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Preventive maintenance (PM), which is performed periodically on the system to lessen its failing probability, can effectively
decrease the loss caused by the system breakdown or the performance degradation.+e optimal PM interval has been well studied
for both binary-state systems (BSSs) and discrete multistate systems (MSSs). However, in reality, the performance of many systems
can change continuously, ranging from complete failure to perfect functioning. Considering such characteristics of systems, two
types of performance-based measures, performance availability and probabilistic resilience, are addressed to quantify the system’s
behaviour for continuous MSS. A Monte Carlo-based method is given to analyse the performance change process of the system,
and an optimization framework is proposed to find the optimal PM interval with the considerations of per-unit-time cost, system
breakdown rate, performance availability, and probabilistic resilience. A computer cluster is used as an example to illustrate the
effectiveness of our proposed method.

1. Introduction

In industry, preventive maintenance (PM), a planned or
scheduled maintenance activity, is an essential maintenance
policy [1]. PM was proposed in 1940s, requiring engineers to
take maintenance actions when the system is about to fail. In
this way, the probability of system breakdown can be re-
duced or even avoided. Hence, how to determine the proper
PM interval to avoid excessive or insufficient maintenance is
a critical issue. With the practice of PM, maintenance ac-
tivities changed from reactive to proactive. Later, condition-
based maintenance (CBM) was proposed. Using such
strategy, the optimal maintenance timing can be determined
according to system’s current condition. However, some
system’s performance cannot be easily monitored without
interrupting the system’s operation, so PM is still widely
applied in industry.

+e topic of how to determine an optimal PM interval
for systems attracts a lot of researchers. +e excessive
maintenance may affect the normal operation of the system

and result in high maintenance costs. On the contrary, the
insufficient maintenance may cause frequent system
breakdown, affecting the user’s experience. +e optimal PM
planning problemwas firstly studied for binary-state systems
(BSSs), which simplifies the system states into normal and
failure [2, 3]. Group/block replacement models [4, 5] and
opportunistic maintenance models [6] were proposed suc-
cessively to find the optimal PM planning. However, if a
system withmultiple performance states is assumed as a BSS,
its reliability is computed as the probability that their
performance stayed above the threshold, and its perfor-
mance changing process is then neglected. Considering that
the system may have multiple operable states or operate at
multiple performance levels, reliability theory then started to
focus on discrete multistate systems (MSSs) [7], which has
more than two but finite performance states. Levitin and
Lisnianski [8] firstly studied the maintenance decision
problem of discrete MSS and proposed the imperfect PM
optimization framework in [9]. +en, many researchers
proposed or applied several methods, such as the Markov
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process [10] and the universal generating function (UGF)
[8, 9, 11], to find the optimal PM interval for discrete MSS.
For example, Liu et al. [12] proposed a value-centric dy-
namic PM policy, and they determined which component to
maintain and the maintenance level by maximizing the
maintenance net value. However, in reality, the performance
of many systems can change continuously, ranging from
complete failure to perfect functioning. +ese systems are
named as continuous MSS, or continuous-state systems
briefly [13]. Obviously, binary-state-based or discrete mul-
tistate-based PM interval optimization frameworks are in-
sufficient to describe the characteristics of the continuous
MSS. For example, the Markov method is based on the
models of system states and the state transitions, and UGF
method is based on the possible system states and its cor-
responding probability. +e infinite number of performance
states makes theMarkov and UGFmethods difficult to apply
for continuous MSS.

+e continuous changing performance of such systems
requires advanced measures. Performance-based measures,
e.g., performance availability and resilience, provide a new
perspective to analyse such systems. Performance avail-
ability, an extension of traditional availability in the per-
formance dimension, qualifies the average performance of
the continuous MSS over its lifetime. Probabilistic resilience,
a new measure to assess the system’s ability to withstand
disturbances and return to a normal state quickly [14],
focuses on the system performance after the disturbance
occurs. Using such performance-based measures, Zhang and
Li [15] compared different PM intervals of a discrete MSS.
However, how to find the optimal PM interval and how to
apply such method to continuous MSS was not addressed.

To solve such problems, we propose a PM interval
optimization method for continuous MSS. +e contribu-
tions of this paper include the following:

(1) Two performance-based measures, performance
availability and probabilistic resilience, are proposed
to analyse and optimize the PM interval of contin-
uous MSS with the consideration of its infinite
number of performance states. Using such measures,
the continuous MSS can be analysed more accurate,
as its continuous changing performance is depicted.

(2) A general PM interval optimization framework is
provided for continuous MSS. In the optimization
model, we consider four types of decision elements,
including the performance availability, the proba-
bilistic resilience, the system breakdown rate, and the
per-unit-time cost. Compared with the PM interval
optimization methods for BSS or discrete MSS, the
system’s continuous performance changing process
is analysed by a Monte Carlo-based method in our
framework.

+e remainder of the paper is organized as follows:
Section 2 describes our PM decision problem in detail. In
Section 3 four key parameters, performance availability,
probabilistic resilience, system breakdown rate, and per-
unit-time cost, are proposed and applied as the decision

elements in the PM interval optimization models for the
continuous MSS. Monte Carlo method is used to compute
the performance degradation and recovery process of the
system and its components. In Section 4, the optimal PM
interval is calculated for a computer cluster, and the optimal
result is compared with the one obtained by enumeration to
verify the effectiveness of our method. Finally, concluding
remarks are provided in Section 5.

2. Problem Description

In this paper, we consider a continuous MSS which is
composed of continuous multistate components. When a
disturbance occurs on a component, its performance
changes as Figure 1 shows. +ere are two phases:

(1) Degradation phase: after the disturbance occurs on
the component, its performance begins to decline.
+e component continuously operates in a degraded
state until it breaks down or the PM activity starts.

(2) Recovery phase: the performance of the component
begins to restore back after the corrective mainte-
nance (CM) or preventive maintenance (PM) ac-
tivity is taken.

By performancemonitoring and data fitting, functions of
both the degradation and recovery processes of the com-
ponents can be obtained. Cimellaro et al. [16] proposed three
typical functions to describe the recovery behaviour of the
MSS, including linear function, exponential function, and
trigonometric function. +ese functions can also be used to
describe the performance degradation process, see the study
of Crk [17]. So equations (1)–(3) are applied in our paper to
describe both the performance degradation and recovery
processes:

f(t) � a
t − ts
Tp

􏼠 􏼡 + b, (1)

f(t) � a × exp
− b × t − ts( 􏼁

Tp

􏼢 􏼣, (2)

f(t) �
a

2
1 + cos

πb t − ts( 􏼁

Tp

􏼢 􏼣􏼨 􏼩, (3)

where a and b are the constant values that can be calculated
by curve fitting, ts is the start time of the corresponding
process (i.e., the time that the component’s performance
begins to decline or restore in the degradation and recovery
process, respectively), and Tp is the time duration of the
degradation or recovery process.

As is well known, the performance of the system depends
on that of its components. When the performance of
components starts to degrade, that of the system may also
decline. +en, the system will operate in a degradation state.
When the system’s performance drops below the threshold
QL, CM activities will be taken on the components, and the
system will restore back along with the components. Note
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that, if the system’s PM interval arrives before the system
breaks down, PM activities are taken instead.

In this paper, we aim to find an optimal PM interval for
the continuous MMS composed of continuous multistate
components. Our assumptions are as follows:

(1) +e system after PM or CM is “as good as new” (i.e.,
perfect maintenance)

(2) +ere is only onemaintenance channel, and only one
component can be repaired each time

(3) +e maintenance activity is performed immediately
without administrative delay

(4) +e disturbance occurrence time of components are
independently and identically distributed

(5) Both the time duration of the performance degra-
dation and recovery processes are also independently
and identically distributed

3. Methods

In this section, we propose a PM interval optimization
framework for continuous MSS based on the Monte Carlo
method.

3.1.Decision Elements. Generally, the optimal PM interval is
the time when the system is about to fail. As the performance
changing is very essential for continuous MSS, we propose
two types of performance-based measures, performance
availability and probabilistic resilience, and apply them
together with traditional PM decision elements, system
breakdown rate, and per-unit-time cost, to find the optimal
PM interval.

3.1.1. Performance Availability. Availability is the propor-
tion of time that a system is in a functioning condition for
binary-state systems, and it measures the degree to which the
system can be used. For MSS, the performance behaviour of
the system also affects its availability. In Figure 1, the solid
line and the dotted line describe the real performance and
the ideal performance of the system, respectively, and the
performance availability can then be defined.

Definition 1. Performance availability is the ratio of the area
under the system’s real performance curve to that under the
ideal performance curve over time 0 to T.

It can be computed as

AP �
􏽒

T

0 Q1(t)dt

􏽒
T

0 Q0(t)dt
, (4)

where Q0 and Q1 are the ideal and real performance
functions of the system, respectively, and T is the operation
cycle (e.g., 1 year). +e performance availability is the av-
erage proportion of performance that a system behaves in [0,
T]. One can see that the performance availability is an ex-
tension of the traditional availability in the performance
dimension. For BSS, we have Q0 �1, Q1 � 1 (if the system is
operational or up), and Q1 � 0 (if the system fails or down).
So our performance availability can be calculated as follows:

AP �
uptime

operation cycle
, (5)

for BSS.

3.1.2. Probabilistic Resilience. Resilience is also a perfor-
mance-basedmeasure, and it reflects the ability of the system
to withstand disturbance and return to a normal state
quickly. Under a given disturbance, a deterministic resil-
ience measure can be defined.

Definition 2. Deterministic resilience is the ratio of the area
beneath the performance curve within its maximum al-
lowable recovery time after a given disturbance to the ideal
one in the normal state.

+is deterministic measure can be calculated as

RD �
􏽒

t0+Ta

t0
Q1(t)dt

􏽒
t0+Ta

t0
Q0(t)dt

, (6)

where t0 is the disturbance occurrence time and Ta is sys-
tem’s maximum allowable recovery time. RD presents the
average performance of the system in [t0, t0 + Ta] after the
disturbance. Such measure is with clear physical meaning
which reflects the “bounce back” ability of the system and
can be used to compare the resilience of various systems on
the same relative scale. Obviously, the system’s resilience is a
random variable, and we define probabilistic resilience
under a random disturbance.

Definition 3. Probabilistic resilience is the probability that
the system’s resilience can satisfy users’ requirements under
random disturbances.

+e probabilistic resilience can be computed as

RP � Pr RD ≥R
∗
D􏼈 􏼉, (7)

where R∗D is the resilience threshold defined by users. Such
measure describes how well the system can meet its resil-
ience requirements.
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Figure 1: +e resilience process of a continuous component/
system.
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3.1.3. System Breakdown Rate. System breakdown rate
implies the probability that the system breaks down before
the PM interval arrives. It can be defined as

η � Pr Systembreaks down before PM interval arrives􏼈 􏼉.

(8)

3.1.4. Per-Unit-Time Cost. Cost is usually used in PM in-
terval optimization to analyse the expense of the mainte-
nance strategy. Considering the operation and maintenance
process of the system, the cost includes six aspects: (1)
operation cost; (2) maintenance labor cost; (3) maintenance

material cost; (4) on-site maintenance cost; (5) system
breakdown loss; and (6) system performance loss. Here, the
operation cost reflects the resource consumption during the
system operation; maintenance labor and material cost in-
cludes the labor and spare consumption and maintenance
tool, equipment, and facility depreciation during the
maintenance process; on-site maintenance cost refers to the
cost of the preparation activity of each maintenance; system
breakdown loss contains both the direct and indirect losses
caused by the system breakdown; and system performance
loss reflects the loss caused by the system performance
degradation.+us, we define the per-unit-time cost function
as

CPUT �

T 􏽐
i

􏽒all si
CO,i si( 􏼁fi si( 􏼁dsi + CMMHC × tPM + tCM( 􏼁 + 􏽐

i

CMMC,iNi + CBMNM + CD × tD + CP 􏽒
T

0 Q0(t) − Q1(t)( 􏼁dt

T
,

(9)

where T is the operation cycle (e.g., 1 year); CO,i(si) is the
operation cost of component i under state si per unit time,
fi(si) is the probability density function of state si; CMMHC is
themaintenance labor cost per unit time, tPM and tCM are the
total time of PM and CM over time [0, T], respectively;
CMMC,i is the material cost for component i, and Ni is the
number of times that the performance of component i
degrades and needs to be repaired over time [0, T]; CBM is
the on-site cost for one maintenance, and NM is the number
of on-site maintenance over time [0, T]; CD is the system
breakdown loss per unit time, and tD is the length of the
system downtime over time [0, T]; and CP is the system
performance loss per unit area in Figure 1.

3.2. Monte Carlo Simulation. For BSS and discrete MSS,
Universal Generation Function and Markov process are
often used in reliability analysis. However, for continuous
MSS, it is impossible to model all the states and solve the
corresponding differential equations. So the Monte Carlo
method is used here to analyse the performance changing
process of the continuous MSS under given PM intervals.
As the system after PM or CM is supposed “as good as
new,” we regard one simulation cycle as the time period
from the time that the system is put into use to the time
that its performance fully restores back after the main-
tenance activity (i.e, PM or CM) is taken. In Figure 1, this
time period is denoted as time [0, t2]. Multiple simulation
cycles together form the operation cycle T. +e ran-
domness of both disturbances that the system suffered and
the system’s response are then considered in each sim-
ulation cycle. In each simulation cycle, the simulation
process is as follows:

(1) Sample and obtain the disturbance occurrence time
and time duration of the performance degradation

for each component according to their corre-
sponding distributions.

(2) Sort the disturbance occurrence time in the as-
cending order, and denote them as t1, t2, t3....

(3) Let α� 0 and β� 0, where α is the number of the
disturbances that have occurred and β is the number
of disturbances in the current continuous distur-
bance behaviour. A continuous disturbance behav-
iour describes the situation that a new disturbance
occurs on the system before the performance deg-
radation of the previous one ends, and then these
disturbances affect the system together. +ese con-
tinuous disturbances are denoted as a disturbance
group.

(4) Let α� α+ 1 and β� β+ 1. Calculate the performance
degradation end time of the current disturbance
group tde by comparing it with the occurrence time
of the (α + 1)th disturbance.

(a) If tde > tα+1, continue Step (4)
(b) If tde > tα+1, the α

th disturbance is the last one in
the current disturbance group, go to Step (5)

(5) Calculate the performance degradation process of
the current disturbance group, and determine
whether the performance degradation in the current
disturbance group will cause the system breakdown
(i.e., the system performance drops below the
threshold QL). If so, record the time that the system
breaks down as tQ.

(6) Compare tde and tQ with the PM interval TPM:

(a) If min{tde, tQ, TPM}� tQ, it means that the system
breaks down in the current continuous distur-
bance process before the PM interval arrives. Go
to Step (7) and start CM.
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(b) If min{tde, tQ, TPM}�TPM, it means that the PM
interval arrives in this continuous disturbance
process before the system breaks downs. Go to
Step (7) and start PM.

(c) If min{tde, tQ, TPM}� tde, it means that neither
system breaks down nor PM interval arrives in
this continuous disturbance process. Let β� 0,
and go to Step (4).

(7) Sample and obtain the performance recovery time
for each degraded component according to their
distributions, and compute the recovery process of
the system.

From the Monte Carlo simulation, the system’s per-
formance can be recorded every Δt time, and the decision
elements can be estimated. For example, the performance
availability can be estimated as

􏽢AP �
􏽐

N
j�1􏽐

te,j/Δt􏼂 􏼃− 1
k�0 Q1,j,k + Q1,j,k+1􏼐 􏼑

􏽐
N
j�1􏽐

te,j/Δt􏼂 􏼃− 1
k�0 Q0,j,k + Q0,j,k+1􏼐 􏼑

, (10)

where N is the number of iterations in the simulation, te,j is
the system recovery end time in the jth simulation iteration,
and Q0,j,k and Q1,j,k are the ideal and real system

performance at time k·Δt in the jth simulation iteration,
respectively. +e performance-based probabilistic resilience
can be estimated as

􏽢RP �
NR

N
, (11)

where N is the number of simulation iterations, NR is the
number of iterations whose deterministic resilience 􏽢RD

satisfies the resilience threshold R∗D defined by users, and

􏽢RD,j �

􏽐
te,j/Δt􏼂 􏼃− 1

k� ts,j/Δt􏼂 􏼃
Q1,j,k + Q1,j,k+1􏼐 􏼑

􏽐
te,j/Δt􏼂 􏼃− 1

k� ts,j/Δt􏼂 􏼃
Q0,j,k + Q0,j,k+1􏼐 􏼑

, (12)

where ts,j is the occurrence time of the first disturbance in
the jth simulation iteration. +e system breakdown rate can
be estimated as

􏽢η �
Nd

N
, (13)

where Nd is the number of the system breaks down (i.e., the
number of CM) in the simulation. +e per-unit-time cost
can be estimated as

􏽢CPUT �

􏽐
n
i�1CO,i si( 􏼁Δti si( 􏼁 + CMMHC × 􏽐

N
j�1 tPM,j + tCM,j􏼐 􏼑 + 􏽐

n
i�1CMMC,iNi + CBM NPM + NCM( 􏼁 + CD × 􏽐

N
j�1tD,j + CP􏽐

N
j�1􏽐

te,j/Δt􏼂 􏼃− 1

k� ts,j/Δt􏼂 􏼃
Q0,j,k − Q1,j,k􏼐 􏼑Δt

􏽐
N
j�1te,j

,

(14)

where Δti(si) is the time length of component i under state si
in the whole simulation; tPM,j and tCM,j are the maintenance
time of PM and CM in the jth iteration, respectively; n is
the number of components in the system; NPM and NCM are
the number of PM or CM in the whole simulation; and tD,j is
the system downtime in the jth iteration.

After N rounds of iterations, we can obtain N perfor-
mance change processes of the system, and then the sta-
tistical values of the four decision elements under the given
PM interval can be further calculated. +e value of N de-
pends on the requirements of simulation accuracy ε.
According to the central limit theorem, the number of it-
erations can be computed as

N≥ max
x

Zα/2σx

εx

􏼠 􏼡

2
⎡⎣ ⎤⎦, (15)

where Zα/2 is the 100(1 − (α/2))th percentile of the standard
normal distribution, 1 − α is the confidence level (e.g.,
1 − α� 95%), and εx and σx are the accuracy requirement and
mean square error for the parameter x (i.e., the four decision
elements).

3.3. Optimization Model and Algorithm. Using the four
decision elements mentioned above, we can build a PM

interval optimization model for the continuous MSS.
Depending on the problem, the previous PM interval op-
timization models can be divided into integer linear pro-
gramming model [18], dynamic programming model [19],
robust optimization model [20], and so on. For the con-
tinuous MSS, goal(s) and constraints in the optimization
model can be determined according to the real problem.
Hence, we provide two types of optimization models as
examples. +e first optimization model is a single-objective
problem that minimizing the per-unit-time cost under the
other three constraints as follows:

min CPUT

s.t. η≤ η∗

AP ≥A∗P

RP ≥R∗P ,

(16)

where A∗P ,R∗P , and η∗ are the threshold of the performance
availability, probabilistic resilience, and system breakdown
rate, respectively. +e second optimization model is a
multiobjective optimization problem which minimizes the
per-unit-time cost and the system breakdown rate while
maximizes the performance availability and probabilistic
resilience:
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min CPUT, η, − AP, − RP􏼂 􏼃
T

s.t. CPUT ≤C∗PUT

η≤ η∗

AP ≥A∗P

RP ≥R∗P ,

(17)

where C∗PUT is the threshold of the per-unit-time cost. Using
the direct weighting method, this multiobjective optimiza-
tion problem in equation (17) can be converted into a single
one as

min f � k1CPUT + k2η − k3AP − k4RP

s.t. CPUT ≤C∗PUT

η≤ η∗

AP ≥A∗P

RP ≥R∗P ,

(18)

where f is the joint objective function and ki is the weighting
factor for each objective. ki can be computed as ki � k1

i × k2
i ,

where k1
i reflects the importance of each objective, 􏽐 k1

i � 1,
and k2

i is used to adjust the effect of the difference in
magnitude among objectives (e.g., k2

i � 1/‖∇fi‖
2).

To solve the PM interval optimization problem, three
algorithms were usually applied, including genetic algo-
rithms (GAs) [8, 9, 21], particle swarm optimization (PSO)
[22], and simulated annealing (SA) [23]. Generally, the
appropriate optimization algorithm is selected according to
the type of the optimization model. For example, the
simplex method can be used to solve linear optimization
problems, golden section method and binary search
method can be applied for nonlinear optimization prob-
lems with unimodal objective functions, and genetic al-
gorithms, particle swarm optimization, and simulated
annealing (SA) are applicable for nonlinear optimization
problems with multimodal objective functions. In practice,
the optimization algorithm should be determined
according to the specific problem.

4. A Numerical Example

A computer cluster contains 10 connected computers that
work together, as shown in Figure 2. Both the system and
its components are with continuous multistates, and the
load capacity of system (Q) is the sum of that of computers
(qi). Under the normal state, the load capacity of the
system and components are both normalized as 100%. +e
components may suffer various disturbances, and the
occurrence probability of these disturbances follows the
exponential distribution with parameter λ. Once a dis-
turbance occurs on a computer, its load capacity degrades
gradually following the exponential function in equation
(2), and the time duration of the performance degradation
follows exponential distribution with parameter τ. When
the computer’s performance degrades below the threshold
(qL � 50%), it stops working and waits for maintenance.
+e system’s load capacity degrades along with that of the

computers, and it can work under degradation state until
the system breaks down (i.e., the load capacity of the
system drops below the system’s threshold (QL � 60%)) or
the PM interval (T) arrivals. If the system breaks down
before the PM interval arrives, CM starts. During CM,
computers that suffered disturbance are repaired offline
one after another. When the number of perfect computers
reaches the threshold that can provide enough perfor-
mance, the system restarts working. +en, the CM activity
continues until all computers are repaired and the whole
system returns back to normal. If the PM interval arrives
before the system breaks down, PM starts and the de-
graded computers are repaired online one by one. +e
recovery process of computers also follows the expo-
nential function in equation (2), and the maintenance time
for PM and CM follows normal distributions with pa-
rameters (μPM, σPM2) and (μCM, σCM2), respectively. It is
assumed that the maintenance strategy is first-in-first-out
(i.e., first-degrade-first-repair), and there is only one
maintenance channel. Our aim is to find the optimal PM
interval for the continuous multistate computer cluster.
+e resilience-related and cost-related parameters are
shown in Tables 1 and 2.

4.1. Resilience Behaviour Analysis. We run the Monte Carlo
simulation and obtained the resilience process of the
computer cluster. During the operation, system may suffer
both single and continuous disturbances. +e difference is
whether the performance degradation of the system under
the disturbance ends before a new one occurs. In Figure 3,
the first disturbance is a single one, and the other three are
continuous ones which forms a disturbance group. In this
figure, the four red stars show the time that the disturbance
occurred. One can see that the performance degradation
caused by the last three disturbances is superimposed on
each other.

Figure 4 shows two types of typical resilience behaviours
for the computer cluster, and the PM interval was set as 900
hours and 2000 hours, respectively. In Figure 4(a), four
disturbances occurred in sequence, resulting in the gradual
load capacity degradation of four computers in the system.
+e performance of the system degraded along with that of

Internet
connected

Figure 2: A computer cluster.
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the computers, as shown in this figure. At time t� 900 hours,
the PM interval arrived while the system was still working,
and PM was then taken to restore the system. +e four
degraded computers were repaired one by one according to

the disturbance occurrence sequence. As the PM activity
was online, the system’s performance restored back
gradually in this figure. In Figure 4(b), the PM interval was
set as 2000 hours, and the load capacity of the system

Table 1: Resilience-related parameters.

Parameter Distribution Parameter 1 Value Parameter 2 Value
Disturbance/failure occurrence time Exponential λ 1/8760 h− 1 — —
Degradation time Exponential τ 1/100 h− 1 — —
PM time Normal μPM 24 σPM 2
CM time Normal μCM 24 σCM 2

Table 2: Cost-related parameters.

Parameter Value
Operation cost per unit time of a single computer (CO) 5 yuan/hour
Maintenance labor cost per unit time (CMMHC) 100 yuan/hour
Maintenance material cost of a single computer (CMMC) 3000 yuan
On-site cost per maintenance (CBM) 1000 yuan
System breakdown loss per unit time (CD) 10000 yuan/hour
System performance loss per unit area (CP) 100 yuan/area
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Figure 3: Single and continuous disturbance effect.
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Figure 4: Typical resilience processes of the cluster system. (a) Recover by PM (PM interval � 900 hours). (b) Recover by CM
(PM interval � 2000 hours).
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dropped below its threshold QL at time t � 1212 hours.
+en, the offline CM was taken, and the four computers
were completely repaired before they restarted working. So
one can see that the system performance recovery process
in Figure 4(b) presents a step-like performance recovery
process.

4.2. PM Interval Optimization. Firstly, a multiobjective
optimizationmodel was built to find the optimal PM interval
as follows:

min f � k1CPUT + k2η − k3AP − k4RP

s.t. AP ≥ 0.9

RP RD ≥ 0.8( 􏼁≥ 0.9

η≤ 0.1,

(19)

where ki is the weighting factor for each decision element.
According to the direct weighing method, ki � k1

i × k2
i .

Here, K1 � [0.6, 0.2, 0.1, 0.1]T described the importance of
the four elements, and K2 was determined according to the
magnitude difference among these four elements as K2 �

[0.0018, 66.4896, 35.28, 10.2043]T. Compared with the
optimization model in equation (17), the constraint of the
per-unit-time cost is omitted, as there is no budget limit in
this problem.

Secondly, we used the Monte Carlo method to analyse
the behaviour of the cluster system under different PM
intervals. We run the simulation for 1000 times at the PM
interval 1000 hours and obtained the corresponding sample
standard deviations for the four decision elements. Let
ε􏽢CPUT

� 5, ε􏽢η � 0.002, ε􏽢AP
� 0.002, ε􏽢RP

� 0.002, and
1 − α� 95%, we finally determined the number of iterations
as N� 2700 according to equation (15). Under such 2700
simulation iterations, the error can be computed as
εCPUT′ < 4.3627, εAP

′ < 0.0019, εη′ < 0.0018, and ε􏽢RP

′ < 0.0017.
Finally, optimization algorithms, the golden section

method and genetic algorithm, were used to solve the op-
timization problem in equation (19). +e specific algorithms
are as follows:

(1) Golden-section search is a technique for finding an
extremum of a unimodal function inside a specified
interval [a, b]. +e functional values of f(x) at two
golden section points, c� a+ 0.382(b − a) and
d� a+ 0.618(b − a), are calculated first. By compar-
ing the functional values at a, c, d, and b, we can
determine the extremum either in [a, d] or [c, b]
using the characteristic of the unimodal function. In

either case, a new narrower search interval can be
obtained. Successively narrowing the range of values,
the extremum value will finally be obtained within its
accuracy requirement.

(2) Genetic algorithm is a metaheuristic inspired by the
process of natural selection. +e initial population of
the first generation is generated randomly, and then
bio-inspired operators such as mutation, crossover,
and selection are used to search the extremum. In
each generation, individual solutions with higher
values of fitness function are more likely to be
inherited by the next generation. Repeat the process
for several generations, the genetic algorithm then
has a tendency to converge towards the global op-
tima of the problem. See Ref. [24] for details.

Table 3 compares the optimal results with the enu-
meration method. One can see that the golden section
method is the most efficiency and accurate one.

4.3. Discussion. Using the enumeration method, we can
obtain the simulation results at different PM intervals
(Figure 5). One can see that both the performance
availability and probabilistic resilience decrease along with
the increase of the PM interval in Figures 5(a) and 5(b). As
the PM is an online maintenance activity, the more fre-
quent inspections and maintenances help reduce the
system’s performance degradation, resulting in better
performance availability and probabilistic resilience.
Figure 5(c) shows an obvious result, i.e., the system
breakdown rate increases along with the value of the PM
interval. +is is because it is more convenient to discover
the abnormal behaviour of the system before the system
breaks down with a smaller PM interval. In Figure 5(d), the
per-unit-time cost drastically decreases at the very be-
ginning and then increases gradually along with the in-
crease of the PM interval. If the PM interval is too small,
excessive PM activities are triggered, leading to large on-
site cost. If the PM interval is too large, PM is insufficient,
resulting in more system breakdown and larger perfor-
mance loss.+is also illustrates the importance of choosing
a suitable PM interval. +e result is also consistent with
that of the related studies in binary-state systems and
discrete MSS.

Figure 6 shows the result of the joint objective function
in equation (19). It illustrates more clearly the necessity of
determining the optimal PM interval.

Table 3: Optimal results.

Method Genetic algorithms Golden section method Enumeration method
Computation time (s) 332.09 49.08 1830.01
Joint objective function − 4.4749 − 4.4723 − 4.4735
Performance availability 0.9835 0.9980 0.9985
Probabilistic resilience 0.998 1.00 1
System breakdown rate 0.00 0.00 0.00
Per-unit-time cost (yuan/hour) ￥58.92 ￥64.46 ￥64.96
Optimal PM interval (h) 108.8549 98.8276 92
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5. Conclusions

In this paper, we provide a general PM interval optimi-
zation framework for continuous MSS. In order to analyse
the continuous change behaviour of the system’s per-
formance, two types of performance-based measures,
performance availability and probabilistic resilience, are
proposed. Monte Carlo-based simulation is used to obtain
the performance data of the system. +e optimization

model and algorithm proposed in this paper are flexible
and can be adjusted according to users’ requirements. A
case of computer cluster is applied to demonstrate the use
of our method, and a multiobjective optimization model
is built and solved by both golden section method and
genetic algorithm. Comparing with the enumeration
results, the effectiveness of our optimization method
is verified.

In practice, before the system is put into use, predicted
data (including the probability of disturbance occurrence,
performance degradation function, recovery function,
etc.) can be used to determine the optimal PM interval.
During operation, operational data of the system can be
combined to find more appropriate PM interval. It should
be noted that the decision elements in the PM interval
optimization model and the model itself are different for
BSS, discrete MSS, and continuous MSS. +e decision
elements, model, and algorithm in the PM interval op-
timization problem should be determined according to
the system characteristics. If inappropriate ones are ap-
plied, the result obtained is likely to deviate from the
optimal value.

In the future, we will further study the optimal PM
interval for heterogeneous system with continuous multi-
state components.
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Figure 6:+e joint objective function under different PM intervals.

0.95
0.955

0.96
0.965

0.97
0.975

0.98
0.985

0.99
0.995

1
Pe

rfo
rm

an
ce

 av
ai

la
bi

lit
y

100 200 300 400 500 600 700 800 900 10000
PM interval (hours)

(a)

100 200 300 400 500 600 700 800 900 10000
PM interval (hours)

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

Pr
ob

ab
ili

sti
c r

es
ili

en
ce

(b)

100 200 300 400 500 600 700 800 900 10000
PM interval (hours)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

Sy
ste

m
 b

re
ak

do
w

n 
ra

te

(c)

0

200

400

600

800

1000

1200

Pe
r-

un
it-

tim
e c

os
t (

yu
an

/h
ou

r)

100 200 300 400 500 600 700 800 900 10000
PM interval (hours)

(d)

Figure 5:+e four decision elements of the system under different PM intervals. (a) Performance availability. (b) Probabilistic resilience. (c)
System breakdown rate. (d) Per-unit-time cost (yuan/hour).

Mathematical Problems in Engineering 9



Data Availability

+e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is research was funded by the National Natural Science
Foundation of China (61773044), National key Laboratory
of Science and Technology on Reliability and Environmental
Engineering (WDZC2019601A301), and National Natural
Science Foundation of China (61872018).

References

[1] M. W. Wakjira and A. P. Ajit, “Total productive maintenance:
a case study in manufacturing industry,” Global Journal of
Research in Engineering, vol. 12, no. 1, pp. 25–32, 2012.

[2] D. G. Nguyen and D. N. P. Murthy, “Optimal preventive
maintenance policies for repairable systems,” Operations
Research, vol. 29, no. 6, pp. 1181–1194, 1981.
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