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The study considers the semiconductor industry’s business process to be made up of two stages. In the business development
process, a company generates profit and consumes energy while polluting the environment. After the two-stage data envelopment
analysis approach was employed for calculating the operational efficiency and environmental efficiency, social network analysis
was used to compare the manner in which the internal advantages or individual process factors of 28 semiconductor companies
contribute to efficiency. A network graph was plotted to visualize relationships, with each node in the network graph representing
a company. This graph was plotted to help decision-makers and manufacturers understand information communication among
companies and the importance of the company in the network and help companies develop a mutual understanding to improve
operational efficiency. The results of the study indicated that having an eflicient company does not necessarily mean that the
company plays a key role in the entire industry. The results provide decision-makers with references for improvements and

information for learning from these references.

1. Introduction

A report by Semiconductor Equipment and Materials
International (SEMI) noted that Taiwan’s semiconductor
industry chain is playing an increasingly important role
globally. The annual total output of the global semicon-
ductor industry is expected to increase by 3.3% in 2020.
The growth rate of Taiwan’s semiconductor industry is
expected to be even higher, reaching 16.7%; its total
output value is estimated to be over 3 trillion TWD. The
current total output of Taiwan is more than that of South
Korea, and its total output is behind only that of the
United States. The development of emerging technologies
is mostly because of the semiconductor industry [1].
Terminal devices to cloud architecture all rely on semi-
conductor technology as the foundation [2]. Taiwan has
the most advanced semiconductor industry cluster in the
world, and therefore, it continues to play a key role in the
global industry.

High operational efficiency leads to growth in operating
income and improvement in profitability, which is key to the
sustainable operation of enterprises [3]. However, owing to
the increasingly strict environmental regulations and the
advanced production processes adopted by semiconductor
companies, the demand for raw materials has increased
significantly, and there has been considerable capacity ex-
pansion. As a result, the total amount spent on waste
treatment per year continues to increase [4].

Performance evaluation is used to measure the perfor-
mance of an organization and its employees, and the results
are used to modify the organizational strategy and direction
to improve the overall goals of the enterprise [5]. Perfor-
mance usually involves efficiency and effectiveness. Effi-
ciency refers to the measurement of the ratio of output to
input. That is, the number of people, expenses, and costs
required to achieve a goal are quantified [6]. Effectiveness
refers to the extent to which a goal is achieved. That is, the
actual results are compared with the target results. To
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increase their own market competitiveness and reduce the
risk of mismanagement, companies rank themselves after
calculating their own efficiency and the efficiencies of their
competitors every year to improve internal deficiencies [7].

However, traditional ranking approaches fail to accu-
rately capture the corporate relationship of the companies
competing and cooperating with one another [8]. Perfor-
mance evaluation visualization is considered a suitable al-
ternative for enabling decision-makers to understand the
business status of an enterprise in a more simple and clear
manner [9]. Freeman [10] proposed the use of visual images
to present corporate relationships to decision-makers or
investors. They proposed the use of visual images to point
out that operating efficiency is no longer a packed data
resource, but a more simple and understandable resource,
which allows decision-makers to observe it and apply it to
business planning. In social network analysis (SNA), the
concept of interconnected relationships is employed [8]. As
long as they are relevant, relationships can be visualized [11].
Shape and centrality indices are used to indicate the status of
a specific node in a network to allow researchers to easily
understand the relationship [12]. Therefore, in this study, we
used SNA to present the relationship benchmarking of
companies to help decision-makers and manufacturers
understand information communication. A company and its
importance in the network are graphically presented to
investigate the effectiveness and relationship of each com-
pany to enable decision-makers to make effective decisions.

SNA is usually used to evaluate project performance in
complex cooperation systems [13, 14]. It helps determine the
performance of a project by establishing the social structure
of the connections and roles involved and helps evaluate the
importance of project performance and personal perfor-
mance [11]. This is achieved through measures such as
centrality analysis, community detection, and information
diffusion analysis. In SNA, a social network is formed among
social nodes through various relationships [12]. Social nodes
may be individuals, countries, or even economies. These
social nodes form social networks via various relationships
[15]. Therefore, the object of a social network discussion is
the relationships formed among individuals and not the
individuals themselves.

The network view reshapes traditional theoretical un-
derstanding by shifting the research focus from being en-
terprise-centric to a more relational, contextual, and
systematic level [16]. However, although the network view
has been applied more and more theoretically, very few
systematic and empirical analyses of a network in the in-
dustrial environment have been performed [17].

Although there is an increasing awareness of the op-
portunities and importance of network relationships for
enterprises in the management field [18], the impact of the
structure of network relationships on the operations of
enterprises has not been fully determined. This is mainly
because, in previous performance evaluation processes,
enterprises were considered as homogeneous, and the focus
was mainly on the performance of the enterprises themselves
rather than on the interactions and interdependence among
enterprises. Therefore, if the basic structural patterns of a
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social situation are not understood, the efforts in the
management field to understand the situation may be in-
effective and flawed [19]. Therefore, analytical tools are
required to analyze network regularity within a social
structure to develop enterprise network relations. This
would reveal the interdependence among enterprise activ-
ities and thus allow us to have a more detailed understanding
of the network. Past studies have neglected the character-
istics of the relationship structure of these individuals. SNA
is different from traditional data collection forms and em-
phasizes that other individuals are defined by relationships
rather than by their own attributes [11, 13]. The focus of
observation is the structure of the connection. The rela-
tionships themselves are as important as individuals.

Data envelopment analysis (DEA) is a nonparametric
method for measuring production efliciency. DEA is used
when there are multiple inputs and multiple outputs.
Charnes et al. [20] first described the method in its current
form. First, an efficient frontier consisting of decision-
making units (DMUs) demonstrating best practices is
established, after which the efficiency level is assigned to
other nonboundary units based on the relative distance
between the DMUs and the efficient frontier. DEA has many
advantages in efficiency measurement. First, unlike in a
parametric method, in DEA, the functional form of the
efficient frontier need not be assumed. Second, in DEA,
multiple inputs and multiple outputs can be handled, and
multiple inputs and multiple outputs are quite common in
most applications. Third, in DEA, any real-world problem
can be solved with clearly defined inputs and outputs.
Fourth, DEA can be applied to various levels of aggregation.
A DMU may be a company, organization, system, or country
(21, 22].

The contributions of the study are as follows. On a
theoretical level, the study expands the research perspective
of the semiconductor industry and analyzes the operating
performance of the semiconductor industry by integrating
economic and environmental perspectives. The relationship
pattern of a group of people, departments, or organizations
is investigated using the quantitative analysis method of
SNA. The aim is to understand the relationship status of
these companies and determine the relationship from the
latent structure of the social network. SNA is also used for
studying the impact of these relationships on the semi-
conductor industry, analyzing the dynamic relationships
between industries, transforming intercompany interactions
into graphical presentations, and calculating relevant indi-
cators to explore the degree to which intercompany rela-
tionships develop. The performance of the semiconductor
industry’s economic and environmental factors can be
reviewed through social networks. For the industry as a
whole, understanding the core performance will help
forecast trends and help plan for the future. Therefore, the
study contributes to the theoretical innovation and inter-
pretation of the semiconductor industry structure.

From a practical point of view, past studies have focused
on the internal development of enterprises and methods to
improve the enterprise’s performance. However, these
studies have ignored the interactions among enterprises in
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the industry [1, 23, 24]. Using DEA, we explored the network
relationship of the efficiency of the semiconductor industry
from different stages and aspects. A discussion of the net-
work relationships helps understand not only the overall
efficiency but also the operating efficiency and environ-
mental efficiency through network efficiency analysis
methods. This is essential for understanding the main axis of
industrial development, the actors playing supporting roles,
and the actors playing the key roles. An individual company
is aware of its strengths and shortcomings in the industry;
therefore, it can develop different operating strategies, such
as strengthening and consolidating existing positions or
improving efficiency.

2. Literature Review

2.1. Performance Evaluation through DEA. DEA involves the
use of multiple inputs and multiple outputs. Through DEA,
relative efficiency indicators can be obtained, resource usage
can be understood, and goals can be improved [25, 26]. Ray
and Das [27] used DEA to measure the efficiency changes in
Indian banks after the financial reforms; they found that the
profitability of banks varied considerably. State-owned
banks were found to be more efficient than private banks.
They also found that the smaller the size of the bank was, the
lower the efficiency was. Hu et al. [28] used three input items
(deposits, employees, and fixed assets) and two output items
(investment and loans) to calculate the efficiency of 11
national banks in China. The impact of environmental
factors was excluded, and the results showed that state-
owned banks had more room for improving efficiency,
which means that joint-stock banks are at an advantage in
China. Therefore, state-owned banks can reform the equity
ownership system to improve their efficiency. From the
literature, we learn that DEA has been widely used in or-
ganizational performance measurement [29]. In addition,
DEA provides a common point of view for measuring
performance goals, allowing for a more complete mea-
surement model for performance [30-32].

Marques et al. [33] employed the DEA model to study
the impact of industrial and environmental factors on the
operating efficiency of Japanese water companies. Li and Lin
[34] used DEA to study the impact of energy-saving policies
on the green productivity of Chinese manufacturing com-
panies. Stewart et al. [35] used DEA to study the operating
efficiency of the Vietnamese banking and financial system.
Geng et al. [33] used a three-stage DEA model to study the
investment efficiency of China’s tourism industry in 2011.

Past studies have confirmed that DEA is effective in the
evaluation of environmental efficiency [36]. Hatami-Mar-
bini et al. [37] presented a case study of the semiconductor
industry to prove the applicability of their proposed model
and the effectiveness of the algorithm. Li et al. [38] measured
the technical efficiency, scale efficiency, and innovation
technology efficiency of China’s semiconductor industry
from 2009 to 2014. Tajbakhsh and Hassini [39] proposed a
two-stage DEA model to evaluate the efficiency of power
generation facilities. Sueyoshi and Yuan [40] proposed a new
DEA intermediate approach to measure the sustainability of

Asian countries from 2008 to 2014. Therefore, in this study,
we used the performance evaluation model to conduct an
empirical analysis of the semiconductor industry.

2.2. SNA. SNA is commonly used in network theory, which
is mainly used for studying network structure problems
[8, 11]. In SNA, dots represent actors, lines represent the
relationship between points and points, and the graphics
formed by dots and lines represent the collection and style of
social networks [41]. SNA is mainly used to investigate social
phenomena and structures through the relationship between
actors; therefore, SNA is widely used in sociology to study
social structure, political structure, organizational structure,
and economic structure [15, 42]. When researchers conduct
SNA, they often use analysis software such as NetMiner,
Pajek, and UCINET [8, 11, 19]. The process involved in SNA
is divided broadly into three steps. In the first step, the
research subjects and the network boundary are determined.
In the second step, data are collected. In the third step, the
network relationship attributes are analyzed. Before per-
forming a network analysis, we must determine whether the
actor unit to be studied is an individual, an organization, or a
country [43]. To make the research topics clearer and the
analysis results meaningful, we must define the network
boundary. The boundaries of the network can be defined
from a realist perspective, in which the boundary is con-
structed through the subjective perceptions of the network
system by actors in the network, or from a nominalist
perspective, in which the boundary range is defined based on
the researcher’s research concept or analysis purpose [44].

The social network structure is used for explaining the
social behaviors of organizations [42]. In business activities,
if each enterprise is taken as the central point, then that
enterprise and other enterprises in the market will form
connections through direct or indirect business activities,
forming specific business relationships [1]. These relation-
ships are interpreted as the enterprise’s social behaviors, and
these relationships are interconnected because of the needs
of enterprises and the formation of networks because of
these needs [8]. Sinnema et al. [15] found that SNA is a
unique analysis method for visualizing the relationship
structure among organizations. The visualization of the
relationship structure enhances organizational develop-
ment. Li et al. [45] used SNA network diagrams to represent
efficiency in decision-making. Liu and Lu [46] first analyzed
the efficiency of the assessed unit through DEA. Then, to
examine the relationship within the assessed unit and
provide references for the future development of each or-
ganization, they employed SNA. Through the indicators of
SNA, the relationship among departments was found, and
the relationship among departments was presented to
managers through SNA and unique relationship diagrams.
SNA has been combined with other analysis methods. For
example, Liu et al. [47] conducted a two-stage evaluation of
40 Internet companies. First, 21 different input and output
combinations were sorted using the variable returns to scale
model of DEA, after which the benchmark learning subjects
of each company were identified, weighed, and used as the



basis for SNA connection. In the second stage, an efficiency
network was built, and the eigenvector centrality indicator
was used to calculate the proximity to important nodes.
When a node had an extremely high eigenvector value, it
affected other adjacent nodes. The eigenvector centrality
index was used to rank the most powerful companies in the
network. The results of the research provided an alternative
ranking of companies, and a good model for companies that
need improvement was developed. Lee et al. [48] studied the
R&D performance impact of the Korean science and en-
gineering cooperation model and analyzed the structural
position of the social network and the relationship char-
acteristics of single nodes (characteristic orientation and
closeness). The results showed that excessive cohesion might
hinder development. In summary, SNA has been widely
used in many different domains, and as long as it is relevant,
a relationship can be visualized. Shape and centrality in-
dicators (process, intermediary, tightness, etc.) are used to
indicate the status of a specific node in a network; in this
manner, researchers can easily understand the relationship.
Therefore, we present an enterprise relationship bench-
marking through SNA to provide enterprise decision-
makers with an alternative perspective.

3. Methodology

3.1. Data Collection. Previous studies have shown that the
performance of enterprises in terms of environmental
protection has an impact on the competitiveness of the
semiconductor industry [37]. Halkos and Petrou [49]
studied EU waste emissions from the perspective of regional
development. They found that energy use, CO, emissions,
solid waste generation, wastewater discharge, and exhaust
gas emissions were common sources of environmental
pollution [50]. Therefore, we considered undesirable outputs
such as greenhouse gas emissions to completely understand
the development of efficiency. As seen in Figure 1, according
to modern economics, the operation development process is
the first stage, of which operating expenses, employees, and
fixed assets are all important production factors. The output
of financial and labor resources in the first stage determines a
company’s operational development results. The second
stage, which is environmental efficiency, focuses on reducing
environmental pollution, including undesirable industrial
emissions (effluent drainage, waste, and greenhouse gases),
and managing resources. This research referred to existing
literature [1, 40, 51, 52] and followed industrial production
practices to select input and output variables.

We used data from 28 companies in the semiconductor
industry from 2014 to 2017 to measure efficiency. The
semiconductor industry chain is usually divided into three
major sectors: upstream (e.g., design of integrated circuits
(ICs)), midstream (e.g., wafer fabrication), and downstream
(e.g., IC packaging and testing). Because wafer fabrication is
the main cause of environmental pollution in the semi-
conductor industry, we focused on companies in the mid-
stream sector of the industry and discussed their operational
and environmental efficiencies. The factors considered are
described as follows. The Corporate Social Responsibility
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Report released by various companies, including continuous
improvement projects in the fields of climate change, energy
management, water management, waste management, and
air pollution control, is part of the company’s voluntary
information disclosure. The data of the 28 companies in the
semiconductor industry were obtained from their CSR re-
ports published in the Market Observation Post System of
the Taiwan Stock Exchange. Table 1 presents the descriptive
statistical analysis of the variables considered in the study.

3.2. Network DEA. The two-stage DEA model is a simple
network DEA model [53]. A network is a system with
multiple interconnected processes. The output of the first
stage serves as the input to the second stage, known as
intermediate data. The network system has two basic
structures—series and parallel—and both the efficiency and
deficiency of the system can be divided into the efficiency
and deficiency of internal processes [53-55].

Cook et al. [53] reviewed these models and established
relationships among various approaches. Their study indi-
cated that all existing approaches could be classified as
applications of the leader-follower or cooperative game
theory. Chen et al. [54] developed an additive efficiency
decomposition approach, which is different from the non-
linear model developed by Liang, Cook [56]. Therefore, the
additive form of efliciency decomposition appears to be a
more reasonable and easier-to-perform method for mea-
suring the performance of a two-stage process under the
variable returns to scale model [57].

The fundamental methods of the two-stage network
DEA are the multiplicative and additive efficiency decom-
position approaches. Both of them assume a series rela-
tionship between the two stages; however, they differ in
terms of the definition of overall system efficiency and in
terms of the conceptualization of the decomposition of the
overall efficiency into each stage. Despotis et al. [55] showed
that the efficiency estimates obtained using the additive
decomposition method are biased, as one stage is more
emphasized upon than the other. However, the estimates
obtained using the multiplicative method are not unique.
Therefore, Despotis et al. [55] proposed a method for es-
timating unique and unbiased efficiency scores for each
stage, which were then composed to obtain the efficiency of
the overall system by using a posteriori aggregation method.

Guo et al. [58] adopted the two-stage network structure
as an example to study the additive efficiency decomposition
approach. In their study, the overall efficiency was defined as
the weighted average of individual stage efficiencies, and the
weight indicated the relative importance of each stage. Guo
et al. [58] also revealed that the weight may not affect the
calculation of the efficiency scores for each stage and that the
change in overall efficiency owing to the use of different
weights may be related to stable stage efficiencies.

In traditional DEA, radial efficiency is measured;
therefore, we assume that the input or output can be ad-
justed (reduced or expanded) at an equal rate, which may
not be true in some cases. Therefore, Tone et al. [59] pro-
posed the Network SBM model (slack-based measures,
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Fixed assets ¢ ¥y ‘Water consumption Y Greenhouse gases
FIGURE 1: Two-stage production model of the semiconductor industry.
TaBLE 1: Descriptive statistics.
Mean Max Min SD

Operating expenses (NT$ million) 14,276 87,366 267 21,446
Employees (persons) 13,053 109,267 369 24,720
Fixed assets (NT$ billion) 74,508 1,062,542 580 199,788
Sales (NT$ million) 100,434 977,447 4,078 193,369
Power consumption (terawatt hours) 86,729 1,082,900 7 205,881
Water consumption (tons) 5,478,126 45,200,000 30,297 9,645,525
Effluent drainage (tons) 3,546,011 29,400,000 29,879 6,076,439
Wastes (ton) 28,352 361,969 47 70,786
Greenhouse gases (ton) 756,329 6,257,020 2,784 1,548,402

measures based on slack variables) to measure the overall
efficiency and departmental efficiency of an organization.
The SBM model is a nonradial efficiency measure con-
forming to unit invariants. This model integrates slack
variables, that is, excesses in inputs and shortfalls in outputs
to measure efficiency. If the input and output cannot be
adjusted at an equal rate, then the SBM model is suitable for
use. This model is used to calculate three types of efliciencies:
input-oriented efliciency, output-oriented efficiency, and
nonoriented efficiency. We employed the nonoriented ef-
ficiency to evaluate the performance of the semiconductor
industry considering both input slacks and output slacks.

my 3L, 3 w1 () (225 6 5 )]

Assuming that # is the number of DMUs evaluated, k
is the number of stages (k=1,...,K), tis the number of
periods (t=1,...,T), mF represents the number of in-
puts in period t of stage k, r* represents the number of
outputs in period t of stage k, x5, represents the input
items of the oth evaluated DMU in period ¢ of stage k, y* ,
represents the output items of the oth evaluated DMU in

period t of stage k, (k, h) represents the linkage from stage
k to stage h, and z]f " is the intermediate input (output)
linking stage k and stage h, the relevant network DEA
score planning is expressed as shown in the following
equations:

(1)
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n
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where p; represents the overall efficiency value of DMUs in
the period T. By changing the subscript o, the overall effi-
ciency value of all DMUs in the period t is obtained.
> le‘]t/\]t and 3" yEA ]t, respectively, represent the
benchmark value of the efficiency boundary of the ith input
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and rth output of stage k during the tth period. s& and s¥,
respectively, represent the input slack and output slack of
stage k in the tth period. If p} is 1, the overall efficiency value
of the Tth period is efficient in the balance-based



measurement model; if p) is less than 1, the overall efficiency
value of the target DMU in the Tth period is noneflicient.

Furthermore, using the optimal input slack s&~ and the
optimal output slack s’,‘? in equations (1) and (2), the
nonoriented t-th period efficiency value is defined as follows:

T wh 1= () (27 s 1 )]
- Zszl wf(l + l/rf) .

In equation (3), p, = 1/T ¥, p,. If the target DMU is 1,
then the target DMU is efficient in the tth period. If the
target DMU is less than 1, then the target DMU is non-
efficient in the period t. 0<p, <1 indicates that the SBM
efficiency value is between 0 and 1. When both s§ and s/ are
0, it means that there is no slack in all input and output items
of the target DMU in the period ¢ of stage k:

. [1-(um)(37% 6 )| "

([1+17])

In equation (4), p, = Y& wkpk. If the target DMU is 1,
then the target DMU is efficient in period t of stage k. If the
target DMU is less than 1, then the target DMU is non-
efficient in period ¢ of stage k. 0 <pF <1 indicates that the
SBM efficiency value is between 0 and 1. When both s& and
K" are 0, it means that there is no slack in all input and

rt

output items of the target DMU in period ¢ of stage k.

(3)

Pt

3.3. SNA. The underlying social network structure is found
by analyzing the patterns of relationships and the interac-
tions between social actors [60]. Borgatti and Cross [61]
further pointed out that SNA is formed by linking actors
with each other, using lines to denote the relationships.
Therefore, through the network structure diagram formed
by nodes (actors) and their relationship linkages, it is
possible to understand the social network characteristics of
the actors and observe the impact of these characteristics on
the organization. Today, SNA is employed for studying
social organization, business management, and information
dissemination. The indicators for measuring centrality in-
clude degree, closeness, and betweenness [62, 63]. To ensure
consistency in the measurement results, we adopted Free-
man’s view and measurement method for defining degree,
closeness, and betweenness. The network centrality indi-
cators are described as follows:

Degree centrality: this is used to measure the degree to
which a node of the network has a large band in the
network. Degree can be categorized as In-Degree and
Out-Degree. In-Degree represents the number of nodes
connected to other nodes in the network, and Out-
Degree represents the number of nodes connected to a
particular node. The higher the degree of a node, the
greater number of nodes it can influence or be affected
by in the network. The equation for calculating In-
Degree is as follows:
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d(n;)

a—1

Ca(m) = g ()

where #; isa DMU, d (»;) is the degree of n;, and a is the
number of nodes in the entire network.

Closeness centrality: To focus on the distances from
each node to other nodes, it considers the indirect
connection system to measure all points of the overall
network, which can be used to judge the closeness of a
node to other nodes. The value is between 0 and 1. The
higher the closeness value is, the more important a
node is because it is close to other points, and it can
affect other points or be affected by other points
quickly. The equation for calculating closeness is as
follows:

(a-1)

C.(n) = m

(6)

where a is the number of nodes and d(n;, n;) is the
shortest distance from n; to n;.
Betweenness centrality: this is used to measure the
number of times a node is along the shortest path
between two other nodes in the network. The higher
the betweenness value of a node is, the more likely it
is to be an important point because it acts as a bridge/
broker between two nodes. The equation for calcu-
lating betweenness is as follows:

B Zj<kajk (ni)/ajk
Gy (m) = [(a-1)(a-2)2] @

where a is the number of nodes, a; is the shortest
distance between node j and node k, and a; (n;) is the
shortest distance through node #;. The maximum value
is equal to the number of combinations of two ran-
domly selected points under the total number of nodes
(a-1).

Eigenvector centrality: This centrality index was
proposed in 1987 by Bonacich, and it is mainly used to
calculate the importance of nodes in the network. The
adjacency matrix is used to calculate the degree of
proximity between important nodes. A node with a
high eigenvector value in the network will affect ad-
jacent nodes; therefore, the eigenvector value of the
adjacent node will increase, with the value being
between 0 and 1. The equation for calculating the
eigenvector centrality is as follows:

1
C, =~ AX, (8)
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where 7 is a constant, A represents the adjacent matrix, and
X represents the sum of all connected points. This vector is
called an eigenvector of matrix A. The elements of this vector
are the eigenvector centralities of the vertices of the graph.

4. Results

4.1. Evaluation of Efficiency in the Semiconductor Industry.
The average scores of efficiency values over a 4-year period
are listed in Table 2, where the results of overall efficiency,
operational efficiency (TE1), and environmental efficiency
(TE2) are listed. The scores of relative efficiencies lie between
0 and 1. A score of 1 for the DMUs indicates that the
company has been relatively efficient during each of the 4
years, whereas a score of less than 1 indicates DMUs that
have been relatively inefficient. The relative efficiency of each
DMU is obtained using the DEA model. Overall, the average
of the three efficiencies for all companies is 0.803, 0.866, and
0.910, respectively. Ten of the companies—NTC, UMC,
DELTA, TSMC, GET, EST, VIS, Wafer, FATC, and ASE-
—are efficient companies, and their efficiency values on the
three benchmarks are all 1. The three efficiency values for
KYEC are 0.113, 0.445, and 0.254, respectively, indicating
that KYEC exhibited the worst performance.

The semiconductor industry has an environmental ef-
ficiency value of 0.910, which is higher than the operating
efficiency value of 0.866. The research results are in line with
the semiconductor industry’s recent efforts to promote green
management in corporate operations. The industry imple-
ments various continuous improvement actions related to
climate change, energy management, water management,
waste management, and air pollution prevention and con-
trol, with the aim of preventing business operations from
harming the environment. However, the efficiency values
obtained using the general DEA model only help to un-
derstand the performance of a company. The values do not
indicate the role of a company in the industry and the re-
lationship shares with other companies. To this end, we used
SNA.

4.2. SNA for Firms in Taiwan’s Semiconductor Industry.
Benchmark refers to the best-in-class reference point among
peers. Companies can learn from and follow a company that
sets benchmarks. The method commonly used for company
performance evaluation is the traditional DEA; however, this
method provides multiple benchmarks. Combining DEA
with the SNA method allows for the identification of
companies that other companies can learn from. Therefore,
after completing the performance evaluation through DEA,
we considered each DMU as a node of the network to
determine the most efficient company from the 28 evaluated
units. According to the results of the DEA, if an efficient
DMU is considered a reference object by an inefficient
DMU, then there exists a reference relationship between the
two DMUs. To determine the degree of difference in effi-
ciency from the evaluated units, we used the network-based
ranking method along with SNA to further rank the

TaBLE 2: Efficiency scores for firms in Taiwan’s semiconductor

industry.

DMU OE TE1 TE2
NTC 1.000 1.000 1.000
UMC 1.000 1.000 1.000
DELTA 1.000 1.000 1.000
TSMC 1.000 1.000 1.000
Macronix 0.980 1.000 0.980
Winbond 0.403 0.462 0.871
Tatung 0.364 0.413 0.881
MTK 0.916 0.916 1.000
Elan 0.784 0.784 1.000
GET 1.000 1.000 1.000
FST 1.000 1.000 1.000
Nuvoton 0.863 1.000 0.863
VIS 1.000 1.000 1.000
SAS 0.820 0.961 0.854
Chipbond 0.494 0.638 0.774
Wafer 1.000 1.000 1.000
FATC 1.000 1.000 1.000
Greatek 0.863 0.863 1.000
KYEC 0.113 0.445 0.254
WSC 0.416 0.423 0.984
Xintec 0.948 1.000 0.948
Episil 0.849 1.000 0.849
GBM 0.960 0.960 1.000
PTI 0.572 0.795 0.719
ChipMOS 0.545 0.819 0.665
SPIL 0.914 0.945 0.966
ASE 1.000 1.000 1.000
PTC 0.687 0.813 0.845
Mean 0.803 0.866 0.910

evaluated units. Table 3 lists the ranking results of the
evaluated units.

To make it easier to interpret the results, we used the
Pajek software to convert the results into a reference network
diagram. Figures 2 and 3 show the accumulated reference
networks for the operational efficiency and environmental
efficiency stages, respectively. The purpose of drawing the
network relationship diagram shown in Figure 2 is to de-
termine efficient companies by using the DEA method and
to obtain the company most suitable to learn from the
semiconductor industry through the network relationship
diagram. Table 3 lists the operational efficiency and envi-
ronmental efficiency indices. The degree centrality is plotted
in Figure 2. The highest In-Degree from the operational
efficiency network was 27, which was obtained by Macronix.
This means that Macronix was used as a benchmark by 27
other companies. Through the establishment of the network,
DEA provides benchmark objects that each DMU can learn
from. The social network centrality indicators were analyzed
to understand the most influential DMUs in the network.
For example, TSMC had the highest eigenvector centrality
(0.5470) in the operational efficiency network. The higher
the value, the higher the likelihood of the node affecting
other neighboring nodes. However, the betweenness cen-
trality of TSMC was only 0.0081. This indicates that the
influence of TSMC on the operational efficiency of the entire
semiconductor industry is restricted to enhancing the
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TaBLE 3: Ranks and centralities of firms in Taiwan’s semiconductor industry.
Operational efficiency Environmental efficiency
DMU In-degree CcC BC EC In-degree CcC BC EC
NTC 21 0.8438 0.0010 0.4084 17 0.7500 0.0043 0.7112
UMC 8 0.6585 0.0186 0.0008 3 0.6136 0.0094 0.0163
DELTA 9 0.6750 0.0061 0.0301 5 0.5870 0.0246 0.0159
TSMC 21 0.8438 0.0081 0.5470 15 0.6923 0 0.2491
Macronix 27 1 0.0934 0.4741 26 0.9643 0.1041 0.4003
Winbond 2 0.6923 0.0005 0 0 0.6136 0 0
Tatung 2 0.6000 0.0004 0 0 0.5870 0 0
MTK 18 0.8438 0.1120 0.1053 13 0.6923 0.0058 0.1205
Elan 14 0.8182 0.0719 0.0064 13 0.6923 0.0064 0.0250
GET 13 0.7297 0.0096 0.0613 12 0.6923 0.0156 0.0789
EST 21 0.8710 0.0175 0.1404 17 0.7714 0.0570 0.3150
Nuvoton 19 0.7714 0.0145 0.1039 18 0.7714 0.0283 0.0869
VIS 24 1 0.0542 0.4987 21 0.8710 0.0715 0.3530
SAS 9 0.7105 0.0052 0.0017 4 0.6429 0.0030 0.0461
Chipbond 0 0.6279 0 0 0 0.5870 0 0
Wafer 4 0.6923 0.0027 0.0023 3 0.6585 0.0013 0.0021
FATC 10 0.7297 0.0392 0.0464 9 0.6923 0.0755 0.0572
Greatek 12 0.9643 0.1552 0.0349 8 0.7105 0.0310 0.0553
KYEC 4 0.8182 0.0072 0 0 0.6585 0 0
WSC 4 0.6750 0.0013 0 0 0.6136 0 0
Xintec 8 0.6279 0.0032 0.0598 9 0.6429 0.0074 0.0378
Episil 16 0.7500 0.0144 0.0853 16 0.7500 0.0220 0.0910
GBM 4 0.7500 0.0074 0 1 0.6000 0 0.0001
PTI 3 0.6923 0.0093 0 0 0.6429 0 0
ChipMOS 13 0.7714 0.0076 0 2 0.6136 0.0016 0.0017
SPIL 0 0.6585 0 0 0 0.6429 0 0
ASE 9 0.6750 0.0044 0.0003 4 0.6136 0.0028 0.0205
PTC 7 0.7297 0.0228 0 0 0.6585 0 0

CC =closeness centrality; BC = betweenness centrality; EC = eigenvector centrality.
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FIGURE 2: Reference network for the first stage. Link weights are indicated with different line thicknesses and gray levels. Darker lines
indicate heavier weights. The network is drawn with Pajek software [64] using the Kamada-Kawai energy layout option.

operational performance of the other companies; TSMC
does not play a role in delivering messages in the group.
In addition, Macronix was not the best performing
company in terms of the efficiency values calculated using
DEA. However, Macronix had the highest In-Degree value
in both operational efficiency and environmental efficiency

networks, indicating that it has high efficiency in corporate
operations. The closeness centrality determines the closeness
of a node to other nodes. The higher the closeness value of a
node, the faster it can affect or be affected by other nodes.

The higher the closeness centrality value of a node in the
network, the closer the distance between the node and
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FIGURE 3: Reference network for the second stage. Link weights are indicated with different line thicknesses and gray levels. Darker lines
indicate heavier weights. The network is drawn with Pajek software (Batagelj and Mrvar, 1998) using the Kamada-Kawai energy layout

option.

other nodes, which means that Macronix can obtain and
communicate information the fastest. Macronix had the
highest closeness centrality and betweenness centrality
values in the environmental efficiency network. Therefore,
Macronix acts as a bridge between companies and com-
panies in the environmental efficiency network. Moreover,
it can transmit information most quickly. Therefore,
Macronix is a crucial enterprise in terms of environmental
efficiency.

5. Concluding Remarks

In past research, an enterprise was usually analyzed as an
independent individual [8]. However, this analysis method
ignores the relationship structure among different indi-
viduals in the semiconductor industry. In fact, these
companies are not independent of one another in the
industry chain. These companies not only depend on one
another but also interact with one another, passing mes-
sages to one another and forming an intricate industrial
network. With the advent of big data, the quality of data
analysis has a major and critical impact on subsequent
decision-making. Effective data integration analysis can
transform data into useful information and form a decision
support reference. We used SNA to evaluate whether a
company has a pivotal position in operating efficiency and
environmental efficiency.

Data Availability

The data of 28 companies in the semiconductor industry
used to support the findings of this study have been released
from their Corporate Social Responsibility reports published
in the Taiwan Market Observation System. The data could be
downloaded on the website of the Taiwan Stock Exchange.
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