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(is paper numerically investigates the combined effects of the radiation and MHD on the flow of a viscoelastic Walters’ B liquid
fluid model past a porous plate with temperature-dependent variable viscosity. To study the effects of variable viscosity on the fluid
model, the equations of continuity, momentum with magnetohydrodynamic term, and energy with radiation term have been
expanded. To understand the phenomenon, Reynold’s model and Vogel’s model of variable viscosity are also incorporated. (e
dimensionless governing equations are two-dimensional coupled and highly nonlinear partial differential equations. (e highly
nonlinear PDEs are transferred into ODEs with the assistance of suitable transformations which are solved with the help of
numerical techniques, namely, shooting technique coupled with Runge–Kutta method and BVP4c solution method for the
numerical solutions of governing nonlinear problems. Viscosity is considered as a function of temperature. Skin friction co-
efficient and Nusselt number are investigated through tables and graphs in the present probe. (e behavior of emerging pa-
rameters on the velocity and temperature profiles is studied with the help of graphs. For Reynold’s model, we have shrinking
stream lines and increasing three-dimensional graphs. c and Pr are reduced for both models.

1. Introduction

Non-Newtonian fluids have been a subject of great interest to
researchers recently because of their various applications in
industry and engineering. (is is due to distinctive charac-
teristics of such fluids in nature. In general, the mathematical
problems in non-Newtonian fluids are more complicated
because they are nonlinear and higher order than those in
viscous fluids. Despite their complexities, scientists and en-
gineers are engaged in non-Newtonian fluid dynamics. (e
analysis of boundary layer flow of viscous and non-New-
tonian fluids has been the locus of extensive research by
various scientists due to its importance in continuous casting,
glass blowing, paper production, polymer extrusion, aero-
dynamic extrusion of plastic sheet, and several others.
Rajagopal et al. [1] have focused their research towards non-
Newtonian fluid flows due to stretching of a flat surface. As far
as literature survey is concerned many researchers [2–23]
have worked on MHD radiation effects of viscous fluids.

Effects of thermal diffusion and chemical reaction on
MHD flow of a dusty viscoelastic fluid have been inspected
by Prakash et al. [34]. Abdul Hakeem et al. [24] have found
the effect of heat radiation in Walters’ B fluid over a
stretching sheet with nonuniform heat source/sink and
elastic deformation. Recently, unsteady free convection flow
in Walters’ B fluid and heat transfer analysis have been
presented by Khan et al. [24].Wang andNg [25] investigated
a similar flow to the present study but for an electrically
nonconducting fluid and outside a magnetic field.

Uddin et al. [26] studied MHD flow bounded by a
nonlinearly stretching surface with radiation. Brownian
motion and thermophoresis in magnetohydrodynamic
(MHD) bioconvection flow of nanoliquid via nonlinear
thermal radiation is addressed by Makinde and Animasaun
[27].(e hydromagnetic pivot flows of an Oldroyd-B fluid in
a porous medium was discussed by Khan et al. [28]. Khan
et al. [29] studied the heat and mass transfer of viscoelastic
MHD flow over a porous magnifying sheet with
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degeneration of energy and stress work. (e flows of
Walters’ B fluid for numerical or applicable results for both
steady and transitory at great length in a distinct range of
geometries using broad scale of analytical or computational
approaches have been studied [30–32]. Prakash et al. [33]
inspected the effects of chemical reaction and thermal dif-
fusion on the MHD flow of a dusty viscoelastic fluid. (e
effect of heat radiation in Walters’ B fluid over a magnifying
sheet with nonuniform elastic deformation and heat source
was found by Abdul Hakeem et al. [34]. Khan et al. [24]
represented the unsteady free convection flow in heat
transfer analysis and Walters’ B fluid. Under different
pressure gradients the thermal effects of a dusty viscoelastic
fluid on unsteady fluid between two parallel plates was
studied by Madhurai and Kalpana [35]. (e objective here is
to study numerically the combined effects of the radiation
and MHD on the flow of a viscoelastic fluid model past a
porous plate with temperature dependent variable viscosity.
(e problem is divided into two different parts in which the
first part explicates that the plate has greater temperature
than fluids temperature. (e second part describes that plate
is insulated. To understand the phenomenon, Reynold’s
model and Vogel’s model of variable viscosity with mag-
netohydrodynamic and radiation effects of viscoelastic
Walters’ B non-Newtonian fluid flow are incorporated. (e
shooting technique is habituated to attain the numerical
solution of arising governing equations and solved with
BVP4 software of Maple program. (ree-dimensional and
stream lines graphs were enlarged and reduced, respectively.
(e behavior of emerging parameters on the velocity and
temperature profiles is studied with the help of graphs.

2. Mathematical Equations

(e Cauchy stress tensor for Walters’ B fluid is given by

S � − pI + 2η0e − 2k0
δe
δt

, (1)

where pressure of the fluid is pand

η0 � 􏽚
∞

0
N(τ)dτ,

k0 � 􏽚
∞

0
τN(τ)dτ.

(2)

Here, N(τ) is distribution function with relaxation time
τ.

3. Physical Modeling of the Problem

(e current problem gives the flow of a Walters’ B fluid flow
past an infinite spongy plate.

(e temperature and velocity fields are

θ � θ(y),

v � v(y)i + w(y)k.
(3)

(e governing equations are

zρ
zt

+ div(ρv) � 0, (4)

ρ
dv
dt

� div(S) + ρb, (5)

ρ
de
dt

� S.L − div(q) + ρr. (6)

For an incompressible fluid, (4) takes the form

div v � 0,

u � − v0 � Constant,
(7)

where v0 > 0 is suction and v0 < 0 represents blowing at the
plate. Momentum equation under the effects of magneto-
hydrodynamics for the current problem is

zP

zz
� ρv0

dw

dx
+
dη0
dy

dw

dy
+ η0

d2w
dy

2 + k0v0
d3w
dy

3 − σB
2
0w, (8)

zP

zy
� 2k0

d
dy

dw

dy
􏼠 􏼡

2
⎡⎣ ⎤⎦, (9)

zP

zx
� 0. (10)

Define pressure as modified as

􏽢P � P − 2k0( 􏼁
dw

dy
􏼠 􏼡

2

. (11)

Equations (8)–(10) with magnetohydrodynamic effects
formed as

z􏽢P

zz
� ρv0

dw

dy
+
dμ0
dy

dw

dy
+ η0

d2w
dy

2 + k0v0
d3w
dy

3 − σB
2
0w, (12)

z􏽢P

zy
� 0, (13)

z􏽢P

zx
� 0. (14)

Equation (12) can be written as

ρv0
dw

dy
+
dμ0
dy

dw

dy
+ η0

d2w
dy

2 + k0v0
d3w
dy

3 − σB
2
0w � L1, (15)

where

z􏽢P

zz
� L1. (16)

(e boundary conditions are

w(0) � 0,

w(y)⟶W∞, asy⟶∞.
(17)

As we have 3rd-order equation (15), so we need another
boundary condition. (erefore, in free stream,
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Syz|y⟶∞ � η0
d2w
dy2 + k0v0

d3w
dy3􏼢 􏼣

y⟶∞
� 0. (18)

We use the following conditions:

dw

dy
� 0, asy⟶∞, (19)

and also take another assumption that

L1 � 0. (20)

Now, we are going to discuss the heat transfer in (6).

q � − k gradθ, (21)

where q is heat flux. (e radiation parameter is

qr � −
4σ∗

3K
∗

zθ4

zx
. (22)

(en

k
d2θ
dy

2 + ρCpv0
dθ
dy

+ η0
dw

dy
􏼠 􏼡 + k0v0

dw

dy
􏼠 􏼡

d2w
dy

2 −
1

ρCp

zqr

zy
� 0.

(23)

Cp is specific heat and the boundary conditions for (21)
are given in two parts as follows:

Part 1:
(is part gives conditions for constant wall tempera-
ture of the fluid:

θ(0) � θ0,

θ(x)⟶ 0∞, asx⟶∞.
(24)

Case 2:

(is gives insulated wall of the fluid

dθ
dy

|y⟶ 0 � 0,

θ(y)⟶ θ∞, asy⟶∞.

(25)

3.1. Solution for Constant Wall Temperature. (e dimen-
sionless parameters can be defined as

Y �
Y

L
,

w �
w

W∞
,

θ �
θ − θ∞
θ0 − θ∞

,

(26)

where

L �
k0v0

η∗0
, (27)

is the characteristic “length” and also

η0 �
η0
η∗0

. (28)

Using the above relations, (15) and (23) become

d3w
dy

3 + η0
d2w
dy

2 + c
dw

dy
+
dη0
dy

dw

dy
− cMw � L2, (29)

1 +
4
3

R􏼒 􏼓
d2θ
dy

2 + cPr
dθ
dy

+ λη0
dw

dy
􏼠 􏼡

2

+ λ
dw

dy
􏼠 􏼡

d2w
dy

2 � 0. (30)

For simplicity, the bars are removed from (29)–(30) and
get

d3w
dy

3 + η0
d2w
dy

2 + c
dw

dy
+
dη0
dy

dw

dy
− cMw � L2, (31)

1 +
4
3

R􏼒 􏼓
d2θ
dy

2 + cPr
dθ
dy

+ λη0
dw

dy
􏼠 􏼡

2

+ λ
dw

dy
􏼠 􏼡

d2w
dy

2 � 0, (32)
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where

c �
ρk0W

2
∞

η∗20
,

M �
σB

2
0K0

ρη20
,

R �
4σ∗θ3∞
KK
∗ ,

Pr �
η∗0C

k
,

λ �
W

2
∞η0

k θ0 − θ∞( 􏼁
.

(33)

Here, c is dimensionless length, M is MHD term co-
efficient, R is radiation, Pr is Prandtl number and λ is di-
mensionless quantity. (e dimensionless boundary
conditions are

w(0) � 0,

w⟶ 1 asy⟶∞,

dw

dy
⟶ 0 asy⟶∞,

θ(0) � 1,

θ⟶ 1 asy⟶∞.

(34)

3.2. Solution for Insulated Plate. Here, we introduce non-
dimensional temperature parameter

θ∗ �
θ − θ∞
θb − θ∞

, (35)

where θb is bulk temperature. Eckert number is

E
∗

�
W

2
∞

c θb − θ∞( 􏼁
. (36)

(e boundary conditions for dimensionless flow are

dθ
dy

|y⟶0 � 0,

θ(y)⟶ θ∞ asy⟶∞.

(37)

(e skin friction and Nusselt number [7] are expressed
as

Cf �
τw

(1/2)ρW
2,

Nu �
yqw

k Tw − T∞( 􏼁
,

(38)

where

Nu � − θ′(0). (39)

Cf is skin friction coefficient and Nu is Nusselt number.
Also,

τw � η0
dw

dy
+ k0v0

d2w
dy2􏼢 􏼣

y⟶ 0
,

qw � − k
zθ
zy

􏼠 􏼡
y⟶0

,

(40)

and by using similarity transformation, we get
1
2
CfRe � (1 − Nθ)w′(0) + w″(0),

Nu � − θ′(0).

(41)

Here, Re represents Reynold number.

4. Reynold’s Model

(e viscosity for this model is expressed as

η0 � e
− Nθ

, (42)

which can be solved by using Maclaurin’s series as

η0 � 1 − Nθ. (43)

Using the value of η0 in (31) and (32), we obtain

d3w
dy

3 +
d2w
dy

2 − Nθ
d2w
dy

2 + c
dw

dy
− N

dθ
dy

dw

dy
− cMw � L2, (44)

1 +
4
3

R􏼒 􏼓
d2θ
dy

2 + cPr
dθ
dy

+ λ
dw

dy
􏼠 􏼡

2

− λNθ
dw

dy
􏼠 􏼡

2

+ λ
dw

dy
􏼠 􏼡

d2w
dy

2 −
1

ρCp

zqr

zy
� 0. (45)
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5. Vogel’s Model

In this case,

μ0 � η∗0 exp
D

(E + θ)
− θw􏼠 􏼡, (46)

which implies the following.

(e above equation can be written in the form

η0 � −
G

G
∗ 1 −

Dθ
E
2􏼠 􏼡. (47)

Using (47) in (31) and (32), we get

d3w
dy

3 +
G

G
∗
d2w
dy

2 −
DG

G
∗
E
2
d2w
dy

2 + c
dw

dy
−

DG

G
∗
E
2
dθ
dy

dw

dy
− cMw � L2, (48)

1 +
4
3

R􏼒 􏼓
d2θ
dy

2 + cPr
dθ
dy

+ λ
G

G
∗

dw

dy
􏼠 􏼡

2

− λ
DG

G
∗
E
2 θ

dw

dy
􏼠 􏼡

2

+ λ
dw

dy
􏼠 􏼡

d2w
dy

2 −
1

ρCp

zqr

zy
� 0. (49)

6. Numerical Solution

For the purpose of numerical investigation, we have made
comparison of our current article with three previous
publications, which shows our results in this study are better
than the previous literature [4, 12, 20]. (e solution for (44)

and (45) and (48) and (49) is obtained by using shooting
technique with Runge–Kutta method [23, 36–38].

6.1. Solution forReynold’sModel. Equations (44) and (45) are
for the desired form

w
‴

� − cw′ − (1 − Nθ)w″ + Nθ′w′ − cMw,

θ″ � −
1

(1 +(4/3)R)
cPrθ′ − λ w′( 􏼁

2
− λw′w″ + Nθ w′( 􏼁

2
−

1
ρCp

zqr

zy
􏼠 􏼡.

(50)

Now, we define new variables,

w � s1,

w′ � s2,

w″ � s3,

w
‴

� s3′,

θ � s4,

θ′ � s5,

θ″ � s5′.

(51)

By using new variables, we get

s1′ � s2, s2′ � s3, s4′ � s5,

s3′ � − cw′ − (1 − Nθ)w″ + Nθ′w′ − cMw,

s5′ � −
1

(1 +(4/3)R)
cPrθ′ − λ w′( 􏼁

2
− λw′w″ + Nθ w′( 􏼁

2
−

1
ρCp

zqr

zy
􏼠 􏼡.

(52)
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Figure 1: Physical geometry of the problem.
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Figure 2: Effects of N on temperature portray for Reynold’s model.
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Figure 4: Impact of on velocity field for Reynold’s model.
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Figure 3: Influences ofR on temperature outline for Reynold’smodel.
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Figure 5: Effects of W on velocity profile for Reynold’s model.

G = 2.1, E = 2.0, γ = 0.1, λ = 0.7,
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Figure 6: Impact of D on temperature outline for Vogel’s model.
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Figure 7: Effect of G∗ on temperature field for Vogel’s model.
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Figure 8: Impact of G on temperature profile for Vogel’s model.
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G = 0.2, D = 1.7, E = 2.1,
N = 1.6, G∗ = 0.2. 
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Figure 9: Influence of on velocity profile for Vogel’s model.
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E = 1.7, γ = 0.6, Pr = 3.7. 
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Figure 10: Effect of c on temperature outline for Vogel’s model.
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Figure 11: Influences of N on velocity field for Vogel’s model.
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Figure 12: Impact of R on temperature outline for Vogel’s model.
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γ = 0.1, W = 0.2.
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Figure 13: Effects ofN on velocity profile for Reynold’s model.
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Figure 14: Impact of c on temperature field for Reynold’s model.
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Figure 15: Effects of c and N on Nusselt number for Reynold’s
model.
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Mathematical Problems in Engineering 9



Along with boundary conditions,

s1(0) � 0,

s1(∞) � 1,

s2(0) � 1,

s2(∞) � 0,

s4(0) � 1,

s4(∞) � 0.

(53)

6.2. Solution forVogel’sModel. In this solution, (48) and (49)
are

w
‴

� − cw′ − 1 −
D

E
2􏼠 􏼡

G

G
∗w″ +

DG

G
∗
E
2θ′w′ − cMw,

θ″ � −
1

(1 +(4/3)R)
− cPrθ′ − 1 +

Dθ
E
2􏼠 􏼡

G

G
∗ λ w′( 􏼁

2
− λw′w″ −

1
ρCp

zqr

zy
􏼠 􏼡.

(54)

As previous case,

s3′ � − cw′ − 1 −
D

E
2􏼠 􏼡

G

G
∗w″ +

DG

G
∗
E
2θ′w″ − cMw,

s5′ � −
1

(1 +(4/3)R)
− cPrθ′ − 1 +

Dθ
E
2􏼠 􏼡

G

G
∗ λ w′( 􏼁

2
− λw′w″ −

1
ρCp

zqr

zy
􏼠 􏼡.

(55)

with the same boundary conditions as in (53).

7. Graphical Results and Discussion

In graphical portray, Figure 1 explains the physical geometry
of the problem. Figure 2 gives portray of

N � 0.1, 2.2, 4.3, 6.4 for Reynold’s model on temperature
field. Figure 3 shows the behavior of R � 0.1, 0.3, 0.6, 1.0 for
Reynold’s model on temperature portray. Figure 4 renders
effects of c � 0.1, 2.5, 3.0, 3.4 for Reynold’s model on ve-
locity field. Figure 5 describes effects of
W � 0.2, 3.2, 6.2, 9.4 on Reynold’s model for velocity
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Figure 17: Effects of c and D onNusselt number for Vogel’s model.
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Figure 18: Stream lines for c � 0.1 for Reynold’s model.
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profile. Figure 6 draws the consequences of
D � 0.3, 1.5, 2.5, 3.0 on temperature distribution for Rey-
nold’s model. Figure 7 limns the impact of
G∗ � 0.1, 0.17, 0.25, 0.4 on temperature profile for Vogel’s
model. Figure 8 tells the influence of G � 0.3, 1.4, 2.8, 4.5
for Vogel’s model on temperature profile. Figure 9 repre-
sents c � 0.1, 2.5, 4.5, 6.0 on Vogel’s model for velocity
outline. Figure 10 shows the effect of λ � 0.1, 0.4, 0.7, 1.0 on
Vogel’s model for temperature. Figure 11 depicts impact of
N � 1.0, 3.0, 5.0, 7.0 on Vogel’s model for velocity profile.
Figure 12 shows the behavior of R � 0.2, 0.6, 1.4, 4.0 on
Vogel’s model for temperature portray. Figure 13 gives the
effects of N � 0.1, 1.2, 2.3, 3.4 on velocity profile for

Reynold’s model. Figure 14 shows the impact of
c � 0.1, 0.2, 0.3, 0.4 for temperature field of Reynold’s
model. Figure 15 depicts the influence of c and
N � 0.1, 0.5, 1.0 for Reynold’s model’s Nusselt number.
Figure 16 represents the impact for Vogel’s model on D �

0.1, 0.25, 0.5 and c for skin friction. Figure 17 shows effects
for Vogel’s model on Nusselt number for c and

–20 –10 0

1

2

3

4

5

γ = 0.5

10
y

z

20

Figure 19: Stream lines for c � 0.5 for Reynold’s model.
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Figure 20: Stream lines for c � 0.9 for Reynold’s model.
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Figure 21: (e portray of 3 − D graph of Reynold’s model for
c � 0.1
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Figure 22: (e portray of 3 − D graph of Reynold’s model for
c � 0.5
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Figure 23: (e portray of 3 − D graph of Reynold’s model for
c � 0.9

Table 1: (e values of change in c for temperature of Reynold’s
model at the wall.

c 0.1 0.2 0.3 0.4
N � 0.1
R � 0.6
Pr � 7.7 − 0.8769141 − 1.1638242 − 1 : 4937560 − 1.8544489
λ � 1.5
W � 0.2

Table 3: (e values of change in R for temperature of Reynold’s
model at the wall.

R 0.6 1.0 1.4 1.8
N � 0.1
W � 0.2
Pr � 7.7 − 0.8769141 − 0.7838524 − 0.7274551 − 0.6896815
λ � 1.5
c � 0.1

Table 4: (e values of change in λ for temperature of Reynold’s
model at the wall.

λ 1.5 2.0 2.5 3.0
N � 0.1
W � 0.2
Pr � 7.7 − 0.8769141 − 0.9210312 − 0.9650590 − 1.0089976
R � 1.5
c � 0.1

Table 5: (e values of change in Pr for temperature of Reynold’s
model at the wall.

Pr 7.7 8.8 9.9 10.10
N � 0.1
W � 0.2
λ � 2.5 − 0.9650590 − 1.0069910 − 1.0499959 − 1.0579279
R � 1.5
c � 0.1

Table 6: (e values of change in N for temperature of Reynold’s
model at the wall.

N 0.1 0.4 0.7 1.0
Pr � 8.8
W � 0.2
λ � 2.5 − 1.0069910 − 1.0285733 − 1.0497506 − 1.0702968
R � 1.5
c � 0.1

Table 7:(e values of change in c for temperature of Vogel’s model
at the wall.

c 0.1 0.3 0.5 0.7
N � 1.3
R � 0.1
Pr � 7.7 − 2.9582914 − 4.075563 − 5.3502953 − 6.6967343
λ � 1.7
D � 1.9
E � 2.0
G∗ � 1.8
G � 1.1

Table 8:(e values of change in λ for temperature of Vogel’s model
at the wall.

λ 0.7 3.3 5.9 8.5
N � 1.3
R � 0.1
Pr � 7.7 − 4.2929048 − 6.9167525 − 9.1619449 − 11.076930
c � 0.5
D � 1.9
E � 2.0
G∗ � 1.8
G � 1.1

Table 2: (e values of change in W for temperature of Reynold’s
model at the wall.

W 0.1 1.1 2.1 3.1
N � 0.1
R � 0.6
Pr � 7.7 − 0.8718237 − 0.9246222 − 0.9818317 − 1.04378
λ � 1.5
c � 0.1
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D � 0.1, 0.5, 1.0. Figures 18–20 give the stream lines of c �

0.1, 0.5, 0.9 for Reynold’s model. Figures 21–23 tell 3 − D

structures of c � 0.1, 0.5, 0.9 for Reynold’s model.
Tables 1–6 give the change in temperature for Reynold’s
model on N, W, R, c, λ and Pr at the wall. Tables 7–15
depict the change in temperature for Vogel’s model on
G, D, E, G∗, R, N, c, λ and Pr at the wall. Table 16 eluci-
dates the ináuence of N, W, R, c, λ and Pr on Nusselt

Table 9: (e values of change in Pr for temperature of Vogel’s
model at the wall.

Pr 7.7 8.8 9.9 10.10
N � 1.3
R � 0.1
λ � 1.7 − 5.3502950 − 5.8292081 − 6.3140881 − 6.4026828
c � 0.5
D � 1.9
E � 2.0
G∗ � 1.8
G � 1.1

Table 10: (e values of change in N for temperature of Vogel’s
model at the wall.

N 1.4 1.5 1.6 1.7
Pr � 9.9
R � 0.1
λ � 1.7 − 6.3140881 − 6.3323518 − 6.3506975 − 6.3691254
c � 0.5
D � 1.9
E � 2.0
G∗ � 1.8
G � 1.1

Table 11: (e values of change in R for temperature of Vogel’s
model at the wall.

R 0.4 0.5 0.6 0.7
Pr � 9.9
N � 1.6
λ � 1.7 − 6.3506975 − 5.6990981 − 5.1785360 − 4.7545397
c � 0.5
D � 1.9
E � 2.0
G∗ � 1.8
G � 1.1

Table 12: (e values of change in E for temperature of Vogel’s
model at the wall.

E 2.0 2.4 2.8 3.2
Pr � 9.9
N � 1.6
λ � 1.7 − 5.1785360 − 5.2495374 − 5.2941906 − 5.3239363
c � 0.5
D � 1.9
R � 0.3
G∗ � 1.8
G � 1.1

Table 13: (e values of change in D for temperature of Vogel’s
model at the wall.

D 1.9 2.4 2.9 3.4
Pr � 9.9
N � 1.6
λ � 1.7 − 5.2941906 − 5.2615104 − 5.2295760 − 5.1983724
c � 0.5
E � 2.8
R � 0.3
G∗ � 1.8
G � 1.1

Table 14: (e values of change in G∗for temperature of Vogel’s
model at the wall.

G∗ 1.8 2.4 3.0 3.6
Pr � 9.9
N � 1.6
λ � 1.7 − 5.2295760 − 5.3720192 − 5.4587700 − 5.5161120
c � 0.5
E � 2.8
R � 0.3
D � 1.9
G � 1.1

Table 15: (e values of change in G for temperature of Vogel’s
model at the wall.

G 1.1 2.6 3.1 3.6
Pr � 9.9
N � 1.6
λ � 1.7 − 5.4582770 − 5.3018863 − 5.1474593 − 4.9949967
c � 0.5
E � 2.8
R � 0.3
D � 1.9
G∗ � 1.1

Table 16: Values of Nusselt number for distinct parameters for
Reynold’s model.

c Pr λ N W R − θ′(0)

0.1 7.7 1.5 0.1 0.2 0.6 − 0.8769141
0.12 − 0.9303180
0.13 − 0.9857684
0.1 − 0.8769141

7.8 − 0.8857447
7.9 − 0.8982711
7.7 − 0.9019798

1.6 − 0.8857447
1.7 − 0.8945717
1.5 − 0.8769141

0.2 − 0.8998446
0.3 − 0.9051285
0.1 − 0.8769141

0.3 − 0.9055561
0.4 − 0.9113143
0.2 − 0.8769141

0.7 − 0.8697710
0.8 − 0.8438659
0.6 − 0.8769141
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number. Table 17 explicates the consequences of
G, G∗, D, E, R, N, c, λ and Pr for Vogel’s model. Table 18
shows the behavior of N and on skin friction coefficient for
Reynold’s model. Table 19 indicates the consequences of

G, D, E, G∗, N, c, λ and Pr for skin friction coefficient of
Vogel’s model.

8. Concluding Remarks

In this inquisition, the numerical solution of Walters’ B fluid
model with MHD and radiation effects of both time de-
pendent viscosity models has been discussed. Influences of
these parameters are presented with the help of graphs and
tables. Some important points of the study of this problem
are the following:

(1) A sensible growth is seen in the velocity portray as
increase in G and the velocity curve decreases with
the enlargement of c, D and N for both models

(2) c andPr are decreases for Reynold’s well as Vogel’s
models

(3) (e stream lines are sighted to shrink and the 3 − D

graphs bended with the increase in c of Reynold’s
model

(4) Skin friction curve increases with the increase in N,
while Nusselt number graph decreases with the
enlargement in λ

Data Availability

(e data used to support the study are available from the
corresponding author upon request.

Table 17: Values of Nusselt number for distinct parameters for
Vogel’s model.

c G G∗ D E N R λ Pr − θ′(0)

0.1 1.1 1.8 1.9 2.0 1.3 0.1 1.7 7.7 − 2.9582914
0.12 − 3.0601193
0.13 − 3.1119549
0.1 − 2.9582914

1.2 − 2.9084736
1.3 − 2.8591143
1.1 − 2.9582914

1.9 − 2.9873442
2.0 − 3.0136246
1.8 − 2.9582914

2.0 − 2.9487213
2.1 − 2.9293538
1.9 − 2.9582914

2.1 − 2.9754499
2.2 − 2.9905879
2.0 − 2.9582914

1.4 − 2.9615122
1.5 − 2.9647360
1.3 − 2.9582914

0.2 − 2.7521710
0.3 − 2.5831617
0.1 − 2.9582914

1.8 − 2.8305255
1.9 − 2.9083449
1.7 − 2.9582914

7.8 − 2.6785432
7.9 − 2.8762390
7.7 − 2.9083449

Table 18: Values of skin friction for distinct parameters for
Reynold’s model.

N λ Pr c W R (1/2)CfRe

0.1 1.7 7.7 0.1 0.2 0.2 − 0.1616633
0.2 − 0.1683275
0.3 − 0.1749933
0.1 − 0.1616633

1.8 − 0.1615948
1.9 − 0.1615263
1.7 − 0.1616633

7.8 − 0.1616311
7.9 − 0.1615991
7.7 − 0.1616633

0.2 − 0.0867723
0.3 − 0.0124727
0.1 − 0.1616633

0.3 − 0.9055561
0.4 − 0.1709230
0.2 − 0.1802208

0.3 − 0.1620517
0.4 − 0.1623734
0.2 − 0.1616633

Table 19: Values of skin friction for distinct parameters for Vogel’s
model.

G G∗ D λ c E Pr N R (1/2)CfRe

2.1 0.4 0.3 0.7 0.1 2.0 7.7 1.3 0.2 − 22.004282
2.2 − 20.506954
2.3 − 26.049557
2.1 − 22.004282

0.5 − 14.881911
0.6 − 11.134132
0.4 − 22.004282

0.4 0.41191405
0.5 0.53440194
0.3 − 22.004282

0.8 − 22.004911
0.9 − 22.005536
0.7 − 22.004282

0.2 − 21.968573
0.3 − 21.936179
0.1 − 22.004282

2.1 0.24714771
2.2 0.21495112
2.0 − 22.004282

7.8 − 22.002875
7.9 − 22.001468
7.7 − 22.004282

1.4 − 22.023073
1.5 − 22.041869
1.3 − 22.004282

0.2 − 22.098766
0.3 − 22.567879
0.1 − 22.004282
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