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-is paper analyzed the mechanical characteristics of single electromagnet system and elastic track beam of EMSmaglev train and
established a five-dimensional dynamics model of single electromagnet-track beam coupled system with classical PD control
strategy adopted for its levitation system.-en, based on the Hurwitz criterion and the high-dimensional Hopf bifurcation theory,
the stability of the coupled system is analyzed; the existence of the Hopf bifurcation is discussed and the bifurcation direction and
the stability of the periodic solution are determined with levitation control feedback coefficient kp as the bifurcation parameter;
and numerical simulation is conducted to verify the validity of the theoretical analysis results. -e results show that the Hurwitz
algebra criterion can directly determine the eigenvalues and symbols of the dynamics system to facilitate the analysis on the
stability of the system and the Hopf bifurcation without the necessity of calculating the specific eigenvalues; supercritical Hopf
bifurcation will occur under the given parameters, that is, when kp < kp0

, the real-time system is asymptotically stable, yet Hopf
bifurcation occurs as kp increases gradually beyond kp0

, with the stability of the system lost and a stable limit cycle branched.

1. Introduction

Maglev train is a new type of rail transit vehicle that has
gradually emerged in recent years. It uses electromagnets,
permanent magnets, etc., to interact with the track to
generate magnetic force and levitate the train and also uses
linear motor for traction so that the contactless operation
between the train and the track is realized. From the per-
spective of the principle of levitation, currently there are two
typical and mature types of maglev trains: electromagnetic
suspension (EMS) and electrodynamic suspension (EDS).
EMS maglev train generates a magnetic field by energizing
the electromagnet attached to the train, and the electro-
magnet and the track attract each other to levitate the train.
-e levitation gap is generally 8∼12mm, and form of the
elevated bridge line is adopted. Due to the small levitation
gap of the EMS maglev train and the nonlinear character-
istics of the levitation system, there is a special coupled
vibration problem between the train and the track beam,
which may even lead to a levitation failure in severe cases [1].
-is vibration problem is a high-dimensional and nonlinear

complex problem involving bridge structure vibration, ve-
hicle vibration, and stability control of levitation system. To
solve this technical problem, many experts and scholars have
conducted studies from different angles in the aim of finding
the couple mechanism and solving the problem once and for
all to ensure the levitation stability of the train.

As early as 1986, Nagai noticed the nonlinear self-excited
vibration of the track beam due to the neglect of the elastic
deformation of the track beam during the design process of
the controller and designed a control algorithm so that the
vehicle can be stabilized in the elastic track beam and is
insensitive to elastic conditions [2]. Cai et al. considered the
interaction between the elastic track beam and the moving
train, simplified the “vehicle-guideway” system to the
“moving load-simple beam” system, and studied the dif-
ferent dynamics of the beam when the moving load was
applied to single- and double-span beams [3]. Lee et al. have
conducted a lot of research studies on the train-track beam
coupled vibration behavior of the low-speed maglev in
Korea and have obtained a series of research results [4–6].
Based on the analysis of the structural characteristics of the
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EMS train system, Xie and Chang simulated and analyzed
the effects of the damping of elastic track beam and ac-
celeration feedback gain upon static levitation stability and
dynamic characteristics [7]. Zhao and Zhai studied and
analyzed the vertical dynamics behavior of German TR
(Transrapid) high-speed maglev trains and China’s self-
developed low-speed maglev trains [8]. Ma et al. established
test bench for electromechanical coupled vibration of single-
levitation frame for medium- and low-speed maglev trains
and carried out simulation analysis and experimental
comparison of vehicle-guideway coupled vibration under
different combinations of boundary conditions such as track
beam support stiffness, levitation mass, and control algo-
rithm [9].

-e levitation control system of EMS maglev train is a
typical nonlinear dynamic system, and the change of system
parameters will generate new dynamics behavior and even
undermine the stability of the system. Zhou and Zheng
established the ordinary differential equations of the vehicle-
track beam coupled dynamics with periodically variable
coefficients. -e Lyapunov characteristic index was used to
determine the dynamic stability of the maglev system, and
the possibility of chaotic phenomena in the system under the
nonlinear conditions of the secondary suspension was
studied [10]. Shi et al. analyzed the Hopf bifurcation of
nonlinear magnetic levitation system based on PID con-
troller and explained the reasons for the vibration of the
system from the perspective of control parameters and the
stability of periodic solution [11]. Wang et al. used the center
manifold reduction method and Poincaré canonical method
to study the Hopf bifurcation and resonance problems of the
levitation system under positional delay and track beam
disturbance [12, 13]. Li et al. established a single electro-
magnet-track beam model to study the mechanism of self-
excited vibration caused by the transfer of vibration energy
from levitation system to track beam and compared the
stability of the system under different PD control parameters
[14]. Zhao and Zhai numerically simulated the dynamic
stability of a single electromagnet system, pointing out that
the difference between the secondary suspension frequency,
the track beam fundamental frequency, and the control
system frequency should be as large as possible to avoid
resonance between the single electromagnet and the track
beam, which may lead to system instability [15]. Based on
the similarity theory, Wang and Shen established a small-
scale model of single-electromagnetic vehicle-track beam
coupled system, derived the similarity relationship in the
dynamic system, and analyzed the similarity characteristics
of the small-scale model [16]. -ey also studied the optimal
control method on the elastic track beam and established a
test rig of small-scale single electromagnet-elastic track
beam for verification [17]. Zhang et al. studied the stability
of the time-delay levitation system and the Hopf bifurca-
tion under the sliding mode control strategy [18, 19]. Based
on the Hurwitz algebraic criterion, Wu and Fang analyzed
the conditions for Hopf bifurcation to occur without
considering the influence of the elasticity of the track beam
[20]. Sun et al. analyzed the relationship between the
control parameters and the Hopf bifurcation of the maglev

vehicle-guideway coupling system and designed a fuzzy
adaptive controller to adjust the control parameters au-
tomatically to keep the closed-loop system away from the
Hopf bifurcation point [21].

In this paper, analysis is conducted on the stability of the
levitation system of the EMS maglev train on elastic track
beam. -e research object is a levitation control unit in the
decentralized control point of the maglev train—a single
electromagnet system. In the first part, a simplified dynamics
model of “electromagnet-levitation control system-elastic
track beam” is established; the second part discusses the
equilibrium point of the canonical form of the model and its
stability; the third part uses the control coefficient kp as the
bifurcation parameter, introduces the method of directly
determining the Hopf bifurcation of the levitation control
system by using the Hurwitz criterion, and further discusses
the direction of Hopf bifurcation and the stability of bi-
furcation periodic solution by means of the high-dimen-
sional Hopf bifurcation theory. -e fourth part uses the
numerical simulation method to verify the theoretical
analysis results.

2. Modeling

EMS maglev train adopts electromagnetic attraction type of
levitation, that is, it relies on the attraction between the
vehicle electromagnet and the F-shaped ferromagnetic track
to achieve levitation. -e active control method must be
adopted to ensure the stable levitation of the train. At
present, EMS maglev trains mostly adopt the technical
scheme of multipoint decentralized control. -e electro-
magnet controlled by one set of levitation controller is a
single-magnet levitation system, many of which compose the
levitation system of EMS maglev train. -e simplified single
electromagnet system is shown in Figure 1.

Under the assumption of neglecting the leakage of the
electromagnet winding and the magnetic resistance of the
electromagnet core and the guideway, the following equa-
tions for the system model shown in (1) can be obtained:

electromagnet force equation: F � k
I
δ􏼐 􏼑

2
, k �

μ0N2Am

4
,

dynamic equation: m€z � mg − F,

electrical equation: u � RI +
2k

δ
_I −

2kI

δ2
_δ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where F is levitation force, μ0 is vacuum permeability, N is
the turns of electromagnet coil, Am is the area of electro-
magnet pole, m is sum of a single electromagnet’s own
weight and load weight, I is exciting current, R is electro-
magnet resistance, u is the voltage at electromagnet end, z is
absolute gap between the electromagnet and the rigid track,
and δ is actual levitation gap of the electromagnet.

-e voltage feedback control adopts the classic PD
control. kp and kd are the gap offset and the gap differential
feedback coefficients, respectively. -erefore,
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uc � u0 + kp δ − δ0( 􏼁 + kd
_δ, (2)

where u0 is the initial voltage at equilibrium position and δ0
is the desired levitation gap.

Assume that the track beam is a simply supported and
evenly elastic beam with equal cross section; then, the fol-
lowing can be obtained by the Bernoulli–Euler beam
equation:

EIg

z4zG

z4x
+ ρAg

z2zG

z2t
+ C

zzG

zt
� F(x , t), (3)

where E is Young’s modulus of elasticity, Ig is beam section
inertia, C is equivalent damping coefficient of the beam, ρ is
beam density, Ag is area of beam section, and F(x , t) is
levitation load intensity acting on the beam.

Using the modal superposition method, the displace-
ment of the beam in equation (3) can be expressed as the
linear superposition of a regular mode function∅i(x) and a
generalized coordinate qi(t):

zG(x , t) � 􏽘
n

i�1
∅i(x) · qi(t). (4)

Integrating equation (4) into equation (3) gives the vi-
bration equation corresponding to the ith-order mode of the
beam

€qi(t) + 2ηiωi _qi(t) + ω2
i qi(t) � Qi, (5)

where ωi is the i
th-order natural frequency of the beam, ηi is

the ith-order damping ratio of the beam, and Qi is the ith-
order generalized force.

For the simply supported single-span beam with the
length of L in Figure 1, the natural frequency ωi and the
regular mode function ∅i(x) of the beam are, respectively,
given by

ωi �
iπ
L

􏼒 􏼓
2

����
EI

ρAg

􏽳

, (6)

∅i(x) �

���
2

mG

􏽳

· sin
iπx

L
􏼒 􏼓, 0≤ x≤ L. (7)

While conducting studies on the coupled vibration of the
EMS maglev train, Shi et al. found that the high-order vi-
bration mode can only occur with exceptionally high energy

excitation [11]. From the latest test results from Li and others
on the Changshamaglev line, it can be seen that for a definite
track beam structure, the vibration frequency corresponding
to the maximum amplitude of track beam with maglev train
running on its upper part is distributed within a range,
wherein the first-order frequency of the track beam has the
greatest impact [22]. -erefore, only the influence of the
first-order bending mode of the track beam is taken into
account in the analysis of this paper. Since the length of the
electromagnet is much smaller than the span of the track
beam, the electromagnetic force F can be considered as a
concentrated load acting at position x0 on the track beam
when seeking the limit through the generalized force ex-
pression. -e first-order vibration equation of the gener-
alized coordinates of the track can be rewritten as

€q1 + 2η1ω1 _q1 � ∅1F, (8)

where ∅1 �
�����
2/mG

􏽰
· sin(πx0/L), ω1 � (π2/L2)

���������
(EIg/ρAg)

􏽱
,

and 2η1ω1 � (C/ρ).
Introducing the deformation of the track beam zG �

∅1q1 into the vibration equation (8), where∅1 is a constant,
we can obtain

€zG + 2η1ω1 _zG + ω2
1zG � ∅21F. (9)

In the midspan position where the amplitude of the
simply supported beam is the largest, we have x0 � (L/2),
and then ∅1 �

������
(2/mG)

􏽰
.

-erefore, the coupled systemmodel under the influence
of the first-order vibration mode of the track can be defined
by

m€z � mg − F,

_I �
I

δ
_δ +

δ
2k

u0 + kp δ − δ0( 􏼁 + kd
_δ􏽨 􏽩 −

RI

2k
δ,

€zG + 2η1ω1 _zG + ω2
1zG � ∅21F.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

3. Equilibrium Points and Their Stability

Let X � x1 x2 x3 x4 x5􏼂 􏼃
T

� z _z δ _δ I􏽨 􏽩
T

and levita-
tion gap δ � z − zG; then, the canonical form of the coupled
system model (10) is determined as follows:

L
x0

x

δ
z

zG(x, t)

u+ –
mg

F

Levitation
sensorLevitation

controller

Figure 1: Simplified single electromagnet-track beam coupled model.
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_x1 � x2,

_x2 � g −
k

m

x5

x3
􏼠 􏼡

2

,

_x3 � x4,

_x4 � g −
k

m

x5

x3
􏼠 􏼡

2

− − 2η1ω1 x2 − x4( 􏼁 − ω2
1 x1 − x3( 􏼁 +∅21k

x5

x3
􏼠 􏼡

2
⎡⎣ ⎤⎦,

_x5 �
x5

x3
x4 +

x3

2k
u0 + kp x3 − δ0( 􏼁 + kdx4􏽨 􏽩 −

R

2k
x3x5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

It can be seen from equations (11) that the EMS maglev
train-track beam coupled system is a typical nonlinear
system, which also brings certain difficulties for solving. -e
core work of this paper is to study the local stability of the
coupled system at the equilibrium point and the Hopf bi-
furcation of the control parameters.

Let _X � _x1 _x2 _x3 _x4 _x5􏼂 􏼃
T

� 0 and we have
mg � k(I0/δ0)

2 at the desired levitation gap and u0 � I0R;
then, the equilibrium point can be given by

X0 � x0
1 x0

2 x0
3 x0

4 x0
5􏼂 􏼃

T
� δ0 +

mg∅21
ω2
1

0 δ0 0 δ0
��
mg

k

􏽱
􏼔 􏼕

T
.

(12)

Shift the equilibrium point X0 of the system (11) to the
original point o 0 0 0 0 0( 􏼁 through the transformation
X � X + X0, and the new system (13) is expressed as

_x1 � x2,

_x2 � g −
k

m

x5 + x0
5

x3 + x0
3

􏼠 􏼡

2

,

_x3 � x4,

_x4 � g −
k

m

x5 + x0
5

x3 + x0
3

􏼠 􏼡

2

− − 2η1ω1 x2 − x4( 􏼁 − ω2
1 x1 +

mg∅21
ω2
1

− x3􏼠 􏼡 +∅21k
x5 + x0

5
x3 + x0

3
􏼠 􏼡

2
⎡⎣ ⎤⎦,

_x5 �
x5 + x0

5
x3 + x0

3
􏼠 􏼡x4 +

x3 + x0
3

2k
u0 + kpx3 + kdx4􏼐 􏼑 −

R

2k
x3 + x

0
3􏼐 􏼑 x5 + x

0
5􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

-e Jacobian matrix of system (13) at the original point
o 0 0 0 0 0( 􏼁 is given by
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A �

0 1 0 0 0

0 0
2g

δ0
0 −

2k

mδ0

���
mg
k

􏽲

0 0 0 1 0

ω2
1 2η1ω1

2g 1 + m∅21( 􏼁

δ0
− ω2

1 − 2η1ω1 −
2k 1 + m∅21( 􏼁

mδ0

���
mg
k

􏽲

0 0
kpδ0
2k

kdδ0
2k

+

���
mg
k

􏽲

−
Rδ0
2k
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

-e corresponding characteristic equation is written as

f(λ) � λ5 + a1λ
4

+ a2λ
3

+ a3λ
2

+ a4λ + a5. (15)

Model parameters are shown in Table 1.
Substituting the parameters, the coefficients of charac-

teristic equation (15) can be obtained:
a1 � 5.147,

a2 � 4.154kd + 3600.589,

a3 � 11.131kd + 4.154kp + 2563.807,

a4 � 14518.156kd + 11.131kp − 16159.558,

a5 � 14518.156kp − 21077684.888.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

According to Liénard–Chipart criterion, the necessary
and sufficient conditions for all eigenvalues of the charac-
teristic equation (15) to have a negative real part are that the
characteristic equation coefficients are all greater than 0, and
half of the Hurwitz determinant is greater than 0, namely,

ai > 0, (i � 1 ∼ 5),

Δ2 �
a1 1

a3 a2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� a1a2 − a3 > 0,

Δ4 �

a1 1 0 0

a3 a2 a1 1

a5 a4 a3 a2

0 0 a5 a4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� − a
2
1a

2
4 − a1a

2
2a5 + a1a2a3a4 + 2a1a4a5 + a2a3a5

− a
2
3a4 − a

2
5 > 0.

(17)

-erefore, the levitation control feedback coefficient kp

and kd when the system is stable can be obtained, and the
value range is shown in Figure 2.

4. Existence and Direction of Hopf Bifurcation

4.1. Existence of Hopf Bifurcation. For the classical Hopf
bifurcation evaluation method, it is necessary to solve the
eigenvalues of the Jacobian matrix whenever each parameter
changes and judge whether the real part is zero. For the five-

order coupled vibration model to be studied in this paper,
the calculation is cumbersome and not conducive to the
development of research work.-us, the Hopf bifurcation of
parameter kp is taken as an example. -e algebraic criterion
and calculation method of Hopf bifurcation occurring when
the equilibrium point loses stability proposed in reference
[23] are adopted, and the existence of the Hopf bifurcation
point is directly determined based on the Hurwitz algebraic
criterion, with three theorems first introduced as follows.

Theorem 1. 9e necessary and sufficient conditions for the
characteristic equation (15) to have a pair of pure imaginary
eigenvalue and the remaining n − 2 eigenvalues to have
negative real parts are

ai > 0, (i � 1, 2, . . . , n),Δi > 0, (i � n − 3, n − 5, . . .),Δn− 1 � 0,

(18)

where Δi is the Hurwitz determinant of the characteristic
equation (15).

Theorem 2. If the Hurwitz determinant of the characteristic
equation (15) satisfies

ai > 0, (i � 1, 2, . . . , n),Δi > 0, (i � n − 3, n − 5, . . .),Δn− 1 � 0,

(19)

then the characteristic equation (15) has a pair of pure
imaginary eigenvalues ± ωi, and the remaining n − 2 ei-
genvalues have negative real parts, and

ω2
�
Δn− 3

Δn− 2
an. (20)

Theorem 3. If the eigenvalues of characteristic equation (15)
at μ � μ0 all have negative real parts, and the Hurwitz de-
terminant satisfies the following conditions:

(i) Δn− 3(μc)> 0
where μc � min

μ
|μ − μ0|: Δn− 1(μ) � 0􏼈 􏼉, then the

characteristic equation (15) has a pair of pure
imaginary eigenvalues at μ � μc, and the other ei-
genvalues all have negative real parts. Let U and V be
the left and right eigenvectors of the matrix A(μc)

corresponding to the eigenvalues iωc, respectively,
UV� 1.
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(ii) Re(UBV)≠ 0, where B �(dA(μ)/dμ)|μ�μc
.

9en, the Hopf bifurcation occurs at μ � μc, namely, there
is periodic motion in the system near the parameters μ � μc.

Applying the aforementioned theorems to the problem
in this paper, according to -eorem 1, the characteristic
equation (15) has a pair of pure imaginary eigenvalues, and
the remaining n − 2 eigenvalues have negative real parts;
then, we can obtain

ai > 0, (i � 1, 2, . . . , n),

Δ2 �
a1 1
a3 a2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 10.250kd − 4.154kp + 16000.476> 0,

Δ4 �

a1 1 0 0
a3 a2 a1 1
a5 a4 a3 a2
0 0 a5 a4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 1.656e6k
3
d − 192k

3
p − 6.7e5k

2
dkp − 40.69kdk

2
p

− 1.722e9k
2
d + 9.281e6k

2
p + 1.109e9kdkp

− 3.655e11kd − 5.468e11kp + 7.749e14 � 0.

(21)

-e range of control parameter when the characteristic
equation (15) has a pair of pure imaginary eigenvalues and
the remaining n − 2 eigenvalues all have negative real parts is

1451.8< kp < 2.468kd + 3851.824. (22)

According to -eorem 2, let kd � 100, and discuss the
bifurcation parameter kp. Get the critical value
kp0

� 1690.681 according to the equation Δ4 � 0 and sub-
stitute it in other parameter expressions. -e calculation
results are shown in Table 2.

It can be seen that ai > 0 and Δ2 > 0 hold. Directly cal-
culating the pair of pure imaginary eigenvalues of charac-
teristic equation (15) of the system, we have ω2

0 � (Δ2/
Δ3)a5 � 401.766, and thus λ1,2(kp0

) � ±ω0i � ±20.044i.
According to -eorem 3, substitute the obtained pure

imaginary eigenvalues into the system equation, and we can
obtain left and right eigenvectors corresponding to
λ1(kp0

) � ±ω0i � ±20.044i, satisfying UV� 1:

U � − 1.973e3 − 33.863i, 0.177 + 98.472i, 1.246e4 + 1.427e3i, − 0.189 − 10.987i, − 3.476 − 0.415i􏼂 􏼃,

V � − 2.850e − 4 + 1.601e − 8i, − 3.209e − 7 − 5.712e − 3i, − 2.839e − 4 − 2.623e − 9i, 5.255e − 8 − 5.691e − 3i, − 1􏼂 􏼃
T
.

(23)

Table 1: Model parameter values.

μ0 M (kg) R (Ω) N δ0 (m)

4πe − 7 750 0.48 320 0.008
Am (m2) mG (kg) ω1 (rad/s) η1
0.025 5e4 60 0.023

1000 2000 3000 4000 5000 6000 7000
0

500

1000

1500

2000

kd

k p

Unstable region

Stable region

Figure 2: Relationship between system stability region and levitation control feedback coefficients.
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Let B � (dA(kp0
))/dkp0

�

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 4.974 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and we
have UBV � 0.0049 + 0.0006i.

-erefore, there is Re (UBV)� 0.0049≠ 0, which satisfies
the transversal condition. -en, when it is set that kd � 100,
kp0

� 1690.681 is a Hopf bifurcation point of the system.

4.2. Direction and Stability of Hopf Bifurcating Periodic
Solutions. Hassard et al. used the center manifold theory
and the normal form approach to derive the formula for
determining the Hopf bifurcation direction, periodic solu-
tion stability, and periodic variation of high-dimensional
dynamic systems [24, 25] and further analyze the stability of
periodic solutions near the aforementioned control pa-
rameters kp0

and Hopf bifurcation direction. Suppose there

is a transformation matrix P that transforms the system
Jacobian matrix A(kp0

) into the following Jordan standard
form:

P− 1A kp0
􏼐 􏼑P �

0 − ω0

ω0 0
􏼠 􏼡 0

0 D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � J kp0

􏼐 􏼑, (24)

where the matrix P � Re(v1) − Im(v1) v3 v4 v5􏼂 􏼃, in
which v1 is the eigenvector corresponding to complex ei-
genvalue λ1(kp0

) � ω0i � 20.044i and Re(v1) is the real part
of v1 while − Im(v1) is the imaginary part of v1; D is the
diagonal matrix composed of real eigenvalues λ3(kp0

),
λ4(kp0

), and λ5(kp0
); v3, v4, and v5 are the eigenvectors of the

corresponding eigenvalues; and P and P− 1 are given by

P �

− 2.850e − 4 − 1.601e − 8 − 3.165e − 5 + 1.454e − 6i − 3.165e − 5 − 1.454e − 6i − 3.314e − 4

− 3.209e − 7 5.712e − 3 − 4.373e − 5 − 1.904e − 3i − 4.373e − 5 + 1.904e − 3i 7.915e − 4

− 2.839e − 4 2.623e − 9 − 2.839e − 4 − 8.870e − 10i − 2.839e − 4 + 8.870e − 10i − 3.314e − 4

5.255e − 8 5.691e − 3 3.912e − 4 − 1.706e − 2i 3.912e − 4 + 1.706e − 2i 7.916e − 4

− 1 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P− 1
�

− 3.947e3 0.353 2.493e4 − 0.377 − 6.953

67.726 1.969e2 2.853e3 − 21.974 − 0.830

1.974e3 − 56.591i − 0.181 − 32.843i − 1.928e3 + 57.127i 0.189 + 32.967i − 0.015 − 7.937e − 5i

1.974e3 + 56.591i − 0.181 + 32.843i − 1.928e3 − 57.127i 0.189 − 32.967i − 0.015 + 7.937e − 5i

− 2.312e − 2 9.660e − 3 − 2.107e4 1.534e − 5 5.983

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

By substituting Y � P− 1X, the original system
_X � f(X, kp0

) is transformed into standardized form
_Y � P− 1f(PY, kp0

), which can be expressed as

_y1 � − 20.044y2 + F1 y1, y2, y3, y4, y5( 􏼁,

_y2 � 20.044y1 + F2 y1, y2, y3, y4, y5( 􏼁,

_y3 � (− 1.379 + 60.098i)y3 + F3 y1, y2, y3, y4, y5( 􏼁,

_y4 � (− 1.379 − 60.098i)y3 + F4 y1, y2, y3, y4, y5( 􏼁,

_y5 � − 2.389y5 + F5 y1, y2, y3, y4, y5( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Table 2: Calculation results when kd � 100 and kp0
� 1690.681.

a2 a3 a4 a5 Δ2 Δ3 Δ2/Δ3
4.022e3 1.070e4 1.455e6 3.468e6 1.000e4 8.634e7 1.159e − 4
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At this time, the equilibrium point Y0 of the new system
(26) is the original point, J(kp0

) is the Jacobian matrix of
system (26), and Fi(y1, y2, y3, y4, y5) is a high-order term.
-en, the following values are obtained:

g20 �
1
4

z2F1

zy2
1

−
z2F1

zy2
2

+ 2
z2F2

zy1y2
+ i

z2F2

zy2
1

−
z2F2

zy2
2

− 2
z2F2

zy1zy2
􏼠 􏼡􏼢 􏼣,

g11 �
1
4

z2F1

zy2
1

+
z2F2

zy2
2

+ i
z2F2

zy2
1

+
z2F2

zy2
2

􏼠 􏼡􏼢 􏼣,

g02 �
1
4

z2F1

zy2
1

−
z2F1

zy2
2

− 2
z2F2

zy1zy2
+ i

z2F2

zy2
1

−
z2F2

zy2
2

+ 2
z2F2

zy1zy2
􏼠 􏼡􏼢 􏼣,

G21 �
1
8

z3F1

zy3
1

+
z3F1

zy1zy2
2

+
z3F2

zy2
1zy2

+
z3F2

zy3
2

+ i
z3F2

zy3
1

+
z3F2

zy1zy2
2

−
z3F1

zy2
1zy2

−
z3F1

zy3
2

􏼠 􏼡􏼢 􏼣,

G
k− 2
110 �

1
2

z2F1

zy1zyk

+
z2F2

zy2zyk

+ i
z2F2

zy1zyk

−
z2F1

zy2zyk

􏼠 􏼡􏼢 􏼣
k�3,4,5

G
k− 2
101 �

1
2

z2F1

zy1zyk

−
z2F2

zy2zyk

+ i
z2F2

zy1zyk

+
z2F1

zy2zyk

􏼠 􏼡􏼢 􏼣
k�3,4,5

,

w
k− 2
11 � −

1
4λk

z2Fk

zy2
1

+
z2Fk

zy2
2

􏼠 􏼡
k�3,4,5

,

w
k− 2
20 �

1
4 2ω0i − λk( 􏼁

z2Fk

zy2
1

−
z2Fk

zy2
2

− 2i
z2Fk

zy1zy2
􏼠 􏼡

k�3,4,5
,

g21 � G21 + 􏽘
5

k�3
2G

k− 2
110w

k− 2
11 + G

k− 2
101w

k− 2
20􏼐 􏼑.

(27)

Based on the above calculated values, let

C1(0) �
i

2ω0
g20g21 − 2 g11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

−
1
3

g02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼒 􏼓 +
1
2
g21,

μ2 � −
ReC1(0)

α′(0)
,

τ2 � −
ImC1(0) + μ2ω′(0)

ω0
,

β2 � 2ReC1(0),

(28)

where α′(0) � Re[λ′(kp) | kp�kp0
] and ω′(0) � Im[λ′

(kp) | kp�kp0
].

Theorem 4. When the bifurcation parameter kp of system
(13) is increased beyond the critical value kp0

, the Hopf bi-
furcation occurs at the equilibrium point o 0 0 0 0 0( 􏼁, and
the following characteristics exist:

(a) When μ2 > 0(μ2 < 0), the Hopf bifurcation is a su-
percritical (subcritical) bifurcation, and a bifurcation
periodic solution for kp > kp0

(kp < kp0
) exists

(b) When β2 < 0(β2 > 0), the bifurcation periodic solution
is asymptotically stable (unstable)

(c) When τ2 > 0(τ2 < 0), the period of the periodic solu-
tion increases (decreases)

Substitute the system parameters to discuss the bifurcation
direction when kd � 100 and kp0

� 1690.681. 9e calculation
results of the above values are shown in Table 3.

Substituting the values yields μ2 � 15.510> 0,
β2 � − 0.152< 0, and τ2 � 6.682e − 4> 0.

It is known from μ2 > 0 that the Hopf bifurcation of
system (13) at kp0

is a supercritical bifurcation, that is, when
kp < kp0

, the equilibrium point of the dynamical system is
stable, yet Hopf bifurcation occurs as kp is gradually in-
creased to kp0

. β2 < 0 indicates that the periodic solution of
the system bifurcation is a stable limit cycle, and the period
of the periodic solution increases as the bifurcation pa-
rameter kp increases because τ2 > 0.

5. Numerical Simulation

In this part, numerical simulation is used to verify the results
of the above theoretical analysis.-e dynamic characteristics
of the system when kd � 100 and kp0

� 1690.681 are
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analyzed through simulation, while other system parameters
in Table 1 remain unchanged.

Give the system a small external disturbance, and the
local Hopf bifurcation diagram of system (13) with kp as the
bifurcation parameter is shown in Figure 3. It can be seen
that the system has a supercritical Hopf bifurcation, that is,
the system equilibrium point is in a stable state when kp < kp0
and Hopf bifurcation occurs when kp is increased to kp0

,
while a stable limit cycle appears when kp > kp0

.
Figures 4–7 show the time history curves and phase

before and after the bifurcation occurs when kp takes

different values. It can be seen from the figure that the
equilibrium point of the system is stable when kp < kp0

, yet
the stability of the system equilibrium point is lost and a set
of stable limit cycles is branched when kp is increased be-
yond kp0

.
It can also be seen from Figures 6 and 7 that each pe-

riodic solution is stable because β2 < 0, and τ2 > 0 indicates
that the period of the periodic solution increases as the
bifurcation parameter kp increases so that the period of the
periodic solution when kp � 1800 is greater than that when
kp � 1700.

Table 3: Calculation results of the relevant values in the bifurcation direction.

g20 0.696–4.17e − 2i G3
110 1.171 w3

11 − 7.41e − 2
g11 0.655 G1

101 0.945–1.172i w1
20 − 1.369e − 4 + 1.054e − 4i

g02 0.613 + 4.17e − 2i G2
101 0.945 + 1.172i w2

20 − 1.255e − 5–8.619e − 6i
G21 2.27e − 2 G3

101 1.184 w3
20 − 3e − 4 + 7.3e − 3i

G1
110 1.727–1.172i w1

11 − 2.304e − 5 + 7.558e − 6i g21 − 0.151 + 8.9e − 3i
G2
110 1.727 + 1.172i w2

11 − 2.304e − 5–7.558e − 6i C1(0) − 0.076–2.27e − 2i
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Figure 3: Local Hopf bifurcation diagram of system.
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Figure 4: -e response time domain and phase diagram when kp � 1650.
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6. Conclusions

(1) -e dynamics model of the single electromagnet-
track beam coupled system of the EMS maglev train
is established, with the classical PD control method
adopted and the influence of the first-order vibration
mode of the track beam taken into consideration.

(2) It is convenient to determine the stability of the
system motion and the Hopf bifurcation, from the
composition and symbol of the eigenvalues of the
system based on the Hurwitz algebraic criterion
instead of solving the specific eigenvalues.

(3) Take kp as the bifurcation parameter. When
kd � 100, the critical Hopf bifurcation value is cal-
culated as kp0

� 1690.681, and it is categorized as
supercritical Hopf bifurcation, that is, when kp < kp0

,
the system is asymptotically stable, yet Hopf bifur-
cation occurs as kp increases gradually beyond kp0

,
with the stability of the system lost and a stable limit
cycle branched.
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