primi-
tive Pythagorean vector, then β � αA is still an n-
order primitive Pythagorean vector

(2) |A|2 � 1

Lemma 7. If A ∈ Tn, then A− 1 ∈ Tn.

Proof. Because A ∈ Tn, ABA′ � B; therefore,
A− 1B(A− 1)′ � B. Consequently, A− 1 ∈ Tn. □

Lemma 8. Given A ∈ Tn and C ∈ Tn, then AC ∈ Tn.

Proof. Because A ∈ Tn and C ∈ Tn, (AC)B(AC)′ �
ACBC′A′ � ABA′ � B; as a result, AC ∈ Tn. □

Lemma 9. 3e necessary and sufficient condition of A ∈ Tn is
A′ ∈ Tn.

Proof. If we want to prove Lemma 9 is proper, we need to
prove only that if A ∈ Tn, then A′ ∈ Tn .

Given A ∈ Tn, ABA′ � B; hence, A′ � B− 1A− 1B. Because
both B and B− 1 belong to Tn, we can get A− 1 ∈ Tn by Lemma
7 and we can conclude that A′ ∈ Tn from Lemma 8.

We can easily get the following theorem by using the
above lemmas. □

Theorem 15. Tn compose a group about matrix
multiplication.

Theorem 16. If A � (aij) ∈ Zn×n and A ∈ Tn, then
|ann| � maxi,j|aij|.

Proof. Since A ∈ Tn, equations (6.16), (6.17), and (6.18) are
tenable by .eorem 14.

From equality (27), we know
|ain|≤ |ann|(i � 1, 2, . . . , n − 1) and 1≤ |ann| are true.

From A ∈ Tn, we get A′ ∈ Tn, so

ani


≤ ann


, i � 1, 2, . . . , n − 1. (29)

For arbitrary j (j � 1, 2, . . . , n − 1), if
max(|a1j|, |a2j|, . . . , |an− 1,j|)≤ |anj|, then we get |aij|≤ |ann|

(i � 1, 2, . . . , n − 1) by (29); if
max(|a1j|, |a2j|, . . . , |an− 1,j|)> |anj|, then we can conclude
that max(|a1j|, |a2j|, . . . , |an− 1,j|)≤ 1 by (26). Because
1≤ |ann|, |aij|≤ |ann| (i � 1, 2, . . . , n − 1). Hence, we get

aij



≤ ann


, (i � 1, 2, . . . , n; j � 1, 2, . . . , n). (30)

.at is to say |ann| � maxi,j|aij| is tenable. □

7. Expression of n-Order Pythagorean
Matrix (4≤ n≤ 10)

Given TP
n � A ∣ A � (aij) ∈ Tn andmaxij � |aij| � p ,

F2
4 �

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and F2

n �
En− 4 0
0 F2

4
  when 5≤ n≤ 10.

Clearly F2
n ∈ T2

n. Now, we designate Wi (i � 1, 2, . . . , 2n − 1)
as the following n-order square matrix, W1 � diag [1,

1, . . . , 1], W2 � diag[− 1, 1, . . . , 1], W3 � diag [1, 1,

. . . , 1, − 1], W4 � En(1, 2), W5 � En(1, 3),. . ., Wn+1 �

En(1, n − 1), Wn+2 � diag[1, − 1, 1, . . . , 1], Wn+3 � diag
[1, 1, − 1, 1, . . . , 1],. . ., and W2n− 1 � diag[1, . . . , 1, − 1, 1].
Here, En(i, j) is an n-order square matrix produced by
unitary matrix exchange row i and j. L(W1, W2, . . . , W2n− 1)

represents the finitely generated group about matrix mul-
tiplication produced by W1, W2, . . . , W2n− 1;
L(W1, W2, W3, Wn+2, Wn+3, . . . , W2n− 1) represents the fi-
nitely generated group about matrix multiplication pro-
duced by W1, W2, W3, Wn+2,Wn+3, . . . , W2n− 1;
L(W4, W5, . . . , Wn+1) represents the finitely generated
group about matrix multiplication produced by
W4, W5, . . . , Wn+1; L(W1, W2, . . . , Wn+1) represents the fi-
nitely generated group about matrix multiplication pro-
duced by W1, W2, . . . , Wn+1. It is easy to know that
L(W1, W2, . . . , W2n− 1) � L(W2, W3, W4 . . . , Wn+1).

Theorem 17. T1
n � L(W1, W2, . . . , Wn+1).

Proof. It is easy to validate that W1, W2, . . . , Wn+1 belong to
T1

n. So, we can conclude that L(W1, W2, . . . , Wn+1) ⊂ T1
n by

.eorem 15.
Considering A � (aij) ∈ Zn×n and A ∈ T1

n, equation
|ann| � 1 becomes true by .eorem 16. We can infer that
ain � 0 (i � 1, 2, . . . , n − 1) from equation (27) and |ann| � 1,
and we can conclude that A′ ∈ T1

n by A ∈ T1
n, thereby ani � 0
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(i � 1, 2, . . . , n − 1) are tenable. .us, we can obtain the
following conclusion by equation (26) and ani � 0
(i � 1, 2, . . . , n − 1).

.ere exists only one 1 among |a11|, |a21|, . . . , |an− 1,1|.

.ere exists only one 1 among |a12|, |a22|, . . . , |an− 1,2|.
⋮
.ere exists only one 1 among
|a1,n− 1|, |a2,n− 1|, . . . , |an− 1,n− 1|.
We can get the other conclusion by A′ ∈ T1

n.
.ere exists only one 1 among |a11|, |a12|, . . . , |a1,n− 1|.
.ere exists only one 1 among |a21|, |a22|, . . . , |a2,n− 1|.
⋮
.ere exists only one 1 among
|an− 1,1|, |an− 1,2|, . . . , |an− 1,n− 1|.

Accordingly, there exist X1, X2, . . . , Xn− 2
(X1, X2, . . . , Xn− 2 ∈ W1, W4, W5, . . . , Wn+1 ), and they
cause C≜AX1X2 · · · Xn− 2 ≜ (cij) and satisfy that cij � 0
(i≠ j) and |cii| � 1 (i � 1, 2, . . . , n). For C, there exist
Xn− 1, Xn, . . . , X2n− 1 (Xn− 1, Xn, . . . , X2n− 1 ∈ W1, W2, W3,

Wn+2, Wn+3, . . . , W2n− 1}), and they make CXn− 1Xn

· · · X2n− 1 � En. So, AX1X2 · · · Xn− 2Xn− 1Xn · · · X2n− 1 � En.
Consequently, A � X− 1

2n− 1 · · · X− 1
2 X− 1

1 . Hence, A ∈ L(W1,

W2, . . . , Wn+1) is true. From above, T1
n � L(W1,

W2, . . . , Wn+1) is tenable.
All n which are mentioned hereinafter satisfy the con-

dition of 4≤ n≤ 10, and no longer explained. □

Theorem 18. T2
n � {A | A � XF2

nY, both X and
Y ∈ L(W1, W2, . . . , W2n− 1)}.

Proof. Suppose A � XF2
nY and X, Y ∈ L(W1, W2,

. . . , W2n− 1), then we get A ∈ Tn because F2
n ∈ T2

n and
Wi ∈ Tn. If we express A � (aij), then it is easy to check
maxi,j|aij| � 2. .erefore, A ∈ T2

n, namely, A ∣ A � XF2
nY ,

both X and Y ∈ L(W1, W2, . . . , W2n− 1)} ⊂ T2
n.

If A ∈ T2
n, then A can left or right multiply by matrix in

L(W1, W2, . . . , W2n− 1); hence, matrix P1 ≜ (pij)n×n is ob-
tained, and it makes equations p22 � 2, |pn,n− 1| � |pn,n− 2| �

|pn,n− 3| � 1 � |pn− 1,n| � |pn− 2,n| � |pn− 3,n|, and pnj � pjn � 0
(j< n − 3) tenable.

If P1is partitioned into P1 �
P11 P12
P21 P22

 , in which P11 is

(n − 4)-th-order square matrix and P22 is 4-th-order square
matrix, then there exists only one number which absolute
value is equal to 1 in the former (n − 4) column (include no.
(n − 4) column) of P1 from equation (26). In a similar way,
there exists only one number which absolute value is equal to
1 in the former (n − 4) row (include no. (n − 4) row) of P1
from equation (26). Use equation (28) and reductio ad
absurdum, we can get P12 � 0 and P21 � 0, that is to say

P1 �
P11 0
0 P22

 .

For matrix P2, it can be obtained by matrix P1 which left
or right multiply by matrix in L(W4, W5, . . . , Wn+1). It

causes P2 �
R2 0
0 Q

 , in which R2 is a diagonal matrix and

the absolute value of diagonal elements is equal to 1.
For matrix P3, it can be obtained by matrix P2 which left

or right multiply by matrix in L(W1, W2, . . . , W2n− 1). It

causes P3 �
En− 4 0
0 Q

 .

For matrix P4, it can be obtained by matrix P3 which left
or right multiply by matrix in L(W1, W2, . . . , W2n− 1). It

causes P4 �

En− 4 0 0
0 U β
0 α 2

⎛⎜⎝ ⎞⎟⎠, in which α � (1, 1, 1) and

β � (1, 1, 1)T. We know that only two elements’ absolute
values are equal to 1 in every row (column) of U by equation
(26), and only two elements in every row (column) of U are
equal to 1 by equation (28). For matrix P4, it can left or right
multiply by matrix of L(W4, W5, . . . , Wn+1). .e result is
matrix F2

n.
From above, matrix F2

n can be obtained by A which left
or right multiply by matrix in L(W1, W2, . . . , W2n− 1). In
other words, there exist X1, Y1 ∈ L(W1, W2, . . . , W2n− 1);
they cause X1AY1 � F2

n. .e other form is
A � (X1)

− 1F2
n(Y1)

− 1. Let X � (X1)
− 1 and Y � (Y1)

− 1, then
X, Y ∈ L(W1, W2, . . . , W2n− 1); so, A � XF2

nY. .erefore,
T2

n ⊂ A ∣ A � XF2
nY , X and Y ∈ L(W1, W2, . . . , W2n− 1)}; it

follows that T2
n � A | A � XF2

nY , X and
Y ∈ L(W1, W2, . . . , W2n− 1)}. □

Inference 4. T2
n ⊂ L(F2

n, W2, W3, . . . , Wn+1).

Theorem 19. Arbitrary A � (aij) ∈ Tn, if maximum abso-
lute value of A′s element is y; furthermore, y> 2, and then
there exist Qi ∈ L(W2, W3, W4, . . . , Wn+1) (i � 1, 2, . . . , n)
which make maximum absolute value of elements of matrix
H � AQ1Q2 · · · QnF2

n be less than y.

Proof. Clearly, there exist Q1 ∈ L(W2, W3,

W4, W5, . . . , Wn+1) which make the former (n − 1) elements
of last row in matrix AQ1 be nonnegative, and the last el-
ement of last row in matrix AQ1 is equal to − y; there exist
Q2, Q3, . . . , Qn ∈ L(W2, W3, W4, W5, . . . , Wn+1) which
make Q≜AQ1Q2 · · · Qn ≜ (qij)n×n, of which qnn � − y, qni ≥ 0
(i � 1, . . . , n − 1) and qn1 ≤ qn2 ≤ · · · ≤ qn,n− 1. Let
H � QF2

n � (hij)n×n, and then we get hnn �

qn,n− 3 · 1 + qn,n− 2 · 1 + qn,n− 1 · 1 − 2y. Obviously, qn,n− 3 +

qn,n− 2 + qn,n− 1 < 3y.
Now we must prove that qn,n− 3 + qn,n− 2 + qn,n− 1 >y is

tenable when 4≤ n≤ 10.
When qn,n− 3 � 0, qn,n− 3 + qn,n− 2 + qn,n− 1 � 

n− 1
i�1 qni >y is

true. Now we must prove that qn,n− 3 + qn,n− 2 + qn,n− 1 >y is
still true when 4≤ n≤ 10 and qn,n− 3 > 0. Otherwise, from
qn,n− 3 + qn,n− 2 + qn,n− 1 ≤y we can get (qn,n− 3 +

qn,n− 2 + qn,n− 1)
2 ≤y2. From 1 + 

n− 1
i�1 q2ni � q2nn � y2, we can

get 1 + 
n− 4
i�1 q2ni + q2n,n− 3 + q2n,n− 2 + q2n,n− 1 − (

n− 1
i�n− 3qni)

2 �

y2 − (
n− 1
i�n− 3qni)

2 ≥ 0. Hence, 1 + 
n− 4
i�1 q2ni ≥ 2(qn,n− 3qn,n− 2 +

qn,n− 3qn,n− 1 + qn,n− 2qn,n− 1)≥ 6q2n,n− 3. If qn,n− 3 > 1, then
n − 4≥ 6; from previous agreement n≤ 10, we know that
n − 4 � 6; then from 1 + 

n− 4
i�1 q2ni ≥ 6q2n,n− 3 we get

8 Mathematical Problems in Engineering



qn1 � qn2 � · · · � qn,n− 1, so 9q2n1 � q2nn − 1. But, it is out of
question.

If qn,n− 3 � 1 and qn,n− 1 ≥ 2, then we get
1 + (n − 4)≥ 1 + 

n− 4
i�1 q2ni ≥ 2(2 · 1 + 1 · 1 + 1 · 1) � 8, so

n≥ 11; it contradicts with previous agreement n≤ 10; if
qn,n− 3 � 1 and qn,n− 1 � 1, then |qni|≤ 1 is true of arbitrary
i≤ n − 1; from 1 + 

n− 4
i�1 q2ni ≥ 6q2n,n− 3 we know that n − 3≥ 6,

namely, n≥ 9 and qn,n− 4 � 1; hence, matrix H can be

expressed as the form of H �
H11 α1 α2 α3 α4 H16
H21 1 1 1 1 − y

 .

From equation (27), we know that only two elements’ ab-
solute value of the former n − 1 rows of n − i(i � 1, 2, 3, 4)

columns in matrix H is equal to 1, and the rest elements are
equal to zero. And this conclusion is incompatible with
equation (6.18).

From above, y< qn,n− 3 + qn,n− 2 + qn,n− 1 < 3y is true; in
other words, |qn,n− 3 + qn,n− 2 + qn,n− 1 − 2y|< |y| is true,
namely, |hnn|< |y| is tenable. Hence, .eorem 19 is
established. □

Theorem 20. Tn � L(F2
n, W2, W3, W4, . . . , Wn+1). In other

words, Tn is a finitely generated group, and F2
n, W2, W3,

W4, . . . , Wn+1 is a generated tuple of Tn.

Proof. Clearly L(F2
n, W2, W3, W4, . . . , Wn+1) ⊂ Tn. Arbi-

traryA ∈ Tn, and it can be written asA � (aij)n×n. If |ann|> 2,
then ∃Q1, Q2, . . . , Qn ∈ L(W2, W3, W4, . . . , Wn+1), which
make H1 � AQ1Q2 . . . QnF2

n ≜ (h1
ij)n×n and |h1

nn|< |ann| by
.eorem 19. In other words,
∃X1 ∈ L(F2

n, W2, W3, W4, . . . , Wn+1), which make
H1 � AX1 ≜ (h1

ij)n×n, of which |h1
nn|< |ann|; if |h1

nn|> 2, then
we can apply the theorem time after time; hence, we get
∃X1, X2, . . . , Xk ∈ L(F2

n, W2, W3, W4, . . . , Wn+1), which
make Hm+1 � HmXm+1(m � 1, 2, . . . , k − 1)≜ (hm

ij )n×n and
|hk

nn|< |hk− 1
nn |< · · · < |h1

nn|< |ann|. Because lower bound of
|hk

nn| is 1 or 2, which is to say there exist k, which make
|hk

nn| � 2 or |h1
nn| � 1. If |hk

nn| � 2, then Hk ∈ T2
n;

T2
n ⊂ L(F2

n, W2, W3, W4, . . . , Wn+1) is true by .eorem 18,
so A ∈ L(F2

n, W2, W3, W4, . . . , Wn+1). If |h1
nn| � 1, then

Hk ∈ L(W1, W2, . . . , W2n− 1) is true by .eorem 17, so
Hk ∈ L(F2

n, W2, W3, W4, . . . , Wn+1).
From above, Tn ⊂ L(F2

n, W2, W3, W4, . . . , Wn+1) is true,
accordingly Tn � L(F2

n, W2, W3, W4, . . . , Wn+1). .is is what
we want to prove.

We suppose that Tn (n≥ 11) still is a finitely generated
group, but the presentation of Tn need to be further
studied. □

8. Future Work and Prospects

Let Wn � (a1, a2, . . . , an) | (a1, a2, . . . , an) is n-order

primitive Pythgorean vector}.
Start with (3, 4, 5) or (4, 3, 5) and multiply F1, F2, or F3

by it in any order any number of times, and all 3-dimen-
sional primitive Pythagorean vectors can be formed trees
which Cha et al. [15] call Berggren trees.

Since F1 ∈ T3, F2 ∈ T3, F3 ∈ T3, Di ∈ T3 (1≤ i≤ 9), and
T3 � L(F1, D2, D4, D9), we get that every 3-order primitive

Pythagorean vector can be obtained from multiplying
F1, D2, D4, or D9 by (3, 4, 5) in any order any number of
times. Can all 3-dimensional primitive Pythagorean vectors
be formed a Berggren tree starting with a primitive Py-
thagorean vector?

Using the definition and properties of T3, we can obtain
the another representation of W3; that is, we have that
W3 � (a, b, c) ∣ (a, b, c) � (3, 4, 5)∗F,∀F ∈ T3 . Does Wn

(n≥ 4) have a similar representation?
In this paper, we have given the generators of the finitely

generated group Tn (n≤ 10). Is Tn (n> 10) a finitely gen-
erated group? If Tn (n> 10) is a finitely generated group,
what are the generators of Tn (n> 10)?

.ese appear to be interesting questions, which we hope
to take up in the near future.
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