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+is paper describes the application of a full Bayesian significance test (FBST) to compute evidence intervals in forensic speaker
comparison (FSC). In the FBSTapproach, the challenge is to apply the test to a large number of observations and to formulate an
equation to solve the test quickly. +e contribution of the present work is that it proposes an application of the FBST to FSC and
develops a method to calculate the FBST for the distribution of expected values (mean) with unknown variance without using
Monte Carlo Markov chains (MCMC). Comparisons with other interval inference methodologies indicate that the evidence
interval size is 49% greater than that computed with the Gosset approach.+e evidence interval presented 71% fewer classification
errors than the punctual inference did for the signal-to-noise ratio (SNR) of 17 dB.

1. Introduction

+e main task in forensic speaker comparison (FSC) is to
analyze two or more voice records to infer whether they come
from the same speaker. FSC differs from biometric voice
recognition in the hypothesis test approach and in the nature
of the voice samples. In the FSC scenario, a questioned-voice is
compared to a known-voice, whereas in biometric recognition,
the comparison is made among multiple speakers [1, 2].

+e questioned-voice (or voice evidence) is an audio
recording accepted as a vestige or evidence in a criminal
investigation. +e questioned-voice may be recorded in
different situations, such as lawful phone interception

(wiretapping), recordings of face-to-face conversation, or
audio broadcasting.

In FSC, the hypothesis H0 considers that both the
questioned- and known-voices come from different
speakers, whereas H1 assumes that the questioned- and
known-voices come from the same speaker.

However, the “individualization” that the hypotheses
above propose has been considered a fallacy. +is individ-
ualization assumes that the result of the confrontation be-
tween the questioned and standard voice is unique, without
a priori probability and without repeating the test for the
entire population [3, 4]. According to Saks and Koehler [3],
the most reasonable hypotheses would be

H:

H0: the features of the questioned − voice are not compatible

with the features of the known − voice,

H1: the features of the questioned − voice are compatible with

the features of the known − voice.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)
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Punctual inference in FSC is based on a score of (dis)
similarity [5–7]. Interval inference is a tradeoff between
precision and confidence because it sacrifices some precision
of the estimate by moving from a point to a range, but results
in greater confidence that the statement is correct (inside
interval) [8] (pp. 418).

Reports on interval inference in automatic speaker
recognition (ASR) began with Bisani and Ney [9], who used
bootstrap [10] to compute confidence intervals. Subse-
quently, Campbell et al. [11] computed confidence intervals
using multilayer perceptron (MLP) based on statistical
entropy. Later, Koval and Lokhanova [12] used a sigmoid
function to approximate the a posteriori probability
P(H0 | x

→
), where x

→is the voice data and H0 is the null
hypothesis, using Platt scaling [13] and estimated credibility
intervals. +e credibility interval can also be computed by
empirical methods (Morrison et al. [14]).

+e present work proposes the application of the full
Bayesian significance test (FBST) to compute evidence in-
tervals of FSC. +is proposal aims to obtain the same
confidence of capturing the parameter of interest in FSC and
to reduce type I errors, reinforcing the legal aphorism of
Absolvere nocentem satius est, quam condemnare inno-
centem. One of the motivations of this work, among others,
is to establish a confidence limit of the automatic speaker
comparison techniques, primarily when used as a support to
quantify an FSC [15].

Applications of the FBST to FSC were not found during
the bibliographic survey in the development of this research.
+us, the main contribution of this work is that it proposes
an application of the FBST to FSC and develops a method to
calculate the FBST for the distribution of the expected value
(mean) with unknown variance without using Monte Carlo
Markov chains (MCMC).

+e results indicate that the application of the FBST
to FSC can improve the evaluation of results by the LR
framework, reducing the occurrence of type I errors.
+e FBST also supports decisions on multispeaker
comparisons.

+e paper is organized as follows. Section 1 presents the
FBST and our proposed improvements and proposes ad-
aptations for FSC (the GMM-UBM method was chosen
because it presented more satisfactory results in previous
experiments than the i-vector- and x-vector-based methods
with deep neural networks (DNN). +ese experiments were
performed with database in Portuguese, quoted in this ar-
ticle, and with voices provided by the Civil Police of Minas
Gerais (Brazil) forensic sector. +e result of this experiment
is in the process of being published). Section 1 compares the
evidence interval to other methods. Section 1 presents the
conclusion and future research directions.

2. Evidence FSC Interval with the FBST

2.1. Interval Inference in FSC. In classical FSC, the com-
parison is performed between features of the questioned-
voice, x

→
Q, and features of the known-voice, x

→
K. +e fea-

tures of the universal background model (UBM), x
→

UBM,
represent the average speaker [5].

+e LR can be computed using a GMM-UBM. In this
case, the LR equivalent score LR( x

→
Q) is computed as

follows:

LR x
→

Q􏼐 􏼑 �
p x

→
Q λK

􏼌􏼌􏼌􏼌􏼐 􏼑

p x
→

Q λUBM
􏼌􏼌􏼌􏼌􏼐 􏼑

≤ζ0, H0 is not rejected,

>ζ0, H0 is rejected.

⎧⎪⎨

⎪⎩

(2)

Furthermore, p( x
→

Q | λK) and p( x
→

Q | λUBM) are, re-
spectively, the evaluation of the data x

→
Q of the GMM of the

known-voice, λK, and of the UBM λUBM.
+e GMM-UBM is a methodology applied to voice

comparison [7, 16, 17]. In the first studies [5, 18], the GMM-
UBM methodology was applied using Mel-frequency
cepstrum coefficients (MFCC).

+e first step in the GMM-UBMprocedure is to compute
the GMM of the known-voice, λK, and of the UBM λUBM,
which can be computed using the expectation-maximization
(EM) algorithm [5]. In the second step, the Score of the
comparison (LR( x

→
Q)) is obtained as a ratio between two

likelihoods: the questioned-voice ( x
→

Q) versus the known-
voice (λK) and the questioned-voice versus the UBM model
(λUBM).

+e score proposed by Reynolds et al. [5] is the sample
mean of the log-likelihood ratio (LLR) over T speech frames:

LR x
→

Q􏼐 􏼑 �
p x

→
Q λK

􏼌􏼌􏼌􏼌􏼐 􏼑

p x
→

Q λUBM
􏼌􏼌􏼌􏼌􏼐 􏼑

log
⟶

LLR x
→

Q􏼐 􏼑

� log
p x

→
Q λK

􏼌􏼌􏼌􏼌􏼐 􏼑

p x
→

Q λUBM
􏼌􏼌􏼌􏼌􏼐 􏼑

⎛⎝ ⎞⎠.

(3)

Because the features x
→

Q � xQ[0], xQ[1], . . . , xQ􏽮

[T − 1]}are not independent and not identically distributed
(i.i.d.), the resulting values are not, technically, a likelihood
ratio. Normalization by the number of frames, T, also
removes the duration effects from the log-likelihood value.
However, the LLR( x

→
Q) of equation (3) allows us to include

an interval-based inference.
Calculating the interval inference is possible empirically

or analytically over the sample space. +e widespread em-
pirical approaches include bootstrap [10], jackknife [19], and
the method proposed by Morrison et al. [14]. One possible
analytical method uses the t-Student distribution of Gosset
[20, 21]:

t((α/2),T− 1)

􏽢σ
��
T

√ ≤ LLR x
→

Q􏼐 􏼑 − μ≤ t((1− (α/2)),T− 1)

􏽢σ
��
T

√ , (4)

where 􏽢σ is the sample standard deviation, µ is the expected
value of LLR( x

→
Q), and t((α/2),T− 1) is a t-Student distribution

with significance α and T − 1 degrees of freedom.
In Section 1, we compare our evidence interval com-

puted using the FBST to Morrison’s credibility/confidence
intervals, the analytical method in equation (4).

Morrison’s approach [14, 22] uses two samples of voice
per speaker and measures the LLR from the vowel formants.
In these works, the credibility intervals were computed from
raw data rather than from a statistic such as the mean. We
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propose a small modification to Morrison’s approach such
that the computation is based on the sample mean instead of
the raw data.

2.2. Full Bayesian Significance Test. +e FBST can be used to
compute evidence against a precise hypothesis
LLR( x

→
Q) � η, where η is a value in the parametric space of

LLR of equation (2).
+e FBST [23, 24] is a coherent Bayesian significance test

for sharp hypotheses. +e test is based on an evidence
concept value, whose original definition was motivated by
practical, juridical, and epistemological requirements.
Consider the parametric spaceΘ and a subset θ ∈ Θ ⊆ Rnand
a precise (null) hypothesis H0 that the parameter lies in the
null set, defined by the inequality (g(θ)) and equality (h(θ))

constraints given by the vector functions g and h in the
parameter space:

ΘH � θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) � 0􏼈 􏼉. (5)

For the experimental data x
→, the a posteriori density of a

precise hypothesis is proportional to the product of the
likelihood and the a priori density [25]:

fn(θ | x
→

)∝f(θ)L(θ | x
→

), (6)

where f(θ)is an a priori density and L(θ | x
→

) is the like-
lihood. +e points of the parameter space with highest
“surprise” in the null set H0 are

θ∗ � argmax
θ∈ΘH

fn(θ | x
→

), (7)

while the highest relative surprise set (HRSS), T∗, is

T
∗

� θ ∈ Θ | fn(θ | x
→

)>fn θ∗ | x
→

( 􏼁􏼈 􏼉. (8)

+e Bayesian evidence value against H0is the a posteriori
probability of the “tangent” set; that is,

ev � Pr θ ∈ T
∗

| x
→

( 􏼁 � 􏽚
T∗

fn(θ | x
→

)dx, (9)

where Pr(θ ∈ T∗ | x
→

) is the probability that the parameter θ
is inside T∗. +e e-value associated with the FBST is

e − value � 1 − Pr θ ∈ T
∗

| x
→

( 􏼁. (10)

+e e-value is a probability in the parameter space (μ and
ρ), whereas the p value is a probability in the sample space
[26]. In Section 1, we use the e-value and ev (Bayesian
evidence value against H0) to compute the evidence interval
on FSC using hypothesis H: LLR( x

→
Q) � η.

2.2.1. Improvement of the FBST over the Mean with an
Unknown Variance. +is section describes a method to
compute the FBST for a distribution of the mean (expected
value) with an unknown variance. To lower the computa-
tional cost, we focus on a mostly analytical development.
+is is important in order to limit the computation time of
the e-value over the η-space.

Consider a normally distributed sample x ∈ X with n
i.i.d. observations,X(μ, (1/ρ)), where µ is the expected value
and ρ � 1/σ2 is the precision. +e minimal sufficient statistic
could be the sample mean x and total sum of squares
Q � 􏽐

n
i�1 (xi − x)2. +e likelihood function for

μ ∈ (− ∞,∞)and ρ ∈ (0,∞) [26] is

L(μ, ρ | n, x, Q)∝ ρn/2
e

− ρ(Q/2) 1+(n/Q)(μ− x)2( ). (11)

Taking the a priori noninformative distribution
p(μ, ρ) � dμ dρ/ρ [27], the a posteriori probability density
function (PDF) is [26]

Pn(μ, ρ | n, x, Q) � cρ(n/2)− 1
e

− ρ(Q/2) 1+(n/Q)(μ− x)2( ), (12)

where

c �
Qn− 1/2 �

n
√

2n/2 ��
π

√
Γ(((n − 1)/2))

, (13)

and c is calculated such that the integral over equation (12) is
1. +e gradient is given by the partial derivatives of
Pn(μ, ρ)(henceforth, the we write the PDF Pn(μ, ρ|n, x, Q) as
Pn(μ, ρ)) lead to the maximum P(μ∗, ρ∗):

μ∗ � x,

ρ∗ �
n − 2

Q
.

(14)

Figure 1 shows an example of the FBST evaluation over
H0: μ � 0. +e bell-shaped surface is Pn(μ, ρ) and the solid
black line is the restriction of the null hypothesis (μ � 0).
+e maximum value of the black line delimits the “tangent”
T∗set, represented as a dash-dot line. +e dotted line is the
restriction Pn(μ, ρ � ρ∗).

+e evidence against the null hypothesis (H0: μ � η � 0)

is evaluated by equation (9). Main works on the FBSTover the
distribution of a mean with an unknown variance [26, 28, 29]
useMCMC to solve the integral offnin equation (9). However,
specifically for equation (12), it shows that the “tangent” set T∗

has extreme points ρA, ρB, ρCe and ρD(as in Figure 2), where

ρA �
n − 2

Q 1 +(n/Q)(η − x)2􏼐 􏼑
,

ρB �
n − 2

Q 1 +(n/Q)(2x − η − x)2􏼐 􏼑
� ρA.

(15)

Making Pn(x, ρ) � Pn(η, ρA) for equation (12) results in

cρ(n/2)− 1
e

− ρ(Q/2)
� cρ(n/2)− 1

A e
− ρA(Q/2) 1+((n/Q))(η− x)2( ), (16)

and grouping variables and taking the natural logarithm in
both sides yields

ρ −
n − 2

Q
􏼠 􏼡log(ρ) +

n − 2
Q

􏼠 􏼡log ρA( 􏼁 − ρA 1+
n

Q
(η − x)

2
􏼠 􏼡 � 0,

(17)
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with the roots being

ρD � exp − W− 1
e− (β/α)

α
􏼠 􏼡 +

β
α

􏼢 􏼣,

ρC � exp − W0
e− (β/α)

α
􏼠 􏼡 +

β
α

􏼢 􏼣,

(18)

where Wn(·) is the Lambert-W function [30]. By the
symmetry of T∗ over the µ- axis, we can compute the evi-
dence ev by

ev � 2􏽚
ρD

ρC

􏽚
μ(ρ)

x
cρ(n/2)− 1

e
− ρ(Q/2) 1+(n/Q)(μ− x)2( )dμ dρ, (19)

where μ(ρ) is the contour function (from any boundary) on
the µ-axis of the “tangent” set T∗(Figure 2). +e contour of
T∗ can be defined as

Pn(μ, ρ) � cρ(n/2)− 1
e

− ρ(Q/2) 1+(n/Q)(μ− x)2( ) � P
∗
n

↓log()

μ2 − 2xμ + x
2

+
Q

n
−

2
ρn

n − 2
2

log(ρ) − log
P∗n
c

􏼠 􏼡􏼢 􏼣 � 0,

(20)

where P∗n � cρ(n/2)− 1
A e− ρA(Q/2)(1+(n/Q)(η− x)2). +e roots of

equation (20) in µ define the left and right sides of the
contour (see Figure 2):

μ(ρ) � x ±

����������������������
2
ρn

n − 2
2

log(ρ) −
P∗n
c

􏼢 􏼣 −
Q

n

􏽳

. (21)

Note that μ(ρ) is a contour for values greater and less
than x. By symmetry, we compute equation (19) as

(22)

where erf(·) is the error function. We can simplify the
argument of this function as

](ρ, η) �
n − 2
2

log
ρ
ρA

􏼠 􏼡 −
Q

2
ρ − ρA( 􏼁 +

ρAn

2
(η − x)

2
,

(23)

where ρA is the inferior limit of ρ, and η is the hypothesis test
H0: μ � η. +us, we can rewrite equation (19) as the one-
dimensional integral:

ev �
1

Γ((n − 1/2))

Q

2
􏼒 􏼓

(n− 1/2)

× 􏽚
ρD

ρC

ρ(n− 3/2)
e

− ρ(Q/2)

· erf(
������

](ρ, η)

􏽱

)dρ.

(24)

+e integral in equation (24) does not need MCMC
techniques, thus demanding less computational effort than
equation (9) does.
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Figure 1: Probability density function Pn(μ, ρ | n, x, Q)showing the
restriction of the null hypothesis and the “tangent” set. +e bell
shape is Pn(μ, ρ), while the solid black line is the restriction of the
null hypothesis H0: μ � 0. +e maximum value of the black line
delimits the “tangent” set T∗ (dash-dot line). +e dotted line is the
restriction Pn(μ, ρ � ρ∗).
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the restriction Pn(μ, ρ � ρ∗).

4 Mathematical Problems in Engineering



2.3. Proposed Method. +is section proposes a method to
compute the evidence interval with a Bayesian evidence level
α, which can be computed using equation (24). +e result in
the GMM-UBM scenario is the sample mean LLR( x

→
Q) of

the time series LLR(x[t]Q), as equation (3) shows, on the
parametric space η.

Consider the time series LLR(x[t]Q) with a parametric
mean (expected value) of μ, precision ρ, and sample mean
LLR( x

→
Q). From this, it is possible to define the evidence

interval of µ as the subspace ηL ≤ μ≤ ηH, where ηL and ηH are
values above and below LLR( x

→
Q), respectively. +e

Bayesian evidence ev against the precise hypotheses H: μ �

ηL and H: μ � ηH is 1 − α (see equation (24)).
Outside this range of the LLR, ηL ≤ LLR( x

→
Q)≤ ηH, the

evidence (e-value computed by the FBST) that the para-
metric mean (μ) is higher than ηH or lower than ηLis less
than α.

We are aware that the definition above does not fit the
traditional confidence (or credibility) interval as defined in
[31]. However, it is an analytical method based on the pa-
rameter space and represents the limits of evidence that the
sample can provide Bayesian evidence (“significance”) of
1 − α.

For example, consider that the comparison between a
questioned-voice and a known-voice generates a time series
LLR(xQ[t]), where the values of frames x

→
Q � xQ[0],􏽮

xQ[1], . . . , xQ[T − 1]} in equation (2) are used. Figure 3
shows the statistical distribution of these LLR values on the
normalized histogram (Norm. Hist.) in the left panel. In this
panel, the solid light gray line is the empirical PDF (emp.
PDF) and the small circle over this curve indicates the
sample mean (LLR( x

→
Q)). +e dash-dotted rectangle on the

left graph is the region on the right graph. +e sample mean
of the LLR(xQ[t]) series is LLR( x

→
Q) ≈ − 0.8 Np (nepers)

(neper is the natural logarithm of ratios, named after John
Napier).

+e evaluation of the hypothesis H: LLR( x
→

Q) � η
along the variable η in the LLR space with the FBST
(equation (24) yields the e-value curve. +e variation of η
values results in the e-value curve (ev-curve, solid dark
gray) indicated in the right graph of Figure 3. +is curve is
computed by sampling the η space and solving equation
(24) for each sample. On this graph, the horizontal dash-
dotted line (ev � 0.05) indicates the Bayesian evidence
(significance) α � 0.05 (evidence value against hypothesis
ev � 95% or e-value � 0.05). +e horizontal solid black
error bar (ev > 0.05) indicates the evidence interval and the
sample mean.

3. Comparison with Other Methods

+is section presents an experiment and a case study in-
volving the range of evidence. We conducted training and
testing stage with a voice data set CEFALA-1 [32], con-
taining 104 speakers (55 men and 49 women) recorded with
five microphones (generating 520 records). +e validation
step used 50 recordings that do not belong to the corpus
CEFALA-1.+is validation emulates an open-set database in
speaker comparison.

We designed an experiment to compare the proposed
interval inference method with other methods used in FSC.
+e experiment used 104 voices narrowband filtered (4th
order butterworth) in the 300–3500Hz range and resampled
to 8 kHz, compatible with the Brazilian mobile phone
system.

In order to compare the various interval inference
methods, we need to use the speech database to define the
known-voice and questioned-voice sets. We do this as fol-
lows. For each subject 50% of voice content was used as
known-voice and 50% as questioned-voice, both in the
CEFALA-1 corpus and in the validation recordings.

In order to emulate forensic conditions, both the known-
voice and questioned-voice data are subject to 3 types of
degradation. First, the data are contaminated with pink noise
at the following SNR levels: 25 dB, 23 dB, 20 dB, 17 dB, 15 dB,
and 12 dB. Next, the data are encoded and then decoded by a
GSM 06.60 codec [33]. Finally, the data are run through a
narrowband filter (300–3500Hz).

+e features were extracted with MFCC (c[n]) using 13
critical bands (filters), a frame length of 25ms, and frame
step of 10ms. +e features include delta Δc[n] and delta-
delta Δ2c[n]. We used Sonh’s [34] method for voice activity
detection (VAD) to identify the voiced frames.

+e methods used to compute interval inference (sig-
nificance α � 0.05) were

Gosset: confidence interval computed by equation (4)

Morrison: empirical credibility interval computed by
combining the k-nearest neighborhood (KNN) with the
linear regression, as described by Morrison [14]

FBST: the proposed method that computes the evi-
dence as a subspace of the parametric space, where the
e-value is α

Figure 4 presents examples of the interval inference. In
the figure, we show the LLR values along the horizontal axis.
+e inference intervals are shown as horizontal lines, with
the circles indicating the mean values and dot-dashed
vertical line indicating the decision threshold.

+e horizontal light gray line indicates a same-speaker
comparison, and dark gray indicates a different-speaker
comparison.+e scenarios are (a) correct comparison, (b) an
intermediate region where the comparison threshold is
within the inference interval, and (c) comparison error
(Type I or Type II).

We used the method proposed by Morrison et al. [14] to
compute the credibility interval over the data themselves,
not over the mean (expected value) of the data. Morrison’s
method was adapted to compute the mean of 50 subsamples
with replacement (similar to bootstrap [10]).

We evaluated the performance of each interval inference
method based on results presented in Figure 4. We expected
that a comparison between the GMM model of a given
speaker and a set of features coming from that speaker
(same-speaker comparison hereafter) results in a higher LLR
value than a comparison between that same GMM model
and a set of features coming from a different speaker (dif-
ferent-speaker comparison hereafter). +e training and

Mathematical Problems in Engineering 5



testing stage, using only samples from the CEFALA-1 corpus
with contaminations between 12 and 25 dB, presented an
equal error rate (EER) of 8.1% with threshold at LLR� 0.25
Np.+e results presented below cover the test and validation
steps.

Figure 5 shows the number of correct classifications in
scenario (a).+e occurrences of correct classifications for the
evidence interval (vertical light gray bar) is smaller than that

of other methods (interval and punctual). +e comparisons
of the best interval methods yield values of 84.0% against
84.4% for SNR 12 dB, 84.4% against 88.6% for 15 dB, and less
than 1% for the other SNR values. +ese values represent a
loss of the accuracy of less than 0.5% compared to interval
inference. Compared to the punctual inference, the loss in
the accuracy is less than 1.6% for the other SNR values.

+e intermediate results, in which the intervals overlap,
are exemplified in Figure 4 by comparisons (b). +ese
scenarios are deemed inconclusive and represent an In dubio
pro reo condition, meaning that a defendant should not be
convicted when doubts remain about his or her guilt (as-
sociation between questioned- and known-voices).

–4 –2 0 2
η space of log likelihood-ratio value [log (LR)]

0

0.05

0.1

0.15

0.2

0.25

0.3
Pr

ob
ab

ili
ty

 d
en

sit
y

Norm. Hist.
emp. PDF
LLR (xQ)

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

Pr
ob

ab
ili

ty
 d

en
sit

y

–1.2 –1 –0.8 –0.6 –0.4
η space of log likelihood-ratio value [log (LR)]

0

0.2

0.4

0.6

0.8

1

e-
va

lu
e

ev curve
ev = 0.05
ev > 0.05

Norm. Hist.
emp. PDF
LLR (xQ)

(b)

Figure 3:+e panel on the left shows the normalized histogram of LLR(xQ[t]) occurrences and the empirical PDF (thick line). On the same
panel, the dashed rectangle indicates the region shown in the panel on the right. In this panel, the bell-shaped dark gray solid line indicates
the e-value curve and the horizontal solid black error bar indicates the evidence interval and the sample mean.

–2 -1 0 1 2
Log likelihood ratio (np)

(a) Right comp.

(a) Right comp.

(b) Middle result

(b) Middle result

(c) Miss comp.

(c) Miss comp.

Threshold
Same speaker

Different speaker
Indifferent

Figure 4: Scenarios of the inference intervals. +e dot-dashed
vertical line indicates the decision threshold. +e light gray line
indicates a same-speaker comparison, and dark gray indicates a
different-speaker. +e scenarios are (a) correct comparison ou
“Right comp,” (b) an intermediate or “middle result” region where
the comparison threshold is within the inference interval, and (c)
comparison error (Type I or Type II) ou “Miss comp.”
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Figure 5: Percentage of correct classifications, scenario (a), for
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In the punctual inference, scenario (b) does not
occur, and there is no transition region. +us, in the
interval inference, scenarios (a) and (c) are decisive, and
the intermediate scenario, (b), indicates that the
results have some equivalence; that is, there is a chance
that the comparison between different speakers will be
larger (or smaller) than the comparison between the
same speakers.

Figure 6 shows the comparison results for various in-
terval inference methods (Gosset, Morrison’s method, and
FBST). +e results are grouped by the SNR level. +e panel
indicates the percentage of inconclusive interval inferences
(b), wrong interval inferences (c), and punctual error in-
ferences (dashed vertical line).

Compared to the punctual inference (dashed vertical
line), the evidence interval computed by the FBST (hori-
zontal light gray bar) reduces the number of wrong infer-
ences in 1.6%, 1.1%, 0.9%, 0.7%, 0.6%, and 0.4%, respectively,
for SNRs from 12 dB to 25 dB (see Figure 6). Compared to
the other methods of the interval inference, the evidence
interval (horizontal light gray bar) presents an incorrect
number of inferences (c) less than or equal to the other
methods (horizontal bars).

+ese results can be explained by checking the size of the
intervals for each method in Figure 7. In this figure, points
represent the raw data (jittered horizontally), the horizontal
line shows the sample mean, and the lateral lines represent a
smoothed density. Table 1 summarizes the values contained
in Figures 5, 6, and 7.

On an average, the length of the evidence interval
(computed by the FBST) is 24% larger than the interval
calculated by the Gosset method and 15% larger than the
interval calculated by Morrison’s method (see Table 1). +ey
also present a higher dispersion than the other methods do.

Another attempt to measure the influence of interval
inference is to exclude from the confusion matrix the
comparisons that result in scenario (b) of Figure 4. In this
way, a fifth category, “In dubio pro reo,” may be included.
+e Table 2 presents a comparison of how the inclusion of
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Figure 6: Results from the interval inference method. Each chart—grouped by SNR—shows the percentage of scenarios described in
Figure 4. +e horizontal bars indicate the percentages by the method, while the dark gray-dashed vertical line indicates the error percentage
of the inference without an interval. (a) SNR 12 dB. (b) SNR 15 dB. (c) SNR 17 dB. (d) SNR 20 dB. (e) SNR 23 dB. (f ) SNR 25 dB.
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the interval inference, when including “In dubio pro reo,”
changes the percentage of true positives, true negatives, false
positives, and false negatives. +e table shows the EER
calibration of 8.1%. However, for open-set validation, the
GMM-UBM methodology presents false positive rates of
9.4%, which reduces to 8.4% using the range of evidence
calculated from the FBST.

4. Conclusion and Future Work

+is paper presented an improvement to the FBST calcu-
lation for the distribution of a mean with an unknown
variance. +ese improvements obviate the need for MCMC
techniques to calculate the FBST integral. Compared with
other methods, the evidence interval was more conservative,
reducing incrementally Type I and Type II errors in low-SNR
scenarios.

Although the results do not present a significant im-
provement in the reduction of the false positive rate, for
open sets, the present work helps to understand the limits
of the GMM-UBM methodology applied to FSC. +e
contribution of the range of evidence may seem insig-
nificant. However, in the case of sex crimes, especially
against children, understanding the limits of each tool in

the FSC helps the forensic expert to make more informed
decisions.

Possible developments of the present work include
improving the FBST for the Behrens–Fisher problem,
combining the evidence interval with background database
calibration and tests with different features such as Power
Normalized Cepstral Coefficients (PNCC), Perceptual Lin-
ear Predictive (PLP), and noise. +e application of the in-
terval inference in speaker verification techniques, such as i-
vector and x-vector, are under development and should be
discussed in future work.

Data Availability

+e audio files (corpus) used in the experiments can be
found at http://www.cefala.org. It is the intention of the
authors to make available the processed data and the al-
gorithms as soon as the work is published. Basically the data
are acoustic features (Mel-frequency cepstrum) and
Gaussian mixture models.
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+e authors declare that they have no conflicts of interest.

Table 1: Occurrence of the scenarios described in Figure 4 for interval inference methods.

Percent of occurrences ±0.1(%)
Scenario SNR (dB) Gosset Morrison FBST Punctual

(a) Correct classification

12 84.4 84.3 84.0 85.6
15 88.6 88.6 88.4 89.6
17 91.0 91.0 90.7 91.7
20 93.7 93.7 93.5 94.2
23 95.4 95.5 95.3 95.9
25 96.4 96.4 96.3 96.8

(b) Middle interval

12 2.4 2.6 3.2
15 1.8 1.9 2.3
17 1.5 1.5 1.9
20 1.0 1.0 1.4
23 0.9 0.9 1.2
25 0.7 0.7 0.9

(c) Miss classification

12 13.2 13.1 12.8 14.4
15 9.6 9.5 9.3 10.4
17 7.5 7.5 7.4 8.3
20 5.3 5.3 5.1 5.8
23 3.7 3.6 3.5 4.1
25 2.9 2.9 2.8 3.2

Average interval length (Np) 0.074 0.080 0.092

Table 2: Percentage of true positives, true negatives, false positives, and false negatives obtained in the test and validation steps.

True positive (%) True negative (%) False positive (%) False negative (%) In dubio pro reo (%)

Train

Punctual 91.9 91.9 8.1 8.1
Gosset 91.1 90.8 7.0 7.4 1.8

Morrison 91.2 90.9 7.1 7.5 1.7
FBST 90.8 90.0 6.79 7.12 2.4

Validation

Punctual 85.3 90.6 9.4 14.7
Gosset 85.0 90.0 8.8 14.0 1.1

Morrison 85.0 90.0 8.8 13.9 1.2
FBST 85.0 89.9 8.7 13.8 1.3
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