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In this paper, a comprehensive empirical study is conducted to evaluate the performance of a new real-coded crossover operator
called Fisk crossover (FX) operator.*e basic aim of the proposed study is to preserve population diversity as well as to avoid local
optima. In this context, a new crossover operator is designed and developed which is linked with Log-logistic probability
distribution. For its global performance, a realistic comparison is made between FX versus double Pareto crossover (DPX),
Laplace crossover (LX), and simulated binary crossover (SBX) operators. Moreover, these crossover operators are also used in
conjunction with three mutation operators called power mutation (PM), Makinen, Periaux, and Toivanenmutation (MPTM), and
nonuniform mutation (NUM) for inclusive evaluation. *e performance of probabilistic-based algorithms is tested on a set of
twenty-one well-known nonlinear optimization benchmark functions with diverse features. *e empirical results show a
substantial dominance of FX over other crossover operators with authentication of performance index (PI). Moreover, we also
examined the significance of the proposed crossover scheme by administrating ANOVA and Gabriel pairwise multiple com-
parison test. Finally, the statistically significant results of the proposed crossover scheme have a definite edge over the other
schemes, and it is also expected that FX has a great potential to solve complex optimization problems.

1. Introduction

In many real-life decision-making problems, it is often the
best possible solutions are required. *ese problems may be
anything from engineering, science, economics, and finance
[1–3]. When the quality of potential solutions can be
modeled mathematically, it may be possible to algorithmi-
cally find a better and sometimes optimal solution. In this
case, decisions are made by developing optimization models
that describe the nature of the problem, and then mathe-
matical procedures are applied to solve these models. Hence,
the simplest optimization scenario is based on constrained
optimization problems, but the present research study
focuses only on unconstrained optimization problems. More

generally, unconstrained nonlinear optimization problem
may be mathematically defined as

Minf(y), wheref: R
n⟶ R, (1)

where y ∈ S, and S is a rectangular hypercube with n-
dimensions in Rn with limits ai ≤yi ≤ bi, i � 1, 2, 3, . . . , n .
*ese are commonly known as bounds which are based on
the decision variables. A point y+ ∈ S is known as local
minima of f if f(y+)≤f(y) y ∈ Nε(y+)∩ S, where
Nε(y+) � y ‖y − y+‖< ε, ε> 0  is the small neighborhood
of the point (y+). Iff(y+)≤f(y) y ∈ S, then y+ is said to be
the global minima of f.

*e optimization techniques for unconstrained prob-
lems invariably used the gradient information to locate the
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optima. Hence, proximal gradient descent is also a gradient-
based optimization method, which can be used to solve
objective functions with nondifferentiable parts. *ese
techniques cannot efficiently handle discrete variables and
are most probably stuck at local optima for multimodal
objective functions. Hence, the gradient-based methods
often ensure that the local optima will be reached at the
global optima.

To preserve population diversity and to avoid local
optima, there are different types of population-based
probabilistic optimization techniques that do not require
continuous or differentiable objective functions. Such
techniques are genetic algorithms (GAs) [4, 5], particle
swarm optimization (PSO) [6], simulated annealing (SA)
[7], differential evolution [8], ant colony optimization
(ACO) [9], and Tabu search [10, 11]. All these optimization
techniques are hence categorized under guided random
search methods [12]. *e guided random search methods
provide a very efficient solution to the combinatorial
problems and can be subcategorized into evolutionary
techniques. GA is the most efficient procedure to understand
and solve problems for which there is limited information.
*ese algorithms can effectively handle both unconstrained
and constrained optimization problems depending on a
process of natural selection through biological evolution.
*e working mechanism of GA is linked with a search space
that contains all possible solutions. Each part of the search
space represents one sufficient solution and its fitness values
will be marked by these sufficient solutions. A strong
chromosome can survive, and usually, the weak chromo-
somes are eliminated from the population. GA is working
with a search space that contains all feasible solutions. It
means that each of the points in the search space is to obtain
one feasible solution that will be marked according to its
fitness [13]. *e main operators of the GA process are
selection, crossover, and mutation, and all these operators
make the algorithm more unique compared to other con-
ventional algorithms in the optimization scenario. *e
ideology of the selection process is to select the good
chromosomes which are sent to the mating pool for com-
bining with the other chromosomes to reproduce two new
offspring. Meanwhile, the mutation process aims to
encourage diversity in the new population with minor
probability [14].

In previous studies, the representation of chromosomes
was in the binary form which contains 0’s (absent) and 1’s
(present), and initially, it was applied due to its relative
simplicity. Binary-coded scheme transforms the continuous
search space into discrete nature with grids and the string
length depends on the distance between two neighboring
grids. *e performance of binary encoding is good and also
required less precision for the solutions under a limited
number of decision variables. On the other way, binary
encoding performs unsatisfactorily to solve multidimen-
sional optimization problems where high precision is
required. By the use of multiple decision variables in
objective functions, the optimization problems may be
solved efficiently with the increase in the size of the pop-
ulation. Hence, increment in the string length may be

achieved better precision. In earlier optimization studies,
Goldberg [12] explored that the increase in string length
exponentially increased computation time and with some
additional adjustments in the binary encoding will improve
the convergence speed in genetic algorithms which were
cited in Jin et al. [15].

Generally, GA used binary encoding in the earlier
nineteen century, but many researchers [ and 16–22] used
real numbers for encoding. Mohamed et al. [23] recently
proposed gaining sharing knowledge-based algorithm
(GSK) for solving naturally inspired optimization problems
over continuous space. *e designing and development of a
real-encoding scheme were naturally suitable to solve
optimization problems with continuous variables. As a
binary coding scheme, similar genetic operators such as
selection, crossover, and mutation are used in real-coded
GA. *e major advantage of real encoding over binary
encoding is to efficiently handle complex nonlinear opti-
mization problems with the continuous domain. Hence, by
using real-encoded schemes, many difficulties such as pre-
mature convergence are to be solved, and such situations
arise because of low genetic diversity in the population, and
also it represents the poor exploration of the search space. If
all the chromosomes have nearly the same empirical value,
then the resulting process may be trapped at local optima. In
the above context, a substantial amount of algorithmic work
has been carried out to improve the performance of the GA
process by increasing exploitation and exploration potential
[24]. *e exploration strength of the GA process mainly
relies on the use of crossover operators due to the utilization
of information about the current population. *is is one of
the key reasons that the majority of researchers pay more
attention to performance improvement of the GA process
through efficiently designed and developed real-coded
crossover operators.

A dynamic class of crossover operators with real
encoding is also known as parent centric crossover oper-
ators. Deb et al. [25] have shown that these parent centric
crossover operators are quite effective to obtain optimum
solutions of real parametric problems. In our current
research study, a newly proposed real-coded crossover
operator is based on log-logistic probability distribution
which is empirically defined. *e comparative performance
evaluation of newly proposed parent centric crossover
operator (FX) is carried out with double Pareto crossover
(DPX), Laplace crossover (LX), and simulated binary
crossover (SBX) operators. Moreover, these crossover
operators are also used in conjunction with three main
mutation operators called power mutation (PM), nonuni-
form mutation (NUM), and Makinen, Periaux, and Toiva-
nen mutation (MPTM) proposed by Deep and *akur [26],
Meittinen et al. [27], Deb [5], and Maaranen et al. [28]. To
evaluate the significance of the simulated study, the pairwise
comparison is carried out for all algorithms based on
statistical measures.

*e rest of this paper is organized as follows. Concise
detail about some existing crossover operators with real
coding is discussed in Section 2. Description with the
mathematical formulation of previous crossover schemes
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along with tournament selection is presented in Section 3.
Designing and development of newly proposed crossover
operator based on log-logistic probability distribution along
with the description of some well-known benchmark
functions are presented in Section 4. Experimentation detail
with statistical analysis is described in Section 5, while
simulated results by using twenty-one well-known bench-
mark functions are revealed and discussed in Section 6.
Performance evaluation for comparative study is presented
in Section 7. *e conclusions of the study are presented in
Section 8 of this paper.

2. Literature Review of Crossover
Operators with Real Coding

Different classes of crossover operators with real coding have
been proposed in the literature related to theGAprocess. In the
earlier expansion of real coding, Wright [18] and Michalewicz
et al. [29] suggested a heuristic crossover approach where the
selection of a gene’s position is purely a randomprocess and the
generation of two new offspring is resulting by exchanging the
position of their respective genes. Radcliffe [30] explained a Flat
Crossover where a random generation of offspring is based on
uniform distribution. Muhlebein and Schlierkamp-Voosen
[31] proposed an extended form of intermediate crossover and
line crossover. Both these crossover operators improved their
search competencies by allowing population diversity under a
specified interval. Eshelman and Schaffer [32] further extended
the ideology of Radcliffe [30] by introducing the theoretical
approach of interval schemata in the real-coding scheme. A
Blend-α crossover is a hybridization of intermediate crossover
and line crossover which was introduced by Muhlebein and
Schlierkamp-Voosen [31]. With the benefit of the user-defined
parameter, this crossover defined a bond in between genes of
the parent as well as equally on either side. Moreover, blend
crossover can be transformed into an intermediate crossover
with α� 0.25.

Michalewicz et al. [29] presented a theory of sandwiched
offspring between two parents in an arithmetic crossover
operator. Moreover, a random selection of genes for producing
offspring which is based on the uniform distribution in single
arithmetic crossover and more offspring is generated by
duplicating the process of earlier produced offspring through
the average measure. *e generation process of a single
arithmetical crossover is generalized to all arithmetic crossovers.
For more logically mathematical extension in the GA process,
fuzzy recombination crossover, and fuzzy min-max crossover
operators are introduced by Voigt et al. [33, 34]. Herrera and
Lozano [21] presented a class of dynamic heuristic real-coded
crossover operators that are linked with fuzzy connectives to
overcome the shortcomings including premature convergence.
*ese crossover operators focus on maintaining population
diversity with the sustainable convergence speed of the genetic
process. Another unique idea of a multiparent crossover is
presented by Tsutsui et al. [35] in a simplex real-coded crossover
operator by using a uniform probability distribution. Deb and
Agrawal [19] repeat the development strategy of single-point
crossover by using a binary string is continuous while intro-
ducing simulated binary crossover. Tutkun [36] is also

introduced as a crossover operator linked with Gaussian
probability distribution. Kaelo and Ali [37] proposed a
hybridization strategy of different crossovers by reviewing the
functionality of these crossover operators. Laplace probability
distribution is also used in real-coded crossover for producing
new offspring by Deep and *akur [26].

Generally, the crossover scheme creates offspring with the
help of those parents who are selected through the selection
operator. It combines the parents’ characteristics to procedure
new offspring, which may have new sequences compared to
those of their parents and play a vital role in the GAs. In the
literature, a lot of crossover schemes have been introduced
with their significant importance. Chen and Wang [38]
proposed a real-coded crossover (UNDX) by using unimodal
normal probability distribution where three parents produce
multiple offspring through the crossover process. After that
Ono and Kobayashi et al. [39] integrated a uniform crossover
operator to enhance the working capability of UNDX in the
genetic process. A generalized form of UNDX operator
having multiple parents was introduced by Kita et al. [40].
Another multiple parent crossover operator, i.e., parent-
centric crossover (PCX) operator was reported by Deb et al.
[25] with some enhanced features and amodified class of PCX
was also introduced by Sinha et al. [41]. Furthermore,
Chandra et al. [42] proposed a novel cooperative coevolution
working strategy by incorporating PCX with a memetic
framework for neural networks without adding to the
computational cost in the subpopulations. After the
hybridization with the neural network, island-based coop-
erative coevolutionary algorithms are presented by Bali et al.
[43] to solve large-scale fully separable continuous opti-
mization problems under the framework of PCX. Rolland and
Chandra [44] also used PCX to efficiently handle the forward
kinematics problem (FKP) for parallel manipulators.

By the integration of bound crossover and average
crossover, Ling and Leung [45] suggested an average-bound
crossover operator where two parents generated four off-
spring by the selection of two best out of four offspring. It is
also noted in the literature that some of the various types of
crossover operators including hybrid crossover operators are
more beneficial to enhance the performance of the genetic
process by introducing a fair amount of population diversity
and controlling selection pressure. Hence, Herrera et al. [46]
conducted a comprehensive performance evaluation study
among real-coded crossover operators to explore the effec-
tiveness of the genetic process. Real-coded crossover oper-
ators are parent centric crossover, fuzzy recombination,
parent centric blend crossover, simulated binary crossover,
and XLM crossover [47], and Laplace real-coded crossover are
parent-centric crossovers which by using a unimodal normal
probability distribution, blend crossover, and simplex
crossover are all based onmean-centric crossover approaches.

3. Some Presently Used GAOperators with Real
Coding in the Study

In the current section, we descriptively delineate selection,
crossover, and mutation operators that are tournament selec-
tion (TS), double Pareto crossover (DPX), Laplace crossover
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(LX), and simulated-binary crossover (SBX) alongwith different
mutation operators which are power mutation operator (PM),
Makinen, Periaux, and Toivanen mutation (MPTM), and
nonuniform mutation (NUM). Hence, the empirical findings
are to be obtained through the simulated study.

3.1. Selection Operators

3.1.1. Tournament Selection (TS). TS method is a ranked-
based selection procedure that is simple to execute. *is
selection technique can be classified as binary and large
tournament selection. *e binary tournament selection is
based on the randomized selection of two individuals, con-
ducting a competition to decide which chromosome will win
and get selected for the mating pool on the basis of the highest
fitness value [14]. On the contrary, there will be no place in the
mating pool for the weakest chromosomes in terms of the
least fitness value, and then compare it to a predetermined
selection probability pi. Hence, the predetermine selection
probability for individual pi for (t − 1) tournament is given as

pi �
1

W
t (W − i + 1)

t
− (W − i)

t
 , i ∈ 1, 2, . . . , W{ },

(2)

whereW is defined as population size and t is the size of the
tournament. For the binary tournament t� 2 and large
tournament t> 2, the TS can also be further extended by
including more than two individuals if desired [48].

3.2. Crossover Operators

3.2.1. Double Pareto Crossover (DPX). DPX operator [49] is
another kind of parent centric crossover operator that uses
the double Pareto probability distribution whose cumulative
distribution function is expressed as

F(y) �

1
2

1 −
y

αβ
 

− α

, y< 0,

1
2

1 − 1 −
y

αβ
 

− α

 , y≤ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where α ∈ R is represented as the location parameter where
β> 0 is known as a scale parameter of the distribution. By
using DPX, pair of offspring z 1{ } � (z

1{ }
1 , z

1{ }
2 , . . . , z 1{ }

n ) and
z 2{ } � (z

2{ }
1 , z

2{ }
2 , . . . , z 2{ }

n ) are generated from two parents
y 1{ } � (y

1{ }
1 , y

1{ }
2 , . . . , y 1{ }

n ) and y 2{ } � (y
2{ }
1 , y

2{ }
2 , . . . , y 2{ }

n )

in a subsequent stepwise procedure:

Step 1: generate a random number (ri) from a uniform
probability distribution, where ri ∈ [0, 1].
Step 2: calculate the value of the parameter βi by
generating random numbers from double Pareto
probability distribution by simply finding the inverse of
the cumulative distribution function of double Pareto
distribution as

βi �
αβ 1 − 2ri( 

− 1/αi  , ri ≤ 0.5,

αβ 1 − 2ri( 
− 1/αi  − 1 , ri > 0.5.

⎧⎪⎨

⎪⎩
(4)

Step 3: now, the offspring are in equations (5) and (6)
for i � 1, 2, . . . , n:

z
1{ }

i �
y

1{ }
i + y

2{ }
i  + βi y

1{ }
i − y

2{ }
i





2
, (5)

z
2{ }

i �
y

1{ }
i + y

2{ }
i  − βi y

1{ }
i − y

2{ }
i





2
. (6)

If the generation of offspring in DPX is outside the
variable bound, i.e., yi <yl

i or yi <yri
i , then random values

are given to yi in an interval [yl
i, yri

i ].

3.2.2. Laplace Crossover (LX). LX crossover operator [26] is
a class of self-adaptive crossover operators with real
encoding. *is crossover is linked with Laplace probability
distribution and the cumulative distribution function is
expressed subsequently as

F(y) �

1
2
e

(|y− a|/b)
, y≤ a,

1 −
1
2
e

(|y− a|/b)
 , y> a.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

In the Laplace probability distribution, b> 0 is defined as
the scale parameter and a ∈ R is known as the location
parameter. By using LX, from a pair of parents y 1{ } � (y

1{ }
1 ,

y
1{ }
2 , . . . , y 1{ }

n ) and y 2{ } � (y
2{ }
1 , y

2{ }
2 , . . . , y 2{ }

n ), two offspring
z 1{ } � (z

1{ }
1 , z

1{ }
2 , . . . , z 1{ }

n ) and z 2{ } � (z
2{ }
1 , z

2{ }
2 , . . . , z 2{ }

n ) are
generated through a stepwise approach:

Step 1: generate a random number (ri) with a range of
unity from a uniform distribution.
Step 2: obtain the parametric value βi by generating
random numbers from Laplace probability distribution
by simply inverting the cumulative distribution func-
tion as

βi �

a − bloge ri( , ri ≤
1
2
,

a + bloge ri( , ri >
1
2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Step 3: now, the offspring are obtained in the sub-
sequent equations (9) and (10), respectively, for
i � 1, 2, . . . , n:
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z
1{ }

i � y
1{ }

i + βi y
1{ }

i − y
2{ }

i



, (9)

z
2{ }

i � y
2{ }

i + βi y
1{ }

i − y
2{ }

i



. (10)

If the generation of offspring is outside the variable
limits, i.e., yi <yl

i or yi <yri
i in LX, then random values are

given to yi in certain bound [yl
i, yri

i ] and assigned “0” value
to its location parameter.

3.2.3. Simulated Binary Crossover (SBX). *e SBX is an
important crossover operator with real coding.*is operator
was proposed by Deb and Agrawal [19] with a unique feature
of binary transformation to continuous search space. At the
first step, random number ri is generated from a uniform
distribution with range 0 to 1. After that, the parametric
value βi is obtained from the following mathematical
expression as

βi �

2ri( 
1/ nc+1( ), if ri ≤

1
2
,

1

2 − 2ri( 
1/ nc+1( )

, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

where nc ∈ [0,∞] is known as the distribution index.
Hence, from the two parents y 1{ } � (y

1{ }
1 , y

1{ }
2 , . . . , y 1{ }

n )

and y 2{ } � (y
2{ }
1 , y

2{ }
2 , . . . , y 2{ }

n ), an offspring z � (z1, z2,

. . . , zn) is produced in the following equation:

zi �
1
2

y
1{ }

i + y
2{ }

i  − βi y
1{ }

i − y
2{ }

i



 . (12)

3.3. Mutation Operators

3.3.1. Power Mutation (PM). *emutation process prevents
the new population from stopping at the local optima and
keeps the fair amount of diversity in the population. In other
words, this process will generate a unique and fit offspring in
the population. Goldberg [1] proposed a mutation clock to
overcome the problem of the computational complexity in
the mutation process. He used the exponential distribution
to find the next location to change the string by using the
first changed string location. *e mutation in this process is
aiming to explore more searching space while the crossover
tries to converge on some point. *is is because the role of
the mutation is to solve the local minimum problem. *us,
this process is one way to prevent local minimum solutions
at the expense of exploring more areas. Here, we sub-
sequently represent the PM mutation operator by Deep and
*akur [26].

*e PM is originated from power distribution and p.d.f
of power distribution is as with cumulative distribution
function in equations (13) and (14), respectively:

f(y) � py
p− 1

, 0≤y≤ 1, (13)

F(y) � y
p
, 0≤y≤ 1, (14)

where p is represented as distribution index and PM is used
to obtain an offspring z � (z1, z2, . . . , zn) from a parent y �

(y1, y2, . . . , yn) in the following stepwise procedure:

Step 1: obtain a random value (ri) from a uniform
distribution, where ri ∈ [0, 1].
Step 2: calculate a random value si by using power
distribution:

si � ri( 
1/p

. (15)

Now, use the following mathematical expressions to
obtain offspring:

zi �

yi − si yi − y
l
i , if

yi − y
l
i

y
ri
i − yi

< ri,

yi + si yi − y
l
i , if

yi − y
l
i

y
ri
i − yi

≥ ri,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

where yl
i and yri

i are the lower and upper bound of the ith
decision variable. In the context of the above mathematical
formulation, it is stated that perturbation in offspring is
proportional to the “p” parameter. Hence, the probability of
obtaining a mutated offspring is proportional to the distance
from parametric bound which always resulted in feasible
solution.

3.3.2. Makinen, Periaux, and Toivanen Mutation (MPTM).
*e MPTM mutation operator was suggested by Makinen
et al. [50], which is used to solve some multidisciplinary
shape-related optimization problems in GA especially in the
field of electromagnetics and aerodynamics. Meittinen et al.
[27] also solved constrained optimization problems under
the GA process. Deep and *akur [22] tested and evaluated
its results on multimodal nonlinear optimization problems.
From a point y � (y1, y2, . . . , yn), the mutated point y �

(y1, y2, . . . , yn) is obtained in the following way.
Let a random value (ri) be from a uniform distribution,

where ri ∈ [0, 1]. Hence, the muted solution is in the fol-
lowing equations:

yi � (1 − t)y
l
i +(t)y

ri
i , (17)

where
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ti �

ti − ti

ti − ri

ti

 

b

, if ri < ti,

ti, if ri � ti,

ti + 1 − ti( 
ti − ri

1 − ti

 

b

, if ri ≥ ti,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

t �
y − y

l
i

y
ri
i − y

. (19)

Hence, the yl
i and yri

i are the lower and upper limits of
ith decision variable, respectively.

3.3.3. Nonuniform Mutation (NUM). *e most extensively
used mutation operators are Michalewicz’s NUM mutation
operator in real-coded GAs. *e working mechanism of
nonuniform mutation could be initiated by Michalewicz
et al. [29, 51]. For implementation context, by increasing the
number of generations in the simulation process, the
strength of the mutation might be reduced so that it can
search uniformly for the initial generations of the process
while it may search locally for later generations. For a point

y 1{ } � (y
p{ }
1 , y

p{ }
2 , . . . , y

p{ }
n ), a muted point y p+1{ } � (y

p+1{ }
1 ,

y
p+1{ }
2 , . . . , y

p+1{ }
n ) is developed subsequently:

Step 1: generate a random value ui from a uniform
probability distribution, ui ∈ [0, 1].
Step 2: obtain a muted solution by following mathe-
matical expression:

y
p+1
i �

y
p
i + x

u
i − y

p
i  1 − u

(1− (p/P))
i 

b
 , ri ≤ 0.5,

y
p
i − y

p
i − x

l
i  1 − u

(1− (p/P))
i 

b
 , otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

where “b” is a parametric value that determines the working
capability of the mutation operator. P and p represent the
number of maximum generations and the number of the
current generation. xu

i and xl
i are the upper and lower limits

of the ith decision variable, respectively.

4. The Proposed Fisk Crossover (FX) Operator
Based on Log-Logistic
Probability Distribution

*e log-logistic probability distribution has been used in
networking to model the transmission times of data con-
sidering both the network and the software, in hydrology to
model streamflow and precipitation, and in economics as a
simple model of the distribution of wealth or income. *is
distribution efficiently deals with the modeling of the delays
in the transmission of sensory data coming from a

networked telerobot, which would allow us to predict the
future times of arrival and provide assurance on the time
requirements of these systems [52]. Besides, log-logistics
distribution is also used to estimate low-flow frequency
based on the analysis on extreme low flow event within a
specific time interval [53].

So, with diversified application in many optimization
related fields, the presently designed novel real-coded
crossover scheme is naturally suitable to solve optimization
problems with continuous variables. *e major advantage of
real encoding in GA over binary encoding is to efficiently
handle complex nonlinear optimization problems with
continuous domain and also overcome the fundamental
issues such as exploration (population diversity) and
exploitation (selection pressure). Hence, the binary
encoding scheme inherited many difficulties such as pre-
mature convergence which can be solved by real encoding in
the GA process. Hence, we present a Fisk crossover (FX),
and this is a parent centric crossover operator that is linked
with log-logistic distribution [52].

Figure 1 reveals the working mechanism of a mixture
probability distribution-based real-coded crossover oper-
ator. Initially, we generate a random population of size “N”
chromosomes with predefined encoding followed by eval-
uating each chromosome according to its fitness value.
Afterword, approximately half of the chromosomes is
selected through tournament selection. In the next step,
recombine new offspring using FX, DPX, LX, and SBX
crossover operators within the conjunction of three muta-
tion operators, i.e., MTPM, PM, and NUM with predefined
probability for minor changes in the chromosomes. In the
final step, the whole algorithmic process will be continued
until the required optimum solution is obtained.

*e mathematical working principle of Fisk crossover
operator is formulated by using the probability density
function of log-logistics distribution, which is given below in

f(x) �
(β/α)(x/α)

β− 1

1 +(x/α)
β

 
2 . (21)

*e cumulative distribution function is also depicted as
subsequent:

F(x) � y �

1
1 +(x/α)

− β , x> 0,

1 −
1

1 +(x/α)
− β, x≤ 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

where α> 0 is the scale parameter and β> 0 is the shape
parameter.

By using FX, a pair of offspring z 1{ } � (z
1{ }
1 , z

1{ }
2 , . . . , z 1{ }

n )

and z 2{ } � (z
2{ }
1 , z

2{ }
2 , . . . , z 2{ }

n ) is generated from a pair of
parents y 1{ } � (y

1{ }
1 , y

1{ }
2 , . . . , y 1{ }

n ) and y 2{ } � (y
2{ }
1 , y

2{ }
2 , . . . ,

y 2{ }
n ) in a subsequent stepwise procedure.

Step 1: generate a random number (ri) from a uniform
probability distribution, where ri ∈ [0, 1].
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Step 2: calculate the value of the parameter βq by
generating random numbers from Fisk/Log-logistic
probability distribution by simply finding the inverse of
the cumulative distribution function of Fisk/Log-
logistic distribution as

βq �

α
1 − y

y
 

− 1/β

, ri ≤ 0.5,

α
y

1 − y
 

− 1/β

, ri > 0.5.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Step 3: finally, the offspring are generated through
subsequent equations (24) and (25), respectively, for
i � 1, 2, . . . , n:

z
1{ }

i �
y

1{ }
i + y

2{ }
i  + βq y

1{ }
i − y

2{ }
i





2
, (24)

z
2{ }

i �
y

1{ }
i + y

2{ }
i  − βq y

1{ }
i − y

2{ }
i





2
. (25)

In the context of the two equations (24) and (25), it is
visualized that the smaller parametric value of β produces

offspring close to the parents while the large parametric
value of β generates offspring away from the parents for the
fixed parametric value of α in Figure 2. Hence, from Figure 3,
it is also observed that, with the smaller parametric value of α
which produces offspring which are close to parents con-
versely for the larger value of α, the generation of offspring is
away from the parents for the fixed parametric value of β.
*ere is another matter of fact that the generation of off-
spring through FX crossover is visually symmetrical about
the location of the parents as depicted in Figure 4.*erefore,
the above mathematical formulation for z

1{ }
i and z

2{ }
i reveals

that the distance between the two offspring is proportional to
the distance between parents under fixed parametric values
of α and β. Hence, proposed FX crossover operator shows
self-adaptive behavior with the violation of variable limit
constraint, i.e., yi <y

l{ }
i or yi <y

ri{ }
i , during the generation

process of offspring in FX then the random value given to yi

in certain bound [y
l{ }

i , y
ri{ }

i ] and assigns “0” value to its
location parameter.

4.1. Benchmark Functions. *e optimization process is
focused on obtaining the global optimum point; con-
sequently, the regions nearby local optima should be cir-
cumvented because the optimization process might be stuck
at local optima, and then local optima are considered to be as

Starting
Point

Set GA
parameters/input

Generate a random population of size
“N chromosomes”

Evaluate each chromosome on their
fitness value

Termination
/optimization criteria

achieved?

Yes
achieved

Not achieved

Selection of chromosomes through
tournament selection in reproduction phase

Create new offspring using FX, LX, SBX, and
DPX crossover operators co-integration with
MTPM, PM, and NUM mutation operators

Generation of
new

chromosomes

Fittest
chromosomes
are obtained

Figure 1: Visual framework of Fisk/log-logistic distribution crossover.
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global optima. To evaluate the performance and sustain-
ability of the proposed real-coded crossover operators, we
will use twenty-one unimodal, multimodal, separable or
nonseparable, convex, and continuous benchmark func-
tions. Table 1 presents the list of benchmark functions [54]
utilized to appraise the efficiency of suggested evolutionary

methods. Hence, the benchmark function name, fitness
function, search limits, and theoretical optimum value are
present in Table 1. *ese benchmark functions have varying
complexities that are most commonly applied in many
comparative studies. *e necessary details regarding these
benchmarks are given in Table 1.

0
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f (
x)

0.3

0.4

0.5

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Figure 3: p.d.f of Fisk/Log-logistic distribution for fix β.
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Figure 2: p.d.f of Fisk/Log-logistic distribution for fix α.
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Figure 4: Distribution of offspring.
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5. Experimental Setup

In the current research study, a newly proposed parent
centric crossover (FX) is used to enhance the performance of
the genetic process and make a close comparison with
existing real-coded crossover operators which comprise of
DPX, LX, and SBX. *ese four crossover operators co-
integrated with MPTM, PM, and NUM mutation operators
for the evaluation of their global performance. A simulated
study of twelve algorithmic combinations along with their
respective crossover and mutation probabilities is sum-
marized and final parametric values are represented in
Table 2.*e suitable adjustment of these parametric values is
helpful in obtaining optimum results in the empirical study.

*e size of the population for all these algorithms is ten
times the number of decision variables and the simulated
results are obtained through thirty independent runs for each
algorithm. Tournament selection along with Elitism with size
one is applied in the whole GA algorithmic process. All
experiments are terminated when the number of generations
achieved the 500 generations and the optimum results
regarding the GA process were obtained through trial run and
screening experimentation. To evaluate the efficiency, com-
patibility, and effectiveness of the simulation process, all
algorithms were executed thirty times and the mean and
standard deviation along average execution time in seconds
are taken as final results. *e performance of the newly
proposed real-coded crossover scheme linked with log-

logistic probability distribution is evaluated on twenty-one
benchmark functions by using MATLAB version R2015a.

In the context of probabilistic search algorithms in the GA
process, we applied a one-way analysis of variance (ANOVA)
as hypothesis testing [55] for comparison of four real-valued
crossover operators including the proposed one. *e exper-
imental results seem to be statistically significant if it is con-
sidered unlikely to have occurred by chance, assuming the
significance of the null hypothesis. *e statistically significant
results justify the rejection of the null hypothesis when a
probability (p value) is less than a prespecified threshold level
(5% level of significance). *e F test is applied to make a
comparing between crossover operators through a ratio of
between and within variation. Hence, the statistical significance
of the crossover schemes is tested through the F test statistic in

F �
Variance between crossover operators
Variance within crossover operators

, (26)

F �
MScrossover operators

MSerror
. (27)

On the basis of a significant F test, we have determined
that crossover operators’ means are significantly different
from each other. Hence, the pairwise multiple comparisons
can determine the difference between each pair of means.
*e Gabriel pairwise comparison test [56] is used, which is
based on the studentized maximum modulus and generally

Table 1: Detail of benchmark functions for comparison.

Benchmark Fitness function Search
limits Optimum value

Ackley’s − 20exp(− 0.2
���������
1/n 

n
i�1 x2

i


) − exp(1/n 

n
i�1 cos(2πxi)) + 20 + e(1)

[− 32.768,
32.768] 0

Axis parallel
ellipsoid f(x) � 

n
i�1 ix2

i

[− 5.12,
5.12] 0

Cigar f(x) � x2
i + 1000000

n
i�1 x2

i [− 10, 10] 0
Cosine mixture f(x) � 

n
i�1 x2

i − 0.1
n
i�1 cos(5πxi) [− 1, 1] 0.1 n

De-Jong f(x) � 
n
i�1(x4

i + rand(0, 1)) [− 10, 10] 0

Drop-wave f(x) � 
n
i�1 1 + cos(12

��������
x2

i + x2
i+1


)/0.5(x2

i + x2
i+1) + 2 [− 5.12,

5.12] − 1

Ellipsoidal f(x) � 
n
i�1 (xi − i)2 [− n, n] 0

Brown f(x) � 
n
i�1(x2

i (x2
i+1 + 1) + x2

i+1(x2
i+1 + 1)) [− 1, 4] 0

Generalized
penalized-1

f(x) � π/n(10sin2(πzi) + 
n− 1
i�0 (zi − 1)2[1 + 10sin2(πzi+1)] + (zn − 1)2) + 

n
i�1 u(xi, 10, 100, 4)

where zi � (1 + (xi + 1))/4, u �

k∗ pow((xi − a), m), if x> a,

k∗ pow((− xi − a), m), if x< − a,

0, otherwise.

⎧⎪⎨

⎪⎩

[− 50, 50] 0

Generalized
penalized-2

f(x) � 0.1((sin23πxi + 
n− 1
i�0 (xi − 1)2[1 + sin2(3πxi)] + (xn − 1)2[1 + sin2(2πxn)] + 

n
i�1 u(xi, 10, 100, 4)

where u �

k∗ pow((xi − a), m), if x> a,

k∗ pow((− xi − a), m), if x< − a,

0, otherwise.

⎧⎪⎨

⎪⎩

[− 50, 50] 0

Levy and
Mantalvo f(x) � 0.1(sin2(3πxi) + 

n− 1
i�0 (xi − 1)2[1 + sin2(3πxi)] + (xn − 1)2[1 + sin2(2πxn)]) [− 5, 5] 0

Matyas f(x) � 
n
i�1(0.26(x2

i + x2
i+1)) − 0.48xixi+1) [− 10, 10] 0

Neumaier f(x) � 
n
i (xi − 1)2 + 

n− 1
i�1 xixi− 1 [− n2, n2] n(n + 4)(n − 1)/6

New function f(x) � 
n
i�0[0.2x2

i + 0.1x2
i sin(2xi)] [− 10, 10] 0

Rastrigin f(x) � 10n + 
n
i�1[x2

i − 10cos(2πxi)]
[− 5.12,
5.12] 0

Rosenbrock f(x) � 
n
i�1(100(x2

i − xi+1)2) + (1 − xi)
2 [− 30, 30] 0

Sum of Power f(x) � 
n
i�1 |xi|

(n+1) [− 1, 1] 0
Schwefel-1 f(x) � 

n
i�1 xisin(

���
|xi|


) [− 500, 500] 0

Schwefel-2 f(x) � 
n
i�1 |xi| + 

n
i�1 xi [− 10, 10] 0

Styblinski f(x) � 1/2
n
i�0(x4

i − 16xi2 + 5xi) [− 5, 5] − 39.16599 n

Sphere f(x) � 
n
i�1 x2

i

[− 5.12,
5.12] 0
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more powerful under simulated studies. *e test statistic of
the Gabriel test is as follows:

Gbcal �
xmax − xmin������������������

MSerror/2 1/ni + 1/nj 

 , (28)

where MSerror �Mean square error from ANOVA, xmax and
xmin are two means for comparison, and ni and nj are
respective sample sizes from population i and j.

6. Results and Discussion

In the current empirical study, our main contribution is
introducing a new real-coded crossover operator (FX), and the
focus of our study is to evaluate the performance of proposed
crossover operators in the context of simulation results. So,
according to the results of Table 3, we make a comparison of
newly proposed (FX) with Double Pareto crossover (DPX)
operator [49], Laplace (LX) crossover operator [26], and
simulated binary crossover (SBX) [19] by the co-integration
with MTPM mutation operator [50] based on mean, standard
deviation (SD), and average execution time. It is observed that
the Fisk crossover operator outperformed in fifteen out of
twenty-one test problems/benchmark functions under diverse
features. In most of the multimodal test problems, the
empirical results are considered close to the theoretical opti-
mum value which reflects the improved performance of the
newly proposed crossover scheme. *e performance of FX in
terms of mean values, standard deviation, and average exe-
cution time is exceptionally ideal and also helpful to overcome
the shortcomings of the GA process including exploitation and
exploration. Hence, the smallest mean values with lesser SD
along with minimal average execution time reflect better
control over the selection pressure and have a sufficient impact
on loss of population diversity.

*e empirical comparison of novel Fisk distribution- (FX-)
based crossover operator with Double Pareto crossover (DPX)
operator [49], Laplace (LX) crossover operator [26], and
simulated binary crossover (SBX) [19] in Table 4 was

administered by incorporating the powermutation proposed by
Deep and *akur [26] in the algorithmic framework. *e
resulted mean and standard deviation with average executing
time are lowest in most of the benchmark functions, i.e.,
Generalized-2, Ackley, Axis, Brown, Ellipsoidal, Levy-Mont, etc.
by using the power mutation operator by [26]. Overall, FX
performs best in thirteen out of twenty-one benchmark
functions which show a complete dominance over the other
three crossover operators.

*e co-integration of power mutation (PM) with cross-
over operators is also helpful to enhance the performance and
also have better control over the deficiencies of the GA
process. *e considerable closeness of empirical results with
theoretical optimum value delineates better control on the
loss of population diversity and the least execution time
demonstrates sustainable selection pressure. In general, FX
has a better success rate for obtaining the optimum results.

*e empirical results of Table 5 reveal an ample dominance
of the FX crossover operator over the Double Pareto crossover
(DPX) operator [49], Laplace (LX) crossover operator [26], and
simulated binary crossover (SBX) [19] algorithmic approaches
with co-integration of nonuniform mutation (NUM) operator
[51] for obtaining an optimum value. It is also observed that the
FX crossover attained optimum results in thirteen benchmark
functions, whereas SBX crossover performs better in 8
benchmark functions regarding optimummean with fewer SD
and lesser average execution time under nonuniformmutation
operators. *e closeness with theoretical value expresses the
superlative performance of the newly proposed real-coded
crossover scheme. *e empirical results in Table 5 also show
sustainable control over the weaknesses of the GA process.

According to the results of Table 6 show that there is a
highly significant difference between DPX, FX, LX, and SBX
under Ellipsoidal and Rastrigin benchmark functions by using
ANOVA. Besides, there is also a significant difference in
thirteen benchmark functions out of twenty-one. Gabriel
multiple pairwise comparison test is applied for close com-
parison between real-coded crossover operators. In this regard,
there is a highly significant difference between FX and DPX in

Table 2: Details about parametric settings for all algorithms.

Crossover operators Mutation operators Selection operators Crossover probability Mutation probability
DPX MTPM Tournament 0.70 0.02
FX MTPM Tournament 0.70 0.02
LX MTPM Tournament 0.70 0.02
SBX MTPM Tournament 0.70 0.02
DPX PM Tournament 0.65 0.005
FX PM Tournament 0.65 0.005
LX PM Tournament 0.65 0.005
SBX PM Tournament 0.65 0.005
DPX NUM Tournament 0.70 0.01
FX NUM Tournament 0.70 0.01
LX NUM Tournament 0.70 0.01
SBX NUM Tournament 0.70 0.01
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two benchmark functions while also have a significant impact
on 12 benchmark functions at 5% and 10% significance level
respectively.Whenwe compare FXwith LX then the differences
between these real coded crossover operators are statistically
significant at 1%, 5%, and 10% under 15 benchmark functions.
Gabriel multiple pairwise comparisons show an insignificant

difference between FX and SBX under most of the benchmark
functions. *e overall statistical results represent the numerical
uniqueness of FX over DPX, LX, and SBX crossover operators.

*e performance of the algorithmic procedure is usually
examined through optimum value and execution time required
to get an optimal solution. Four real-coded crossover schemes

Table 3: Statistical results with average execution time for real-coded crossover operators under Makinen, Periaux, and Toivanen mutation
(MTPM) operator.

Benchmark functions DPX_MTPM FX_MTPM LX_MTPM SBX-MTPM

Statistical
measures

Average
execution
time (sec)

Statistical
measures

Average
execution
time (sec)

Statistical
measures

Average
execution
time (sec)

Statistical
measures

Average
execution
time (sec)

Generalized_1 Mean 0.2313 566.675352 0.0041 246.48479 0.0027 268.06119 0.0043 285.407911S.D 0.1152 0.0058 0.0048 0.0044

Generalized_2 Mean 0.6163 408.737251 0.022 224.97533 0.0243 241.49021 0.0323 230.671076S.D 0.2315 0.0323 0.0297 0.0429

Ackley Mean 8.079 375.733917 1.3087 206.83753 1.7639 198.06534 2.0945 199.727056S.D 0.9474 0.8369 1.2447 1.0181

Axis Mean 45.9862 367.017767 0.5095 204.02592 0.6617 199.18445 1.0493 200.972761S.D 16.5777 0.5655 0.8451 1.5094

Brown Mean 0.1441 430.309508 0.0046 280.6953 0.0048 276.82815 0.0197 281.898095S.D 0.0644 0.006 0.0072 0.0179

Cigar Mean 1.20E+ 07 349.927297 2.24E+ 05 178.78084 1.02E+ 05 182.02777 2.14E+ 05 172.44999S.D 4.57E+ 06 3.70E+ 05 1.29E+ 05 2.32E+ 05

Ellipsoidal Mean 9.63E+ 02 430.620612 6.01E + 02 238.30767 6.21E+ 02 177.53345 6.17E+ 02 175.823523S.D 1.31E+ 02 1.51E+ 02 1.20E+ 02 8.77E+ 01

LevyMont Mean 6.68E − 01 371.496581 1.86E − 02 219.7111 2.43E − 02 195.46777 3.39E − 02 196.40783S.D 2.64E − 01 2.27E − 02 3.07E − 02 4.36E − 02

Neumaier Mean 1.50E+ 05 377.978013 2.25E + 03 215.68475 2.35E+ 03 198.76745 3.09E+ 03 203.739667S.D 5.87E+ 04 4.35E+ 03 2.76E+ 03 4.28E+ 03

Powersums Mean 2.47E − 20 376.7447 1.67E − 51 216.90121 2.92E − 48 241.85019 6.36E − 43 203.469996S.D 1.23E − 19 7.41E − 51 1.60E − 47 2.90E − 42

Rastrigin Mean 2.00E+ 02 496.604286 1.71E+ 01 203.92601 8.54E+ 01 222.86203 2.25E+ 01 182.554729S.D 1.64E+ 01 2.55E+ 01 6.02E+ 01 5.47E+ 00

Rosenbrok Mean 1.48E+ 05 352.491989 7.24E+ 01 190.13846 4.22E + 01 184.65858 1.84E+ 02 174.230471S.D 9.40E+ 04 1.36E+ 02 4.07E+ 01 3.22E+ 02

Comix Mean − 1.80E+ 00 359.558982 −2.99E+ 00 194.00672 − 2.98E+ 00 191.51063 − 2.97E+ 00 187.656013S.D 2.42E − 01 2.90E − 02 2.29E − 02 4.20E − 02

Dejong Mean 3.75E+ 01 379.64551 1.74E+ 01 216.62535 1.63E+ 01 201.89812 1.45E+ 01 207.739321S.D 1.73E+ 01 8.68E+ 00 8.29E+ 00 8.84E+ 00

Dropwave Mean − 3.38E − 01 392.756396 −9.15E− 01 201.66234 − 8.64E − 01 204.18529 − 8.87E − 01 200.597559S.D 8.25E − 02 6.02E − 02 1.06E − 01 9.25E − 02

Matyas Mean − 1.17E+ 48 413.750804 − 3.22E+ 47 364.89539 − 7.11E+ 53 299.16512 −8.82E + 53 279.741252S.D 6.38E+ 48 1.04E+ 48 2.06E+ 54 2.00E+ 54

Schwefel_1 Mean − 2.04E+ 04 384.2278 −7.12E+ 04 345.73165 − 6.93E+ 04 290.69073 − 7.17E+ 04 302.46965S.D 2.42E+ 03 1.48E+ 04 1.03E+ 04 9.78E+ 03

Schwefel_2 Mean − 1.20E+ 40 412.899538 − 1.06E+ 46 390.8193 − 2.28E+ 46 299.34147 −8.45E + 48 263.902044S.D 4.26E+ 40 5.79E+ 46 1.17E+ 47 1.77E+ 49

Sphere Mean 3.14E+ 00 415.745488 2.97E − 02 251.85282 2.99E − 02 208.42148 9.89E − 02 195.014598S.D 1.03E+ 00 3.40E − 02 3.16E − 02 8.33E − 02

New function Mean 2.56E+ 00 375.682437 2.23E − 02 201.64129 2.42E − 02 215.59478 5.84E − 02 216.957449S.D 7.68E − 01 3.80E − 02 4.40E − 02 8.27E − 02

Styblin_30 Mean − 1.17E+ 03 464.240474 −1.18E+ 03 240.64107 − 1.17E+ 03 284.35864 − 1.17E+ 03 234.250931S.D 2.77E+ 00 3.20E − 01 3.37E − 01 6.34E − 01
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are visually compared with the integration of three mutation
operators in Figure 5. Hence, Figure 5 visualized the domi-
nance of FX over other crossover operators. In the MTPM
mutation operator, FX obtained the optimum value in 15
benchmark functions while LX and SBX outperformed in three
benchmark functions. Similarly, FX distinctly achieved an
optimum solution in thirteen benchmark functions on the
other hand SBX obtained optimum value in four and three
benchmark functions under PM with NUM mutation

operators, respectively, while the graphical description also
depicted the limited performance of DPX and LX operators in
the whole algorithmic procedure.

7. Performance Index (PI)

After statistically examining the performance of FX real-coded
crossover operator with others, we make a comparison between
GAs’ real-coded crossover schemes based on the performance

Table 4: Statistical results with average execution time for real-coded crossover operators under Power Mutation (PM) operator.

Benchmark functions DPX_PM FX_PM LX_PM SBX-PM

Statistical
measures

Average
execution
time (sec)

Statistical
measures

Average
execution
time (sec)

Statistical
measures

Average
execution
time (sec)

Statistical
measures

Average
execution
time (sec)

Generalized_1 Mean 0.0285 518.721058 0.001 367.863727 8.45E − 04 258.531662 0.0012 246.16973S.D 0.0108 0.0011 0.0015 0.0012

Generalized_2 Mean 0.6359 385.276104 0.0152 269.044215 0.0158 253.092402 0.0362 267.80063S.D 0.2068 0.0238 0.0215 0.0374

Ackley Mean 7.467 478.659304 1.0848 279.067055 1.8357 242.515118 2.3116 226.51509S.D 1.1872 0.9074 0.9342 1.1955

Axis Mean 45.8074 425.004108 0.7551 222.356894 0.8955 210.639859 1.1532 237.43432S.D 16.4635 0.9722 1.3225 1.441

Brown Mean 0.1876 441.397977 0.0067 315.156832 0.0076 306.27855 0.0114 262.25005S.D 0.0758 0.0071 0.0083 4.08E − 03

Cigar Mean 1.12E+ 07 516.123492 3.98E+ 05 2.34E+ 05 1.76E + 05 219.306763 2.63E+ 05 210.98199S.D 2.34E+ 05 2.98E+ 05 3.06E+ 05 1.09E+ 02

Ellipsoidal Mean 8.78E+ 02 432.251909 5.62E + 02 399.667168 6.12E+ 02 346.677706 6.01E+ 02 292.1226S.D 2.46E − 01 2.23E − 02 1.90E − 02 3.84E − 02

LevyMont Mean 5.88E − 01 466.362675 1.49E − 02 268.877354 1.51E − 02 260.511992 2.77E − 02 298.59981S.D 4.60E+ 04 5.54E+ 03 2.65E+ 03 3.40E+ 03

Neumaier Mean 1.23E+ 05 450.195382 2.14E+ 03 273.851317 3.18E+ 03 277.065924 4.07E+ 03 261.22039S.D 4.56E − 19 5.03E − 43 3.57E − 42 8.68E − 47

Powersums Mean 9.65E − 20 477.403985 9.20E − 44 288.434361 6.52E − 43 291.37676 1.59E − 47 276.99917S.D 1.85E+ 01 6.39E+ 00 4.99E+ 01 5.14E+ 00

Rastrigin Mean 1.93E+ 02 411.950127 1.85E + 01 225.617841 1.11E+ 02 328.539715 2.40E+ 01 310.21191S.D 8.72E+ 04 8.47E+ 01 4.09E+ 01 5.08E+ 02

Rosenbrok Mean 1.29E+ 05 364.809901 6.76E+ 01 229.118435 4.77E+ 01 220.049887 1.99E+ 02 285.28473S.D 3.03E − 01 1.47E − 01 4.06E − 01 1.04E − 01

Comix Mean − 1.83E+ 00 389.120664 −3.40E + 00 367.165338 − 2.53E − 01 210.895496 − 2.61E+ 00 219.33614S.D 1.62E+ 01 1.01E+ 03 3.55E+ 02 8.73E+ 00

Dejong Mean 4.70E+ 01 370.296456 3.49E+ 03 230.889114 7.27E+ 02 228.377338 2.37E + 01 237.55929S.D 7.10E − 02 1.07E − 01 1.69E − 01 1.16E − 01

Dropwave Mean − 3.16E − 01 389.633546 −8.55E − 01 261.323633 − 7.99E − 01 211.82917 − 8.21E − 01 208.57591S.D 3.58E+ 48 1.74E+ 54 3.24E+ 54 2.76E+ 54

Matyas Mean − 6.56E+ 47 465.717775 − 8.37E+ 53 385.474899 − 1.78E+ 54 317.153294 −1.82E + 54 308.17748S.D 4.50E+ 03 1.67E+ 04 1.70E+ 04 4.52E+ 03

Schwefel_1 Mean − 1.98E+ 04 447.263322 −8.94E + 04 342.631783 − 6.72E+ 04 360.494851 − 7.88E+ 04 425.09822S.D 1.48E+ 43 2.39E+ 47 3.78E+ 47 9.23E+ 50

Schwefel_2 Mean −2.69E + 42 465.913381 − 8.59E+ 46 542.754243 − 8.29E+ 46 325.887074 − 2.01E+ 50 403.50187S.D 1.48E+ 43 2.39E+ 47 3.78E+ 47 9.23E+ 50

Sphere Mean 4.91E+ 00 346.340363 4.35E+ 01 220.556922 1.93E+ 01 213.039734 1.46E + 00 210.44449S.D 1.21E+ 00 8.36E+ 00 3.69E+ 00 5.16E − 01

New function Mean 2.35E+ 00 479.065646 3.99E − 02 216.028312 4.32E − 02 237.68754 4.31E − 02 242.30062S.D 8.03E − 01 7.48E − 02 7.76E − 02 4.45E − 02

Styblin_30 Mean − 1.16E+ 03 509.537899 −1.17E+ 03 327.468554 − 1.17E+ 03 316.823763 − 1.17E+ 03 331.77431S.D 4.65E+ 00 4.87E − 01 4.40E − 01 3.89E − 01
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index (PI) that was used byHaqHussainn andAhmad [14].*is
performance index was precisely applied to examine the
behavior of various controlled stochastic search methods. *is
index is a widely used procedure for making a comparison
between different heuristic algorithms [50, 57]. *e mathe-
matical derivation of PI is given below in the following equation:

PI �
1

Np


Np

i�1
c1δ

i
1 + c2δ

i
2 + c3δ

i
3 , (29)

where

δi
1 �

MFi

LMFi
,

δi
2 �

SFi

LSFi
,

δi
1 �

CVFi

LCVFi
,

for i � 1, 2, . . . , Np.

(30)

Table 5: Statistical results with average execution time for real-coded crossover operators under nonuniform (NUM) operator.

Benchmark functions DPX_NUM FX_ NUM LX_ NUM SBX- NUM

Statistical
measures

Average
execution
time (sec)

Statistical
measures

Average
execution
time (sec)

Statistical
measures

Average
execution
time (sec)

Statistical
measures

Average
execution
time (sec)

Generalized_1 Mean 0.5225 478.916752 3.0341 308.5493 1.45E+ 00 280.0871 0.0487 255.9563S.D 0.2516 0.9671 0.5452 0.0225

Generalized_2 Mean 0.6291 391.052693 0.1521 259.1522 1.4837 243.2173 0.1806 246.4749S.D 0.1512 0.0201 0.4423 0.0465

Ackley Mean 9.1248 413.71599 4.9445 240.5565 12.3698 266.037 5.4122 247.9398S.D 0.8869 0.9155 1.4621 0.5585

Axis Mean 64.4259 537.250458 6.9984 345.104 65.8394 354.8941 18.2763 209.7847S.D 20.0796 2.7297 21.6322 6.2694

Brown Mean 1.492 456.516034 4.8687 467.5696 4.3687 448.0076 0.4106 276.9796S.D 0.3779 3.1271 1.7771 0.1248

Cigar Mean 1.76E+ 07 343.362341 3.61E+ 06 2.19E+ 02 1.61E+ 07 217.4726 4.51E+ 06 209.4604S.D 4.03E+ 06 1.34E+ 06 4.57E+ 06 1.50E+ 06

Ellipsoidal Mean 9.50E+ 02 367.615066 3.00E+ 02 239.8889 4.55E+ 02 226.9789 5.82E+ 02 208.8561S.D 1.27E+ 02 1.32E+ 02 1.17E+ 02 9.51E+ 01

LevyMont Mean 6.44E − 01 346.025872 1.30E− 01 212.774 1.49E+ 00 211.1474 1.75E − 01 211.4208S.D 1.75E − 01 6.74E − 02 5.44E − 01 6.47E − 02

Neumaier Mean 1.34E+ 05 339.924576 5.25E+ 05 209.1727 2.50E+ 05 214.5617 4.98E+ 04 212.3191S.D 4.05E+ 04 1.42E+ 05 5.44E+ 04 1.63E+ 04

Powersums Mean 3.01E − 17 374.391225 7.66E − 11 247.9908 2.56E − 14 238.4452 2.33E− 24 236.0081S.D 1.65E − 16 2.24E − 10 4.24E − 14 1.12E − 23

Rastrigin Mean 2.03E+ 02 370.518653 1.40E+ 01 232.7837 1.28E+ 02 220.9383 2.32E+ 01 218.6061S.D 1.75E+ 01 2.10E+ 01 2.07E+ 00 5.21E+ 00

Rosenbrok Mean 2.63E+ 05 353.134843 6.39E+ 06 226.0087 3.85E+ 05 243.1898 4.31E+ 04 217.7927S.D 1.80E+ 05 2.40E+ 06 2.01E+ 05 2.36E+ 04

Comix Mean − 1.44E+ 00 358.87612 −2.72E + 00 221.4712 − 7.35E − 01 216.1618 − 2.63E+ 00 214.7786S.D 2.60E − 01 1.35E − 01 3.41E − 01 1.03E − 01

Dejong Mean 4.80E+ 01 377.17503 8.48E+ 02 246.0532 6.43E+ 01 237.6296 1.93E + 01 245.2073S.D 1.91E+ 01 3.95E+ 02 2.41E+ 01 7.77E+ 00

Dropwave Mean − 2.61E − 01 367.673226 −9.80E − 01 215.0356 − 1.13E − 01 202.1959 − 4.67E − 01 208.7195S.D 4.47E − 02 1.16E − 02 2.48E − 02 6.93E − 02

Matyas Mean − 2.36E+ 29 520.190243 − 4.84E+ 29 301.1081 − 4.80E+ 29 247.7128 −4.65E + 29 223.1851S.D 1.33E+ 29 6.92E+ 26 2.64E+ 17 − 4.65E+ 29

Schwefel_1 Mean − 1.09E+ 04 394.179023 −1.33E + 04 277.8657 − 1.21E+ 04 252.6488 − 1.24E+ 04 242.9953S.D 8.80E+ 02 8.15E+ 02 5.83E+ 02 3.24E+ 01

Schwefel_2 Mean − 1.74E+ 28 406.560342 −6.21E + 29 316.0881 − 2.03E+ 28 203.0264 − 4.73E+ 29 238.3114S.D 9.04E+ 28 1.02E+ 29 5.81E+ 28 1.74E+ 29

Sphere Mean 4.26E+ 00 346.884419 2.08E+ 01 218.3084 4.10E+ 00 213.0483 1.27E+ 00 205.879S.D 1.19E+ 00 5.63E+ 00 1.44E+ 00 4.09E − 01

New function Mean 3.80E+ 00 405.187371 3.80E− 01 298.5285 8.14E+ 00 257.0114 8.99E − 01 217.5631S.D 3.80E+ 00 7.80E − 01 3.62E+ 00 3.03E − 01

Styblin_30 Mean − 1.12E+ 03 443.314611 −7.80E + 03 288.4661 − 8.30E+ 02 217.5405 − 1.17E+ 03 213.2046S.D 1.77E+ 01 5.14E+ 00 4.12E+ 01 2.92E+ 00
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MFi: mean of the objective function for the ith opti-
mization problem
LMFi: least mean value of objective function obtained
by all algorithms for the ith optimization problem
SFi: standard deviation of the objective function for the
ith optimization problem
LSFi: least standard deviation value of objective func-
tion obtained by all algorithms for the ith optimization
problem
CVFi: the value of the coefficient of variation linked
with the objective function for the ith optimization
problem
LCVFi: least coefficient of variation value of objective
function obtained by all algorithms for the ith opti-
mization problem
Np: the total population to be analyzed

*e c1, c2, and c3 (c1 + c2 + c3 � 1 and 0≤ c1, c2, c3 ≤ 1)
are weights assigned to three statistics were considered,
respectively.

In regards of the above description, the performance
index is a mathematical formulation of c1, c2, and c3,
respectively. Hence, c1 + c2 + c3 � 1 and one of ci, for (i� 1,
2, 3), could be excluded by reducing the number of
dependent variables from the mathematical formulation of
the performance index. However, it is still difficult to visually
evaluate the trend of all GAs’ real-coded crossover schemes
because of the overlapping of the surface plot of PI. So, we
adopt the modified process by assigning the same weights to
any two terms in PI. Hence, the PI becomes a function of a
single variable. Now, resultant cases are below:

(Case − 1) c1 � wt, c2 � c3 �
1 − Wt

2
,where 0≤wt≤ 1,

(Case − 2) c2 � wt, c1 � c3 �
1 − Wt

2
,where 0≤wt≤ 1,

(Case − 3) c3 � wt, c1 � c2 �
1 − Wt

2
,where 0≤wt≤ 1.

(31)

*e visual representation for cases (1–3) in
Figures 6–8 reveals that the horizontal axis represents
weights (wt) and scaled value of performance index (PI)
defined on the vertical axis. *e PI of FX is outperformed

Table 6: Statistical results about ANOVA and Gabriel multiple pairwise comparisons of real coded crossover operators.

Benchmark functions
Analysis of variance

(ANOVA) Gabriel multiple pairwise comparison

F p value FX vs. DPX FX vs. LX FX vs. SBX
Generalized_1 0.5650 0.6530 0.9060 0.9800 0.7570
Generalized_2 1.3850 0.3160 0.5340 0.7390 1.0000
Ackley 4.7240 0.0239∗ 0.0304∗ 0.0866a 0.0897
Axis 3.6680 0.0630∗ 0.0860a 0.0787a 0.0987
Brown 0.3980 0.7580 0.9820 1.0000 0.9070
Cigar 3.6350 0.0640∗ 0.0990a 0.0899a 0.0967
Ellipsoidal 12.1300 0.0020∗∗ 0.0030∗∗ 0.0090∗∗ 0.0658a

LevyMont 4.4330 0.0300∗ 0.5140 0.7240 0.2360
Neumaier 0.4920 0.6970 0.8765 0.9790 0.8100
Powersums 1.0000 0.4410 0.6570∗∗ 0.6570 0.6570
Rastrigin 178.4140 0.0000∗∗ 0.0000 0.0000∗∗ 0.9660
Rosenbrok 0.9020 0.4810 0.7300 0.7100 0.6650
Comix 3.9740 0.0210∗ 0.0240∗ 0.0120∗ 0.1960
Dejong 3.6090 0.0262∗ 0.0406∗ 0.0569a 0.0900a

Dropwave 3.4520 0.0420∗ 0.0700a 0.0512a 0.0890a

Matyas 2.9290 0.0364∗ 0.0274∗ 0.0120∗ 0.0960a

Schwefel_1 3.0600 0.0418∗ 0.0553a 0.0762a 0.7865
Schwefel_2 4.1310 0.0393∗ 0.0340∗ 0.0720a 0.6030
Sphere 5.6940 0.0245∗ 0.0528a 0.0672a 0.9320
Newfunction 3.873 0.0379∗ 0.0657a 0.0790a 0.5674
Styblin 3.044 0.0424∗ 0.0490∗ 0.0613a 0.7821
∗∗significant at 1%, ∗significant at 5%, and asignificant at 10%.
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MTPM PM NUM

Figure 5: Graphical description of real-coded crossover operators
with mutation operators.
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in all figures instead of other parent-centric crossover
operators which shows a substantial dominance towards
perfection. More specifically, the graphical depiction of
PI endorses the performance improvement in the FX
crossover operator.

8. Conclusions

In this paper, an improved real-coded crossover operator
called the Fisk crossover operator (FX) is introduced to
enhance the performance of the GA process with a fine
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Figure 8: Graphical representation of performance index for real-coded crossover schemes for case 3.
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Figure 6: Graphical representation of performance index for real-coded crossover schemes for case 1.
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Figure 7: Graphical representation of performance index for real-coded crossover schemes for case 2.
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tradeoff between selection pressure and population diversity.
*is newly proposed parent centric crossover operator has a
characteristic of self-adaption and the development ideology
of FX is linked with Log-logistic probability distribution. FX
and three crossover operators (DPX, LX, and SBX) are
attached with three well-known mutation operators
(MPTM, PM, and NUM), which are compared, and eval-
uated their algorithmic performance under twenty-one
benchmark functions with diverse features. All considered
test problems are scalable with the varied number of decision
variables.

*e tournament selection is applied in the reproduction
phase for the newly proposed algorithm and performance is
examined under an identical simulation strategy. Two dif-
ferent strategies are used to evaluate the performance of GA.
*e first strategy is to make a comparison between FX and
three other crossover operators for obtaining optimal sol-
utions on the basis of mean, SD, and average execution time.
*e empirical results show a complete dominance of FX over
other crossover operators. Hence, FX outperformed in
between thirteen to fifteen benchmark functions under
MTPM, PM, and NUM mutation operators, respectively.
Furthermore, relevant statistical techniques including
ANOVA and Gabriel pairwise multiple comparison test are
also administrated which indicate the significance of the
proposed crossover scheme.

*e second strategy is to evaluate the performance by
comparing all algorithms through performance index (PI)
with the use of three statistical measures. *e graphical
representation of PI reveals the optimal performance of FX
instead of other crossover operators. Finally, the statistically
significant results of the proposed crossover technique have
a definite edge over the others and have great potential to
solve more complex optimization problems.
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