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-emicroelectromechanical system (MEMS) gyroscope has lowmeasurement accuracy and large output noise; the useful signal is
often submerged in the noise. A new denoisingmethod of interval empirical mode decomposition (IEMD) is proposed. Firstly, the
traditional EMD algorithm is used to decompose the signal into a finite number of intrinsic mode functions (IMFs). Based on the
Bhattacharyya distance analysis and the characteristics of the autocorrelation function, a screening mechanism is proposed to
divide IMFs into three categories: noise IMFs, mixed IMFs, and signal IMFs. -en, the traditional modelling filtering method is
used to filter the mixed IMFs. Finally, the mixed IMFs after modelling and filtering and signal IMFs are reconstructed to obtain the
denoised signal. In the experimental analysis, the static denoising experiment of the turntable, the Allan variance analysis,
dynamic denoising experiment, and vehicle experiment are set up in this paper, which fully proves that the method has obvious
advantages in denoising and greatly improves the quality of signal and the accuracy of the inertial navigation system solution.

1. Introduction

Compared with other types of gyroscopes, MEMS gyroscopes
based onmicro electromechanical system technology have the
advantages of miniaturization, low price, low power con-
sumption, and easy installation [1]. MEMS gyroscope has
been widely used in many fields because of the great devel-
opment space and development value. However, due to the
characteristics of the components and the external environ-
ment, the measurement accuracy of the MEMS gyroscope is
relatively low, the output noise is large, and the useful signal is
often submerged in the noise. -erefore, in order to improve
the measurement accuracy, it is very important to find an
effective denoising method for MEMS gyroscope.

In recent years, domestic and foreign scholars have
conducted a lot of in-depth research on suppressing the
random drift of MEMS gyroscopes. Among them, wavelet
transform, neural network modelling, time series modelling,
and empirical mode decomposition are the main methods.

In reference [2], two wavelet basis functions with the best
denoising effect are identified and selected; the multi-stage
filtering method which combines wavelet denoising and
median filtering is used to denoise the signal. Reference [3]
proposed a strong tracking self-feedback model based on
recursive least square multi-wavelet decomposition and
reconstruction, established a new soft threshold function,
and combined it with improved median filter to denoise.
According to the characteristics of hard threshold and soft
threshold, a custom threshold function is proposed for
wavelet threshold denoising in reference [4]. It can be seen
that the difficulty of the wavelet filtering method lies in the
selection of the wavelet basis function and the determination
of the decomposition layer number and the threshold
function, which lacks algorithm adaptability. In reference
[5], an error model of deep simple recurrent unit recurrent
neural network (SRU-RNN) is proposed to reduce the pa-
rameters that need to be determined during the training
process, but the fixed learning speed and training data lead
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to the reduction of model accuracy and are prone to
overfitting problem. In reference [6], a new method of seg-
mented compensation for the temperature error of fiber-optic
gyroscope is proposed to model the data in different tem-
perature intervals, which can avoid overfitting problems and
improve model accuracy. -erefore, the neural network
modelling method theoretically has the ability to approximate
nonlinear functions with arbitrary precision and has high-
speed parallel computing capability, but it has a complex
network computing structure and is prone to overfitting
problems. -e method of timing analysis and establishing
reasonable ARMA model for random drift error is the most
widely used method, the model has high accuracy, and this
method has achieved good results in gyro denoising. In ref-
erences [7–10], the most suitable and reasonable model of
random drift error is established after the data pre-processing
and a series of testing, and then various filtering algorithms are
carried out to achieve compensation for error. However, the
premise of this method is that the sequence to be processed
should be a stationary sequence, and a complicated pre-pro-
cessing process is required for the non-stationary sequence. In
addition, the empirical mode decomposition (EMD) is a new
adaptive method for processing nonlinear and non-stationary
signals. -is method does not require any prior knowledge of
the signal. It decomposes the original data into a finite number
of intrinsic mode functions (IMFs) and a margin, which is an
effective method for data stabilization and denoising [11–14].
Traditional EMD thinks that noise mainly exists in the high
frequency component and directly removes it, but there is no
certain screening criterion to denoise, especially for the signal
with low signal-to-noise ratio; noise and useful signal are often
mixed together. Although the method of directly removing the
high frequency component can achieve good denoising effect,
some useful signals will be lost at the same time.

Based on the above analysis, this paper adopts a new
method named IEMD to deal with the random error of
MEMS gyroscope. Firstly, the method decomposes the
original signal into several IMF components by traditional
EMD. And then, calculate the Bhattacharyya distance be-
tween the signal and every component, and the maximum
slope between the adjacent two modes j, j+ 1 and the input
signal is the boundary point. -ereby, the first demarcation
point j is determined; it means IMFi ∼ IMFj are noise IMFs;
secondly, the autocorrelation function of each component is
analyzed, and the second demarcation point k is found
according to the properties of autocorrelation function. It is
determined that IMFj+1 ∼ IMFk are the mixed IMFs, and the
remaining IMFk+1 ∼ IMFn are signal IMFs. Finally, the noise
dominated IMF1 ∼ IMFj are removed directly, the signal
dominated IMFk+1 ∼ IMFn are retained directly, and the
mixed IMFs are modelled and filtered; then, the processed
mixed IMFs and signal IMFs and the remainder are
reconstructed. -e final gyro signal is obtained.

2. Global Design Module Diagram of
Denoising Method

Figure 1 shows the design block diagram of error denoising
method.

-is method is mainly the following three steps:

(i) Step 1. Data decomposition and screening. Firstly,
the original signal is decomposed into multiple
IMFs and a residual by EMD algorithm; then,
Bhattacharyya distance analysis and autocorrelation
function analysis of each component are performed
to divide the signal into noise IMFs, mixed IMFs,
and signal IMFs.

(ii) Step 2. Time series modelling of the mixed IMFs.
After the stationarity testing and normality testing, a
series of modelling steps are performed on the fil-
tered mixed IMFs to establish a reasonable time
series model for the components.

(iii) Step 3. Filtering and reconstruction. Kalman fil-
tering is performed on the basis of the model to
remove the random error. Finally, the filtered mixed
IMFs and the signal IMFs and the remainder r(t)

are reconstructed, and the final result is outputted.

3. Denoising Method Based on Interval
Empirical Mode Decomposition

3.1. Interval Empirical Mode Decomposition. -e gyro out-
put data can be expressed as follows after traditional EMD:

y(t) � 􏽘
n

i�1
IMFi + r(t). (1)

Gyro input
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Figure 1: Global design module diagram of denoising method for
MEMS gyroscope.
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In equation (1), IMFi is the component of intrinsic mode
function, and r(t) is the remainder. -e IMF1 ∼ IMFi

components are distributed from high frequency to low
frequency in turn.

-e gyro output data can be expressed as follows after
IEMD:

y(t) � 􏽘

j

i�1
IMFi + 􏽘

k

j+1
IMFi + 􏽘

n

k+1
IMFi + r(t). (2)

In equation (2), IMF1 − IMFj are the noise IMFs,
IMFj+1 − IMFk are the mixed IMFs, IMFk+1 − IMFn are the
signal IMFs, and r(t) is the remainder.

-e noise IMFs can be directly removed, and the signal
IMFs are directly retained, mainly processing the mixed
IMFs, modelling and filtering them.

y(t)′ � 􏽘
k

j+1
IMFi
′ + 􏽘

n

k+1
IMFi + r(t). (3)

In equation (3), IMFi
′ are the mixed IMFs after filtering

and modelling.

3.1.1. Screening Noise IMFs Based on Bhattacharyya
Distance. -eprobability density function (PDF) can reflect the
difference between the signals [15]. Because of this, the kernel
density estimation method is used to obtain the probability
density function of the input signal and each component, and
the different components are distinguished by calculating the
similarity between them. -e Bhattacharyya distance can be
used to measure the distance between two PDFs and it is an
effective method to the judge the similarity [16].

In the same definition domainX, the Bhattacharyya distance
of the probability distributions P and Q is defined as follows:

DB(P, Q) � − ln(BC(P, Q)). (4)

Among equation (4) for discrete probability distribution,

BC(P, Q) � 􏽘
x∈X

���������
P(x)Q(x)

􏽰
. (5)

For continuous probability distribution,

BC(P, Q) � 􏽚
���������
P(x)Q(x)

􏽰
dx. (6)

-e smaller DB is, the closer the probability distribution
is, and the more relevant the modal component is to the
input signal.

In this paper, the similarity between the modal com-
ponent and the input signal is defined as follows:

L(i) � distance pdf(x(t)), pdf BLIMFi(t)( 􏼁􏼂 􏼃. (7)

-e distinction between correlated and uncorrelated
modes can be determined by evaluating the slope of the
distance between two adjacent modes and the input signal;
the max slope is defined as follows:

θ � max|L(j + 1) − L(j)|, j � 1, 2, . . . , n − 1. (8)

-e boundary between the uncorrelated mode and the
correlated mode is j; that is, IMF1 ∼ IMFj are noise IMFs.

3.1.2. Screening Signal IMFs Based on Autocorrelation
Function. -e second demarcation point, that is, the
boundary of the mixed IMFs and the signal IMFs, is de-
termined by the characteristics of the autocorrelation
function; the signal IMFs can be screened out according to
autocorrelation function characteristics.

Autocorrelation function:

Rx t1, t2( 􏼁 � E x t1( 􏼁, x t2( 􏼁( 􏼁. (9)

In equation (9), x(t) is a random signal.
-e characteristics of the autocorrelation function: for a

data sequence containing random noise, the function value
of the autocorrelation function is the largest at zero, and the
function value of the other points rapidly declines to zero,
showing a weak correlation. -e data sequence is dominated
by useful signals; although the autocorrelation function
value is also the largest at zero, the function value of other
points slowly declines to zero; there is a certain regular
change, showing a strong correlation. -erefore, based on
this characteristic, the demarcation point of mixed IMFs and
signal IMFs can be determined.

After the IEMD, the original signal can be expressed as

y(t) � 􏽘

j

i�1
IMFi + 􏽘

k

j+1
IMFi + 􏽘

n

k+1
IMFi + r(t). (10)

In equation (10), IMFi − IMFj are the noise IMFs,
IMFj+1 − IMFk are the mixed IMFs, IMFk+1 − IMFn are the
signal IMFs, and r(t) is the remainder.

In the next processing, the noise IMFs can be directly
removed, and the signal IMFs are directly retained, mainly
processing the mixed IMFs, modelling and filtering them.

3.2. Time Series Modelling. Reasonable modelling of the
mixed IMFs obtained by the above screening is required.
Since the IMFs obtained by EMD decomposition are a
stationary signal, it is only necessary to perform the sta-
tionarity and normality test on the signal during pre-
processing.

3.2.1. Model Identification. -e time series model mainly
includes three types, namely, autoregressive model, moving
average model, and autoregressive moving average model.
Calculate the autocorrelation function and partial correla-
tion function of the sequence; then, identify the model type
according to the different statistical characteristics of the
model shown in Table 1 [17], and select the suitable model
type for each sequence.

3.2.2. Model Ordering. After selecting the suitable model,
the BIC criteria are used to determine the order of themodel:

BIC(p) � N ln σ2a + p lnN. (11)
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In equation (11), σ2a is variance of the residual and N is
data length of the residual sequence.

Take the model order p with the minimum BIC(p) value
as the applicable model order.

3.2.3. Model Parameter Estimation. -e selected model
parameter estimation algorithm is the least squares es-
timation method. -e least squares estimation method is
actually an unbiased estimation; the basic idea is
to obtain random vector ϕ and calculate the auto-co-
variance function of ϕ, named C(φ); the value of the
C(φ)′’s main diagonal element is used as a parameter
estimate.

3.2.4. Model Applicability Test. After the model is com-
pleted, the applicability of the model is tested, and the white
noise test criterion is adopted. -is criterion is to use dif-
ferent statistics to check whether the model residual is white
noise, and the residual sequence is closer to white noise; the
model accuracy is better.

-e mathematical expression of the model is

xt � φ1xt− 1 + · · · + φpxt− p + at − θ1at− 1 − · · · − θqat− q.

(12)

-en, the expression of the residual sequence at􏼈 􏼉 is

at � xt − φ1xt− 1 − · · · − φpxt− p + θ1at− 1 + · · · + θqat− q.

(13)

In equations (12) and (13), p and q are the order of the
AR part and the MA part, respectively; φ1, . . . ,φp and
θ1, . . . , θq are the estimated parameters of the AR part and
the MA part, respectively; and at is the residual sequence.

-e model is tested for applicability based on the au-
tocorrelation coefficient criteria, after calculating the re-
sidual sequence at􏼈 􏼉.

-e test formula for the autocorrelation coefficient
criterion [18] is

��
N

√
􏽢ρa,k

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�����������

1 + 2􏽐
k− 1
i�1 􏽢ρ2a,k

􏽱 ≤ 1.96. (14)

Among them,

􏽢ρa,k �
􏽐

N
i�k+1 xtxt− k

􏽐
N
i�k+1 x

2
t

, (k � 1, 2, . . . ,). (15)

If the autocorrelation coefficient 􏽢ρa,k satisfies this for-
mula, at􏼈 􏼉 is white noise, and the corresponding model is
applicable.

3.3. Kalman Filtering Based on the AR Model. Kalman fil-
tering is performed on the above established model. Taking
the AR (4) model as an example, the model expression is

xt � φ1xt− 1 + φ2xt− 2 + φ3xt− 3 + φ4xt− 4 + at. (16)

-en, the model equation is transformed into a state
space model; the obtained state equation and measurement
equation are as follows:

xk � φk/k− 1xk− 1 + ωk− 1, (17)

yk � Hkxk + vk. (18)

In equations (17) and (18), xk is the system state, yk is
the system measurement, φk/k− 1 is the state transition matrix

φk/k− 1 �
φ
A

􏼢 􏼣, ϕ � [φ1 φ2, . . . ,φp], A � [1(p− 1)×(p− 1)

0(p− 1)×1], Hk is the measurement matrix Hk � [101×(p− 1)],
ωk− 1 is the system noise, vk is the measurement noise, and
ωk− 1, vk are usually Gaussian white noise sequence with zero
mean.

According to the five recursive formulas and the pa-
rameters of Kalman filtering, the optimal estimation of the
signal can be obtained [19]. -e optimal estimation value of
each component is obtained using the same method, and
finally the signal is reconstructed. -e reconstruction for-
mula of the signal is as follows:

y(t)′ � 􏽘
k

j+1
IMFi
′ + 􏽘

n

k+1
IMFi + r(t). (19)

In equation (19), IMFi
′ are the mixed IMFs filtered and

modelled.

4. Experimental Verification and Analysis

4.1. StaticDataDenoisingExperiment. As shown in Figure 2,
the device used in this experiment is an inertial navigation
rotating platform. -e performance parameters of the in-
ertial measurement unit 3DM-10A are shown in Table 2.
Take the X-axis data outputted from theMEMS gyroscope as
the experimental object. Firstly, the device is turned on and
preheated for 5 minutes to stabilize the working state, and
then the signal output from the gyro is sampled and col-
lected. -e sampling frequency is 100Hz, the sampling time
is about 1 h, and the static X-axis data from the gyroscope is
shown in Figure 3.

-en, decompose and screen the above original signal.
As shown in Figure 4, after decomposition, 15 IMF com-
ponents and one remainder R are obtained.

Table 1: -e characteristics of time series model.

Model name AR (p) MA (q) ARMA (p, q)

Autocorrelation coefficient function Trailing q step censoring Trailing
Partial autocorrelation coefficient function P step censoring Trailing Trailing
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4.1.1. Analysis of Bhattacharyya Distance. Use the kernel
density estimation method to obtain the PDF of the original
signal and each component, and then, calculate the Bhat-
tacharyya distance between them according to formula (7).
As clearly shown in Figure 5, the slope between BLIMF6 and
BLINF7 is the largest. -erefore, IMF1-IMF6 are the noise
IMFs; that is, the first boundary point is j � 6.

4.1.2. Analysis of Autocorrelation Function. In order to
determine the second demarcation point k, that is, the
boundary between the mixed IMFs and the signal IMFs, the
autocorrelation function of each order IMF component is
calculated and normalized, as shown in Figure 6. It can be
concluded from the characteristics of the autocorrelation
function that the autocorrelation function value of IMF1 −

IMF10 is the largest at the zero point, and the other points are
rapidly attenuated to zero, which can be initially determined
as it contains noise, while the function value of IMF11 −

IMF15 has a certain regularity change, which can be de-
termined as it is dominated by the signal.

In order to further accurately determine the second
demarcation point k, the variance threshold method is used
to verify it. As shown in Figure 7, the variance of the IMF
autocorrelation function of each order is calculated.
According to the variance threshold method, the variances
of the autocorrelation function of IMF1 − IMF10 are all less
than 0.01; nevertheless, the variances of the autocorrelation
function of IMF11 − IMF15 are significantly larger than 0.01
and increase exponentially. -erefore, IMF6 − IMF10 are
mixed IMFs that can be accurately determined; that is, the
next step modelling and filtering are required. A reasonable
model is established for the filtered component signals
(because of limited space, this article only takes IMF6 as an
example). Firstly, the IMF6 component signal is tested for
zero-mean and normal distribution, as shown in Figures 8
and 9. After testing, it is concluded that the IMF6 component
satisfies themodelling conditions.-e samemethod tests the
IMF8 − IMF10 in turn, all of which meet the modelling
conditions.

Next, model identification and model ordering of
component signals are performed, and the autocorrelation
function curve and the partial correlation function curve of
IMF6 are drawn, respectively, as shown in Figure 10. It can
be seen from the figure that the autocorrelation function is
tailed and the partial autocorrelation function presents a
p-step censored. According to Table 1, the model is an AR
model. At the same time, according to the BIC criterion, as
shown in Figure 11, the number of BIC functions with the
minimum value is selected as the optimal order, and the
optimal order of the model of IMF6 is 4, so the model is
judged as the AR (4) model. After the model is determined,
the parameters of the model are estimated by least squares
estimation method, and finally the model applicability test is
performed.

In the same way, IMF6 − IMF10 are modelled, respec-
tively. After a series of modelling steps and applicability
tests, the final modelling results are shown in Table 3.

Finally, Kalman filtering is performed on the above
model, and the parameters are set and updated. After each
component filter is updated, the signals are reconstructed
according to equation (3). -e reconstruction result is the
final denoising signal. -ree different schemes are adopted
to denoise the same set of data, respectively:

(i) Scheme 1: direct modelling method
(ii) Scheme 2: traditional EMD method
(iii) Scheme 3: the method in this article

-e denoising results of each scheme are shown in
Figure 12.

Additionally, the root mean square error (RMSE) and
signal-to-noise ratio (SNR) are introduced as evaluation
criteria [20]. -e definitions of the two evaluation indicators
are as follows:

Table 2: Performance parameters of 3DM-10A.

Parameters Value Unit
Gyro bias stability 0.03 °/s
Gyro random walk 0.03 °/(s1/2)
Accelerometer bias stability 0.03 °/s
Accelerometer random walk 0.03 °/(s1/2)
Resolution ±0.01 °/s
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Figure 2: Inertial platform test system.
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RMSE �

������������

1
n

􏽘

N

i�1
xi − xi
′( 􏼁
2

􏽶
􏽴

, (20)

SNR � 10 log
􏽐

N
i�1 x

2
i

􏽐
N
i�1 xi − xi

′( 􏼁
2

⎛⎝ ⎞⎠. (21)

In equations (20) and (21), xi is the original signal; xi
′ is

the denoising signal; and N is the length of the signal.
-e calculation results are shown in Table 4.
It can be seen from Table 5 that the RMSE of the original

signal is 0.3497 °/s. After three different denoising schemes,
the RMSE of the original signal is reduced to different
degrees, and the signal-to-noise ratio is improved to
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Figure 4: -e IMF components and remainder of the original signal.
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different degrees. Scheme 3 proposed in this paper is the
most effective, the RMSE is minimum, and the signal-to-
noise ratio is the largest. Compared with the original signal,
scheme 1, and scheme 2, the RMSE of scheme 3 decreased by
71%, 48%, and 36%, respectively, and the signal-to-noise
ratio increased by 48%, 28%, and 6%. It is proven that
scheme 3 proposed in this paper has effective denoising
effect and has obvious advantages compared with scheme 1

and scheme 2. However, the improvement of the signal-to-
noise ratio of scheme 3 is not significantly improved
compared with scheme 2, but as can be seen from Figure 9,
the integrity and smoothness of the signal processed by
scheme 3 are better, the signal is smoother, and many peaks
are reduced. In order to further verify the effect of scheme 3
proposed in this paper, Allan’s variance comparison analysis
experiment is calculated.
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Figure 6: Autocorrelation functions of each IMF.
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4.2. Allan Variance Comparison Analysis. Allan variance
analysis is an effective method for gyro random error
identification and noise characteristics analysis [21]. -e

method can identify multiple different types of random
errors in different time domains and can classify the error
term into five error terms, quantization noise, angular
random walk, zero offset instability, angular rate random
walk, and speed ramp, and the error coefficients can be
analyzed quantitatively [22, 23].

In order to further verify the validity and applicability of
the proposed method, the Allan variance double logarithm
graph of the signals obtained by the three schemes is plotted.
As shown in Figure 13, it can be seen that the Allan variance
of original signal is the largest, and the Allan variances of
scheme 1, scheme 2, and scheme 3 are sequentially reduced.
-e Allan variance of scheme 3 proposed in this paper is the
smallest and has been reduced to 101 magnitude.

In addition, the error term coefficients of the original
signal and the signals processed by the three schemes are,
respectively, obtained by the fitting method and recorded in
Table 5. -e parameters Q, N, B, K, and R in the table are,
respectively, quantified noise coefficient, angular random
walk coefficient, zero offset instability coefficient, angular
rate randomwalk coefficient, and speed ramp coefficient (for
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Figure 9: Mean and mean square error changing chart. (a) Mean change. (b) Variance of mean square error.
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Figure 10: Model identification of IMF6. (a) Autocorrelation coefficient graph. (b) Partial autocorrelation coefficient graph.
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convenience of operation, the unit °/s is converted to °/h). It
can be obtained from the table that the coefficients of each
error term are reduced to different degrees through three
kinds of denoising schemes, and the coefficients of each
error term of the signal are the smallest after scheme 3
processing; the error coefficients Q, N, B, K, and R of the
signal processed by scheme 3 are reduced by 70%, 83%, 43%,
35%, and 34%, respectively, which fully demonstrates that
the method proposed in this paper has the best denoising
effect.

4.3.DynamicDataDenoisingExperiment. -e experiment of
dynamic data is closer to the actual application scene.
-erefore, a dynamic data denoising experiment is set up.
-e experiment of dynamic data is divided into two parts.
-e first part is the experiment of MEMS gyroscope rotating
at a constant speed. Both the main axis and the pitch axis of
the turntable rotate at a constant speed of 10 °/s, where the
main axis rotates in the clockwise direction and the pitch
axis rotates in the counter clockwise direction. -e exper-
imental results take the X-axis output signal as an example.
In the experiment, three different schemes proposed in
Section 3.1 are still used to compare the denoising results.
-e results are shown in Figure 14 and Table 6.

It can be seen from Table 7 that the denoising result of
scheme 3 proposed in this paper is significantly better than
scheme 1 and scheme 2. -e standard deviation is reduced
from 0.0198 to 0.0083, and the signal-to-noise ratio is in-
creased from 10.9428 dB to 32.4631 dB.

-e second part of the experiment is the MEMS gyro-
scope swinging motion experiment. In this part, the main
axis of the turntable and the pitch axis are both oscillated at a
rate of 10 °/s. -e experimental results take the Z-axis output
signal as an example. -e results are shown in Figure 15 and
Table 7.

It can be seen from Table 8 that the denoising result of
scheme 3 proposed in this paper is significantly better than
scheme 1 and scheme 2. -e standard deviation is reduced

Table 3: Modelling results of IMF6 − IMF10.

Component signal Model φ1 φ2 φ3 φ4 φ5 φ6

IMF6 AR (4) − 3.4799 4.4906 − 2.5336 0.5232
IMF7 AR (6) − 2.4296 1.5645 − 0.0048 − 0.0099 − 0.0673 − 0.0528
IMF8 AR (4) − 2.4396 1.4487 0.4232 − 0.4322
IMF9 AR (4) − 2.0945 1.0946 0.0950 0.0950
IMF10 AR (4) − 2.0082 1.0082 0.0088 − 0.0088
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Figure 12: Denoising results of each scheme.

Table 4: Denoising results comparison of each scheme.

Data/scheme RMSE (°/s) SNR (dB)
Original signal 0.3497 11.9505
Scheme 1 0.1930 16.4550
Scheme 2 0.1553 21.6059
Scheme 3 0.1001 22.9756

Table 5: Comparison of signal error term coefficients of each
scheme.

Data/Scheme Q (°) N (°/h1/2) B (°/h) K (°/h3/2) R (°/h2)
Original signal 0.0027 0.0109 18.8950 26.0161 6.0252
Scheme 1 0.0023 0.0087 14.7614 21.3508 5.0599
Scheme 2 0.0020 0.0056 14.1317 21.9775 5.2616
Scheme 3 0.0008 0.0018 10.7141 16.7933 3.9505

Original signal
Scheme 1

Scheme 2
Scheme 3

A
lla

n 
va

ria
nc

e (
°/h

)

10–1

100

101

102

103

104

10–1 100 101 10210–2

Time (s)

Figure 13: Allan variances comparison of each scheme.
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from 0.4876 to 0.0799, and the signal-to-noise ratio is in-
creased from 13.2743 dB to 25.4896 dB.

4.4. Vehicle Experiment. -e ultimate purpose of gyro
denoising is to improve the navigation accuracy of inertial
navigation system, so the position information of the inertial
navigation solution can directly reflect the advantages and
disadvantages of the algorithm [24].-erefore, the following
vehicle experiment is designed.

-e vehicle experimental device is shown in Figure 16.
-e experimental device is GPS/IMU combined positioning
system, and the inertial unit is IMU-200A. -e performance
parameters of vehicle sensors are shown in Table 8.

-e vehicle experimental environment is relatively
complicated and there are many interference factors, es-
pecially in the satellite occlusion area; the inertial navi-
gation solution data will have serious error divergence.
-erefore, in this part of the experiment, select the data
within 20 s of the satellite occlusion area under the vehicle
linear motion state, and set different solutions to solve the
problem:

(i) Scheme 1: calculate the original data of the gyro
outputted by the inertial navigation system

(ii) Scheme 2: calculate the gyro data processed by
traditional EMD

(iii) Scheme 3: calculate the gyro data processed by the
method proposed in this paper

-e longitude and latitude error results of the three
schemes are shown in Figure 17, and the corresponding
mean, standard deviation, and maximum error are com-
pared as shown in Table 9. Scheme 3 proposed in this paper
optimizes the position information to the maximum extent.
-e mean of the longitude error and the latitude error is
reduced to 1.3793m and 2.0689m, respectively; compared
with scheme 2, it decreased by 48.5% and 25%; the standard
deviation is reduced to 1.1120m and 1.6800m; compared
with scheme 2, it decreased by 65.5% and 25%. -e maxi-
mum error is reduced to 3.8464m and 5.7696m,
respectively.

Based on the above analysis, in the complex vehicle test
environment, the position information of the inertial
navigation calculation is significantly optimized. Com-
pared with the traditional EMD method, the error diver-
gence of inertial navigation system is further suppressed,
and the inertial navigation calculation accuracy is
improved.

Table 6: Denoising results comparison of rotating data.

Data/scheme RMSE (°/s) SNR (dB)
Original signal 0.0198 10.9428
Scheme 1 0.0193 16.2687
Scheme 2 0.0191 20.9575
Scheme 3 0.0083 32.4631

Table 7: Denoising results comparison of swinging data.

Data/scheme RMSE (°/s) SNR (dB)
Original signal 0.4876 13.2743
Scheme 1 0.1998 21.1113
Scheme 2 0.0897 23.1142
Scheme 3 0.0799 25.4896
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Table 8: Performance parameters of vehicle sensors.

Parameters Value Unit
Update rate 300 Hz
Gyro bias stability 0.007 °/s
Gyro random walk 2.4 °/s/Hz
Gyro resolution 0.007 mg
Accelerometer bias stability 0.2 °/s
Accelerometer random walk 0.2 °/s/Hz
Accelerometer resolution 0.33 mg
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5. Conclusions

Based on the traditional EMD algorithm, this paper pro-
poses a screening mechanism, which combines Bhatta-
charyya distance analysis and the characteristics of

autocorrelation function to classify the IMF into three
categories, namely, noise IMFs, mixed IMFs, and signal
IMFs. And then the mixed IMFs are modelled and filtered;
finally, the signal is reconstructed. Static experiment and
dynamic experiment on the turntable are set to verify the
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Figure 17: Comparison of position errors for each scheme. (a) Longitude error. (b) Latitude error.
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Figure 16: Vehicle experimental device.

Table 9: Position errors’ parameter of each scheme.

Mean Standard deviation Max error

Scheme 1 Longitude error (m) 9.2454 9.7228 34.0624
Latitude error (m) 5.3600 6.4389 23.038

Scheme 2 Longitude error (m) 2.6800 3.2195 11.5190
Latitude error (m) 2.7586 2.2400 7.6928

Scheme 3 Longitude error (m) 1.3793 1.1120 1.6800
Latitude error (m) 2.0689 1.6800 5.7696
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performance of the algorithm. -e experimental results
show that the denoising effect of the proposed method is
better than that of the traditional EMDdenoisingmethod. In
addition, the vehicle experiment in complex environment is
designed; the results show that the accuracy of inertial
navigation position calculation is still significantly opti-
mized. It fully proves that the method has obvious denoising
effect, greatly improves the signal quality, improves the
accuracy of the inertial navigation calculation, and has
certain guiding significance for engineering applications.
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