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,is research aims to study the characteristics of thermal transport and analyse the entropy generation of electroosmotic flow of
power-law fluids in a microtriangular prism in the presence of pressure gradient. Considering a fully developed flow subject to
constant wall heat flux, the nonlinear electric potential, momentum, and linear heat transfer equations are solved numerically by
developing an iterative finite difference method with a nonuniform grid.,e thermal efficiency of the model is explored under the
light of the second law of thermodynamics. Effect/impact of governing physical parameters on velocity, temperature, Nusselt
number, and entropy distributions is studied, and the results are demonstrated graphically; we found that the Nusselt number
decreases with the increase of power-law index, and average entropy generation increases with power-law index. We believe that
the obtained result in the present study shall be useful for design of energy efficient microsystems which utilize the dual
electrokinetic and centrifugal pumping effects.

1. Introduction

Discovery of microfluidic devices requires designing a
suitable pumping system which is of considerable impor-
tance. Among various different techniques developed such
as magnetohydrodynamics, piezoelectrics, and electro-
hydrodynamics [1–3], electroosmosis [4] has received spe-
cial attention for lab-on-a-chip microfluidic devices because
of the simple design and easier fabrication of electroosmotic
pumping systems. ,e aforementioned techniques are
generally conducted in micron-sized ducts with arbitrary
cross section; therefore, the name microfluidics. ,ere are
several advantages to the use of microfluidic devices, such as
low energy and material consumption, higher accuracy,
easier control, and automation. ,ese are the main reasons
that made microfluidics one of the most attractive research
fields in recent years.

Since the generation of fluid flow is crucially important at
microscale, a classical pressure gradient-driven mechanism
which containsmoving components is extremely difficult to be

designed andmanufactured atmicroscales and ismostly prone
to mechanical failure. In this respect, generation of the elec-
troosmotic flow (EOF) system is the only unique alternative,
indeed, establishing fluid flow called electroosmosis. More-
over, since electroosmotic pumping involves only application
of the electric field on a duct with no moving components,
electroosmotical design, and fabrication-actuated microfluidic
devices, this process is much easier than their pressure-based
counterparts. In 1809, Reuss [5] was first to report the study of
EOF. He showed that by the application of suitable electric
voltage, water can flow through a plug of clay. ,is work was
followed by the theoretical study of Helmholtz in 1879 [6] on
the electric double layer (EDL). In the early 1900s, Smo-
luchowski [7] investigated electrokinetically driven flows
under the conditions where the EDL thickness is much smaller
than the channel height.

Regarding to the research on hydrodynamics of elec-
troosmotic flow, Burgreen and Nakatche [8] and Rice and
Whitehead [9] considered the electrokinetic flow for slit and
cylindrical capillaries, respectively, where they assumed low
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values of the zeta potential and used Debye–Hückel linear-
ization. Later, Levine et al. [10] used analytical approximation
solution of Poisson–Boltzmann equation with high zeta
functions. When we have the situation that two cylindrical
walls carry high zeta potentials, Kang et al. [11] analytically
analysed the electroosmotic flow through an annulus. Yang
[12] andWang et al. [13] obtained analytical solutions for fully
developed and pressure effects on electroosmotic flow in
rectangular and semicircular microchannels. Recently, Azari
et al. [14] considered Graetz problem analytically for the
electroosmotic flow in microchannels and pressure-driven
with distributed wall heat flux; their results indicate that the
average Nusselt number is a decreasing function of pressure-
driven velocity and the electric double layer thickness, re-
gardless of the wall heat flux distribution.

Biofluids encountered in many lab-on-chip devices
show non-Newtonian behavior; their rheological prop-
erties significantly differ from the Newtonian law of vis-
cosity, and usually, their viscosities are dependent on the
rate of shear. Hence, analysing such fluid under the action
of the electroosmotic force is necessary for design the lab-
on-chip devices. Literature reviews indicate that there is a
growing interest in modelling of electroosmotic flow of
non-Newtonian fluid. Under the sole influence of elec-
trokinetic forces, in a rectangular microchannel, Das and
Chakraborty [15] investigated the transport characteristics
of a non-Newtonian fluid flow. ,ey used Debye–Hückel
linearization and obtained an analytical solution for ve-
locity and temperature field. ,eir results reveal that
significant reductions in species concentration levels
characterized by more significant viscous effects may be
achieved by higher hematocrit fraction on account of
stronger dispersions in the velocity profiles. ,is work was
followed by Zhao and coworkers [16], first in [17], and they
found the analytical solution for power-law fluids in a slit
channel and small zeta function; later in [18], this group
obtained the expression for the general Smoluchowski
velocity by solving the same problem without restriction
on zeta function for electroosmosis of power-law fluids in a
similar fashion to the classic Smoluchowski velocity for
Newtonian fluids. ,e group later extended their study to
the EOF of non-Newtonian power-law fluids in a cylin-
drical microchannel and found the exact solution for
power-law index n � 1 and 0.5 and approximate solutions
obtained for arbitrary values of fluid behavior index. ,e
steric effect induced alterations in streaming potential, and
energy transfer efficiency of power-law fluid is investigated
analytically by Bandopadhyay and Chakraborty [19], and
they found that giant augmentations in the energy transfer
efficiency may be caused by confluence of the steric in-
teractions with the non-Newtonian transport character-
istics for shear thickening fluids under appropriate
conditions. In rectangular microchannels, Vakili et al. [20]
analysed electrokinetically driven fluidic transport of
power-law fluids, and their result indicates that Poiseuille
number is an increasing function of the zeta potential, the
flow behavior index, channel aspect ratio, and the di-
mensionless Debye–Hückel parameter. Regarding to tri-
angular geometry, Chaves et al. [21] used generalized

integral transform technique and employed the laminar
forced convection (hydrodynamically fully developed and
thermally developing laminar flow which was generated by
pressure gradient) of power-law non-Newtonian fluids
inside ducts with arbitrary-shaped cross sections. We have
also more recent study of Mukherjee et al. [22]; they used
COMSOL commercial package programme and employed
the laminar forced convection in power-law and Bingham
plastic fluids in ducts of semicircular and other cross-
section problems where the flow is generated by the
gradient of pressure. ,ey show that their results reduce to
the power-law fluid prediction for zero and infinite shear
viscosities. Effects of homogeneous-heterogeneous reac-
tions in MHD flow of Casson fluid flow over a stretched
surface is considered by Khan et al. [23].

Combination of electroosmotic and pressure-driven
force may be involved in many practical applications.
However, there are significant differences between the hy-
drodynamic characteristics of combined pressure-driven
and electroosmotic flow (PDEOF) from those of both
conventional pressure gradient-driven flow (PDF) and pure
electroosmotic flow (EOF). Literature is very rich also in this
topic. But, in this study, we concern in power-law fluid; in
this regard, we have the study of Vakili et al. [24] in which
they consider pressure effects on electroosmotic flow of
power-law fluids in rectangular microchannels, and they
later studied thermal transport characteristic as well in [25].
,ermally fully developed case for electroosmotic flow of
power-law nanofluid in a rectangular microchannel is in-
vestigated by Deng in [26]; their result indicates an increase
in the Nusselt number with the flow behavior index and with
electrokinetic width when considering the surface heating
effect, which decreases with the Joule heating parameter.

Recently, there is a growing interest of scientist on the
physical importance for the entropy generation analysis.
,is concept explored in the pioneering work of Bejan [27]
where the author considered the thermodynamic second law
features of heat transfer by forced convection on four dif-
ferent flow configurations: pipe flow, flow in a rectangular
duct, boundary layer over flat plate, and cross-flow; then, he
analysed the irreversibility due to heat transfer through finite
temperature gradient and irreversibility due to the viscous
effect. In a series of research studies, Khan and his co-au-
thors investigated the entropy generation for a different flow
and heat transfer problem. Khan et al. in [28] studied second
order velocity slip flow of viscous fluid by a variable
thickened stretchable surface of disk problem and obtained
the numerical results for entropy generation. We also note
following studies on entropy generation analysis for the flow
and heat transfer problem in [29–31].

Microchannel has close to a rectangular shape cross
section in most lab-on-chip systems [32, 33]; but due to the
limitation of space in some cases, a microchannel of triangular
cross-section must be used. ,us, the flow of fluids in a tri-
angular microchannel has received special attention [34].
Literature reviews reveal that no study has yet explored the
electroosmotic flow thermal features of power-law fluids in a
microtriangular duct.,is provides enoughmotivation for the
current study. ,e numerical method is developed to explore
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the thermal characteristics and entropy generation of mixed
electroosmotic and pressure-driven flow of power-law fluids in
a microtriangular duct by considering the viscous dissipation
effects. ,e triangular contour is chosen because it is the cross
section representing the largest deviation from the circular in
the family of axially symmetric tube contours.

,e organization of this paper is as follows. Formulation of
novel problem is given in Section 2. Governing equations for
our novel flow and heat transfer problem are derived in
Section 3. We studied the numerical method in Section 4,
Section 5 devoted to the introduction of the numerical
method, and entropy generation analysis is given Section 6.
Grid independence of the numerical method is studied in
Section 7, and numerical results are discussed in Section 8.
New finding documented in the final conclusion section where
we state new result that the Nusselt number decreases with
increase of power-law index and average entropy generation
increases with power-law index and discussion of the results.

2. Formulation of Problem

We consider the heat transfer associated with a mixed
electroosmotic and pressure gradient-driven flow of a power-
law fluid in a left triangular duct with the dimension given in
Figure 1. ,e flow considered to be steady laminar, both
hydrodynamically and thermally, developed. We assume that
fluid has constant thermophysical properties, and it contains
an ideal solution of fully dissociated salt. ,e EDL is assumed
to have a constant zeta potential on the wall (Stern layer).

,e triangular duct wall is a subject to zeta potential
which uniformly distributed over the walls. We also assume
that EDLs formed on the triangular wall do not overlap.
Furthermore, when we calculate the potential field and the
charge density, we assume that the temperature variations
over the triangular cross section are negligible as compared
to the absolute temperature. We calculate the charge density
based on the velocity-weighted average (bulk) temperature.
,erefore, Boltzmann equation can be used to describe the
spatial distribution of the electric charge density.

3. Governing Equations

,e following Poisson’s equation will be used to describe the
electrical potential distribution within the microtriangular:

∇2φ � −
ρe

ε
, (1)

where ε represents the fluid permittivity, and ρe is the net
electric charge. ,e potential ϕ is due to the combination of
externally imposed field and EDL potential; therefore,
equation (1) can be written as

φ � ϕ + ψ. (2)

,e electric charge density for an ideal solution of fully
dissociated salt is given by [24]

ρe � − 2n0eZ sinh
eZψ
kBT

 , (3)

where n0, e, Z, T , and kB is the ion density, valence of ions,
proton charge, absolute temperature, and Boltzmann con-
stant, respectively. Since our flow problem hydrodynami-
cally fully developed, EDL potential is reduced to
ψ � ψ(x, y), and the external potential gradient here is in the
axial direction only which means ϕ � ϕ(z), where z stands
for the axial coordinate. For a constant voltage gradient in
the z-direction, equation (1) becomes

z
2ψ

zx
2 +

z
2ψ

zy
2 �

2n0eZ

ε
sinh

eZψ
kBT

 . (4)

,e effect of temperature on the potential distributions is
shown to be negligible [24]; hence, potential distribution can
be calculated on the basis of average temperature over the
triangular region. Now, we write the equation (4) in di-
mensionless form as

z
2ψ∗

zx
∗2 +

z
2ψ∗

zy
∗2 � K

2sinhψ∗, (5)

where ψ∗ � ((εZψ)/(kBTav)), x∗ � (x/H), y∗ � (y/H), and
K represents the dimensionless Debye–Hückel parameter
given by K � (H/λD) with λD � ((εkBTav)/(2n0e

2Z2))(1/2)

(we omit the star expression). It is apparent from the def-
inition that a large value of K denotes a relatively thin
electric double layer and vice versa. In this study, we con-
sider equation (1) with the following boundary conditions:

ψ∗(1, y) � ζ∗,

ψ∗(x, 0) � ζ∗,

ψ∗(x, x) � ζ∗,

or

ψ∗(y, y) � ζ∗, 0≤x, y≤ 1.

(6)

,e governing equation of flow field for the power-law
fluid is the continuity, and Cauchymomentum equations are
given as

∇ · u � 0, (7)

ρ
Du
Dt

� − ∇p + ∇ · τ + F, (8)

where u is the velocity vector, p is the pressure, ρ is the
density, τ is the total stress tensor (Cauchy extrastress tensor),
andF is the body force.,e total stress tensor can be related to
the strain rate tensor (generalized Newtonian fluid) as

τ � 2μ( _c) _c, (9)

where _c � (∇u + ∇uT)/2, and μ( _c) is the effective viscosity
with _c as themagnitude of the strain tensor, which is defined as

_c �
1
2

_c · _c 
(1/2)

. (10)

,e effective viscosity for power-law fluid is modelled as
μ( _c) � η(2 _c)

n− 1
, (11)
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where η is the flow consistency index, and n is the flow
behavior index. We note that power-law fluid is subdivided
into three different types of fluids based on the flow behavior
index that n< 1 corresponds to shear thinning n � 1 New-
tonian and n> 1 shear thickening fluids, respectively. Since
we also assumed that the flow is fully developed, in this case,
velocity vector becomes u � [0, 0, w(x, y)], then continuity
equation is automatically satisfied, and momentum equation
(8) is reduced to

0 � −
dp

dz
+

z

zx
τxz +

z

zy
τyz + Fz. (12)

,e z-component of the electric body force, generated
due to the interaction of the electric charge density in EDL
and the electric field, equals ρeEz with Ez � − (d/dz) rep-
resenting the electric field in the axial direction. By
substituting ρe from equation (3), the z-component of the
electric body force becomes

Fz � − 2n0ZEzsinh
eZψ

kBTav
 . (13)

Magnitude of rate of strain and effective viscosity is obtained
as

_c �
1
2

zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

(1/2)

, (14)

μ( _c) � η
zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((n− 1)/2)

. (15)

Now, substituting (14) and (15) in (9), the shear stresses
reduce to

τxz � η
zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((n− 1)/2)
zw

zx
, (16)

τyz � η
zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((n− 1)/2)
zw

zy
. (17)

Substituting (13), (16), and (17) into the momentum
equation (12), we obtain

z

zx
η

zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((n− 1)/2)
zw

zx
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

z

zy
η

zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((n− 1)/2)
zw

zy
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ −

dp

dz
− 2n0ZEzsinh

eZψ
kBTav

  � 0. (18)

After performing the differentiation, we obtain

η n
zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

z
2
w

zx
2 + η n

zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

z
2
w

zz
2 + 2(n − 1)η

zw

zx

zw

zy
 

z
2
w

zx zy
−

zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((3− n)/2)
dp

dz
+ 2n0ZEzsinh

eZψ
kBTav

   � 0.

(19)

x

y

z

H

H

ζ

qw

Figure 1: Geometry of flow problem.
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,eHelmholtz–Smoluchowski electroosmotic velocity is
considered here as the reference velocity, UHS, and this for
power-law fluids at small zeta potentials becomes [24]

UHS � nλ((n− 1)/n)
D −

εζEz

η
 

(1/n)

. (20)

After defining dimensionless velocity as w∗ � (w/UHS),
the dimensionless form of momentum equation is given by
(again omitting star expression)

n
zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

z
2
w

zx
2 + n

zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

z
2
w

zz
2 + 2(n − 1)

zw

zx

zw

zy
 

z
2
w

zx zy
� −

zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((3− n)/2)

·
n + 1

n
 

n

Γ +
K

n+1

n
nζ

sinh(ψ) ,

(21)

where Γ � (Un
PD/Un

HD), and Un
HD � ((n + 1)/n)n (− (1/η)

(dp/dz)Hn+1). ,is is the subject to the following boundary
conditions:

w(1, y) � 0,

w(x, 0) � 0,

w(x, y) � 0 onx � y.

(22)

Fundamental physical law of energy conservation will be
used to obtain temperature distribution. Considering the
effect of viscous dissipation and Joule heating, the energy
equation is written as

ρcp

DT

Dt
� ∇ · (k · ∇T) + s + τ: ∇w, (23)

where k is the thermal conductivity, cp is the specific heat, s

is the Joule heating term, and τ: ∇w represents the volu-
metric heat generation caused by viscous dissipation. ,e
term s � (E2

z/δ(T)) represents the Joule heating, where δ(T)

is the liquid electrical resistivity given by

δ(T) �
δ0

cosh (eZψ)/ kBTav( ( 
, (24)

where δ0 is the neutral liquid electrical resistivity. ,e term
representing viscous dissipation can be expressed as

τ: ∇w � τxz

zw

zx
+ τyz

zw

zy
. (25)

Using (16) and (17) energy equations for steady fully
developed flow of power-law fluid becomes

ρcpw(x, y)
zT

zz
� k

z
2

zx
2 +

z
2

zy
2 +

z
2

zz
2 T + ηΦ +

E
2
z

δ0
cosh

eZψ
kBTav

 ,

(26)

where

Φ �
zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((n− 1)/2)
zw

zx
 

2

+
zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((n− 1)/2)
zw

zy
 

2

.

(27)

Since the flow is assumed to be thermally fully developed,
this gives

z

zz

Tw − T

Tw − Tm

  � 0, (28)

where Tm and Tw are the bulk and wall temperatures, re-
spectively. ,e convection rate equation could be written as

qw �
k

H
Tw − Tm( , (29)

representing a constant wall heat flux qw boundary condition
(invariant of axial coordinates), and then from (28), we have

zT

zz
�
dTm

dz
�
dTw

dz
� constant. (30)

Substituting the above equation into (26), we find

ρcpw(x, y)
dTm

dz
� k

z
2

zx
2 +

z
2

zy
2 T + ηΦ +

E
2
z

δ0
cosh

eZψ
kBTav

 ,

(31)

where

Φ �
zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((n+1)/2)

. (32)

,e following relation represents the energy balance
accounting for heat fluxes on walls of triangle, Joule heating
on an elemental control volume, and viscous dissipation:

ρcpw(x, y)
dTm

dz
�
4qw

dh

+
1

H
2 ηΦ +

E
2
z

δ0
cosh

eZψ
kBTav

  , (33)

where the angle bracket denotes an average taken over the
cross section, and dh � (4A/P) is the hydraulic diameter of
the left angular duct.

For the fully developed flow, the dimensionless tem-
perature is defined as

θ(x, y) �
T − Tw(z)

qwH( /k( 
. (34)
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Substituting (33) in (31) and using dimensionless tem-
perature function and dimensionless parameters which are
defined before, we obtain

z
2θ

zx
2 +

z
2θ

zy
2 �

w

wm

4
dh

+ SI1 +
SSv

K
2 I2 

−
SSv

K
2

zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((n+1)/2)

− S coshψ,

(35)

where the dimensionless parameters are

S �
E
2
zH

qwδ0
,

Sv �
ηδ0U

n+1
HS

E
2
zλ

2
DH

n− 1,

wm � 
1

0


x

0
w(x, y)dy dx,

I1 � 
1

0


x

0
coshψdydx,

I2 � 
1

0


x

0

zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

(n+1/2)

dydx.

(36)

,e dimensionless boundary conditions for the energy
equation are

θ(x, 0) � 0,

θ(0, y) � 0,

θ(x, y, z) � 0, onx − y � 0.

(37)

Based on the hydraulic diameter of the trigonometric
geometry, the Nusselt number Nu can be represented by

Nu � −
dh

θm

, (38)

where

θm �

1
0 

x

0 w(x, y)θ(x, y)dydx


1
0 

x

0 w(x, y)dydx
�

wθ
w

. (39)

4. Numerical Method

In this work, we studied the finite difference procedure with
a nonuniform grid as described in [35] for our problem in
(5), (21), and (35). We used following stretching functions to
generate the nonuniform grid:

xi �
1
2

−
sin− 1

(− α cos((πi)/N))

2 sin− 1 α
, i � 1, . . . , N,

yj �
1
2

−
sin− 1

(− α cos((πj)/N))

2 sin− 1 α
, j � 1, . . . , N.

(40)

We now use finite difference approximation with a
nonuniform grid for equations (5)–(21) and (35) as

1
Δxi( 

2 +
1
ΔxiΔxi− 1

+
1

Δyj 
2 +

1
ΔyjΔyj− 1

⎛⎜⎝ ⎞⎟⎠ψi,j �
1
Δxi( 

2ψi+1,j +
1
ΔxiΔxi− 1

ψi− 1,j
⎛⎝ ⎞⎠

+
1

Δyj 
2ψi,j+1 +

1
ΔyjΔyj− 1

ψi,j− 1
⎛⎜⎝ ⎞⎟⎠ + K

2sinh ψi,j ,

(41)

wi+1,j − wi,j

Δxi

 

2

+
wi,j+1 − wi,j

Δjj

 

2
⎡⎣ ⎤⎦

((n− 3)/2)

n
wi+1,j − wi,j

Δxi

  +
wi,j+1 − wi,j

Δjj

 

2
⎡⎣ ⎤⎦

⎧⎨

⎩

+
1
Δxi( 

2wi+1,j −
1
Δxi( 

2 +
1
ΔxiΔxi− 1

⎛⎝ ⎞⎠wi,j +
1
ΔxiΔxi− 1

wi− 1,j
⎛⎝ ⎞⎠

wi+1,j − wi,j

Δxi

 

2

+ n
wi,j+1 − wi,j

Δjj

 

2
⎡⎣ ⎤⎦

·
1

Δjj 
2wi,j+1 −

1

Δyj 
2 +

1
ΔyjΔyj− 1

⎛⎜⎝ ⎞⎟⎠wi,j +
1

ΔyjΔyj− 1
wi,j− 1

⎛⎜⎝ ⎞⎟⎠

·2(n − 1)
wi+1,j − wi,j

Δxi

 
wi,j+1 − wi,j

Δjj

 
wi+1,j+1 − wi+1,j− 1 − wi− 1,j+1 + wi− 1,j− 1

xi+1 − xi− 1(  yi+1 − yi− 1( 


�
n + 1

n
 

n

Γ +
K

n+1

n
nζ

sinh ψi,j ,

(42)
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−
1
Δxi( 

2 +
1
ΔxiΔxi− 1

+
1

Δyj 
2 +

1
ΔyjΔyj− 1

⎛⎜⎝ ⎞⎟⎠θi,j +
1
Δxi( 

2θi+1,j +
1
ΔxiΔxi− 1

θi− 1,j
⎛⎝ ⎞⎠ +

1

Δyj 
2θi,j+1 +

1
ΔyjΔyj− 1

θi,j− 1
⎛⎜⎝ ⎞⎟⎠

�
wi,j

wm

4
dh

+ SI1 +
SSv

K
2 I2  −

SSv

K
2

wi+1,j − wi,j

Δxi

 

2

+
wi,j+1 − wi,j

Δyj

 

2
⎡⎣ ⎤⎦

((n+1)/2)

S cosh ψi,j .

(43)

Implementing boundary conditions (6), (22), and (36)
easily and applying the predictor-corrector scheme as usual

for nonlinear equations (41) and (42), we obtain following
system of equations for each step:

1
Δxi( 

2 +
1
ΔxiΔxi− 1

+
1

Δyj 
2 +

1
ΔyjΔyj− 1

⎛⎜⎝ ⎞⎟⎠ψk
i,j �

1
Δxi( 

2ψ
k
i+1,j +

1
ΔxiΔxi− 1

ψk
i− 1,j

⎛⎝ ⎞⎠ +
1

Δyj 
2ψ

k
i,j+1 +

1
ΔyjΔyj− 1

ψk
i,j− 1

⎛⎜⎝ ⎞⎟⎠

+ K
2sinh ψk

i,j+1 , i, j � 1, . . . , N,

(44)

A
k− 1
ij

1
Δxi( 

2w
k
i+1,j −

1
Δxi( 

2 +
1
ΔxiΔxi− 1

⎛⎝ ⎞⎠w
k
i,j +

1
ΔxiΔxi− 1

w
k
i− 1,j

⎡⎢⎢⎣ +
1

Δyj 
2w

k
i,j+1 −

1

Δyj 
2 +

1
ΔyjΔyj− 1

⎛⎜⎝ ⎞⎟⎠w
k
i,j

+
1

ΔyjΔyj− 1
w

k
i,j− 1 + C

k− 1
i,j D

k− 1
i,j

1
Δxi( 

2w
k
i+1,j −

1
Δxi( 

2 +
1
ΔxiΔxi− 1

⎛⎝ ⎞⎠w
k
i,j

1
ΔxiΔxi− 1

w
k
i− 1,j

⎛⎝ ⎞⎠

+ C
k− 1
i,j E

k− 1
i,j

1

Δyj 
2w

k
i,j+1 −

1

Δyj 
2 +

1
ΔyjΔyj− 1

⎛⎜⎝ ⎞⎟⎠w
k
i,j +

1
ΔyjΔyj− 1

w
k
i,j− 1

⎛⎜⎝ ⎞⎟⎠ + F
k− 1
i,j

w
k
i+1,j − w

k
i,j

Δxi

⎛⎝ ⎞⎠

+ G
k− 1
i,j

w
k
i,j+1 − w

k
i,j

Δyi

⎛⎝ ⎞⎠ �
n + 1

n
 

n

Γ +
K

n+1

n
nζ

sinh ψi,j .

(45)

First guest is taken for (45) from Newtonian case (n � 1)

in which case exact analytical solution is possible; for (44),
we can use Debye–Hückel linearization. We then apply the
successive overrelaxation method to solve equations (44)
and (45). In each iteration, the value of ψprev

i,j is used in one
previous iteration and updated for each iteration for (44).
We continue until we achieve the required overall relative
error of 10− 6. Similar logic is used to solve equation (45).
One’s solutions are obtained for potential and velocity field.
Energy equation in (43) was solved by the SOR method
again, and results are given in the following section.

5. Entropy Generation Analysis

In Sections 2 and 3, we discussed thermodynamical be-
haviors of the system; it is well known that entropy gen-
eration plays an important role in this field. We now study
analysis of entropy generation for our current flow problem
along the same line as in Bejan [27]. ,e generation of total
entropy is the sum of viscous dissipation, Joule heating, and

thermal gradients, and this expression can be mathemati-
cally formulated as

S
∗
G � S
∗
T + S
∗
F + S
∗
J , (46)

where, in the above right-hand side terms, S∗T is the entropy
generation rate because of heat transfer, S∗F is the fluid
friction, and S∗J represents the Joule heating irreversibilities,
and these terms can be expressed by

S
∗
T �

k

T
2
0
(∇T)

2
,

S
∗
F �

1
T0

(τ: ∇w),

S
∗
J �

Qj

T0
.

(47)

,e dimensionless form of the total entropy generation
can be derived as SG � ST + SF + SJ, where

Mathematical Problems in Engineering 7



ST � 
1

0


x

0
S

c
T(x, y)dydx,

SF � 
1

0


x

0
S

c
F(x, y)dydx,

SJ � 
1

0


x

0
S

c
J(x, y)dydx,

(48)

whereas

S
c
T �

zθ
zx

 

2

+
zθ
zy

 

2

,

S
c
F �

SSv

RK
2

zw

zx
 

2

+
zw

zy
 

2
⎡⎣ ⎤⎦

((n+1)/2)

,

S
c
J �

S

R
coshψ,

(49)

where R � ((qwH)/(T0k)).

6. Method Validation

Excellent convergence was achieved for all the results. ,e
following algorithm was used:

Step 1 Specify values of ζ, n, andK

Step 2 Solve equation (44) by using a predictor-corrector
along with the SOR method

Step 3 Substitute the solution of equation (44) into (45),
solve equation (45) for n � 1, and then, use this
solution as an initial velocity solution for n≠ 1
where we used again a predictor-corrector along
with the SOR method

Step 4 Substituting the solution of equation (45) into
(43), solve equation (43) with the SOR method

Step 5 Calculate the entropy generation with a variety of
parameters

In order to the reliability of the numerical result, we need
to validate numerical result. We first check the grid de-
pendency of the numerical result for velocity result. As usual,
we first obtained approximate solution for the grid system
101 × 101, and compared with the gridding 151 × 151 and
201 × 201, we have seen that differences between obtained
results for mean velocity is less than 1 × 10− 5; hence, we use
system 151 × 151 for all our computation in the numerical
results.

Besides the analysis of grid dependency, we need to
compare our numerical result with the benchmark data. ,e
results are compared with two limiting cases: one of them is
the Debye–Hückel linearization which can be applied to the
equation (5) which is sinhψ∗ ≈ ψ∗; hence, equation (5)
becomes linear. We then use the eigen function expansion as
in the work of Wang [36] to find the approximate analytical
solution of (5), and we first change the dependent variable as
ψ � ζ∗ − Q, and then

z
2
Q

zx
2 +

z
2
Q

zy
2 ≈ K

2 ζ∗ − Q( ,

withQ(1, y) � 0, Q(x, 0) � 0, Q(x, x) � 0.

(50)

We now express the unknown functions and unity in
terms of Helmholtz eigen functions as

Q(x, y) � 
j

Ajφj,

1 � 
j

ajφj.
(51)

Substituting (51) into (50), we obtain

Aj �
K

2ζ∗aj

K
2

+ λj

, j � 1, . . . , N. (52)

Eigen values and eigen functions of Helmholtz eigen-
value problem for our geometry are given by

λmn � π2
m

2
+ n

2
 ,

φmn � sin(nπx)sin(mπy) − sin(nπy)sin(mπx).
(53)

We now compare the exact solution (51) with the result
of the finite difference solution (44) for ζ∗ � 1 andK � 5
which is shown in Figure 2(a); we see that differences be-
tween the exact and numerical solution are negligible
(less than 10− 4) for 151 × 151 number of grid points. In
order to check the grid-independent result, we increase the
number of grids to 201 × 201, and we see that differences
between the two numerical solution are less than 10− 5.
,erefore, we conclude that the result of 151 × 151 number
of grid points is enough for the grid-independent result.

,e other one is the simplification of the momentum
equation for the Newtonian case. In the case of pressure
gradient-driven flow and left triangular geometry, the exact
solution is given by Pipkin and Rivlin (1963) in [37] after
transformation as

w(x, y) � −
3
2

y(x − y)(x − 1). (54)

We compared this exact analytical solution with the
numerical solution equation (45) with n � 1 in Figure 2(b)
which shows the satisfactory result.

7. Results and Discussion

In this section, numerical results are presented to show the
effect of parameters on the velocity and temperature field
where we assumed that the EOF (electroosmotic flow) field is
hydrodynamically and thermally fully developed. Further-
more, we discuss the effect of triangular geometry and flow
behavior concerning to the non-Newtonian rheology on the
velocity and temperature field in a detailed analysis. ,e
electroosmotic flow is driven by the combinedmechanism of
the pressure gradient and axially imposed electric field. ,e
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dynamic behavior of the power-law fluid is studied for
combined mechanism EOF pressure-driven flow with no-
slip conditions at the boundary of triangle.We note here that
power-law fluid depending on power-law index exhibits
shear thinning or shear thickening behaviors. In this study,
the characteristic of fluid flow and heat transfer are studied
numerically by using the finite difference method with a
nonuniform grid; when the triangle length L � 5 × 10− 3m,
height H � 10.0 μm, electron charge e � 1.6 × 10− 19C, field
strength of electricity E0 � 1.0 × 105V/m, Boltzmann con-
stant kB � 1.3805 × 10− 23J/K, Tab � 300K which is absolute
temperature, we considered valence of ion z as 1, fluid
permittivity ε � 6.95039 × 10− 10C/Vm, heat flux of wall
qw � 1.5 × 103W/m2, electrical conductivity
σ � 0.001S/m to 1.0S/m, specific heat cp � 3760J/kgK, and
thermal conductivity k � 613 × 10− 3W/mK [38].

,ere are several methods to solve Poisson–Boltzmann
equation which was outlined by Lu et al. [39]. In this work,
we chose the finite difference method with a nonuniform
grid. Next, we investigate the impact of power-law index on
the centerline velocity field. Here, we have investigated three
different extreme cases, which correspond to the three
different values of the scale ratio which are Γ � − 1 corre-
sponding to pressure opposing flow, Γ � 0 corresponding to
purely electrokinetic flow, and Γ � 1 corresponding to
pressure assisting flow. For n � 0.6, it can be seen in Figure 3
that velocity increases as Γ increases. Figures 4 and 5 show
the dimensionless velocity distribution at different values of
Γ and n for ζ∗ � 1 andK � 10; we see that maximum occurs
at the center of the triangle. ,ese are true relatively small
values of Γ in comparison to Debye–Hückel parameter,
where n � 0.6 and 1.2 corresponding to shear thinning and
shear thickening behavior of power-law fluid, respectively.
Note that the center of contour line velocity distributions for

n � 1.2 is much smaller than velocity distributions for
n � 0.6. It is clear from Figures 6 and 7 that the Joule heating
effect cannot be ignored, and it depends on the value of S.
Also, there is decrease or increase of the fluid temperature at
a uniform rate. We note here that fluid temperature is
negative for the case of heat generation S> 0. However, it is
positive for the heat absorption process S< 0. We also bring
about another important observation, which is the parabolic
shape of the temperature profile; during heat generation, it is
concave and convex during heat absorption in all of the cases
examined here. Figures 6 and 7 are explained in detail.
Figure 6 explores the effect of zeta potential on the
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Figure 2: (a) EDL potential for K � 5 and ζ � 1, exact and numerical solution of equation (50). (b) Velocity profiles for left triangular duct,
exact, and numerical solution for equation (54).
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Figure 3: ,e effect of Γ on centreline velocity for
K � 10, ζ � 1, and n � 0.6.
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temperature field where power-law index is considered as
n � 0.6 and 1.2, respectively. In these figures, we take the
other dimensionless parameters, which are used in calcu-
lations to be K � 10, S � − 4, and SV � 5. We observe that an
increase in the value of dimensionless zeta potential would
cause the increase in the temperature difference profiles
inside the triangle. Increasing the value of ζ, for which the
amount of Joule heating in the proximity of the wall of the
triangle increases, results in higher wall temperature which
leads to a higher temperature difference. It is important to

note that we used 81 × 81 grid points for more visibility to
sketch these figures. For the present problem, variation of
Nusselt number with power-law index is given in Figure 8;
we can clearly observe that the Nusselt number decreases
with increase in the power-law index, in the case of shear
thinning fluid, and becomes smaller for a shear thickening
fluid. We note here that this decrease is not linear, and
further increase in the value of ζ reduces the value of the
Nusselt number as seen in the same figure. Again in the case
of heat absorption characterized by negative values of the
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Figure 4: ,e effect of Γ on velocity distribution for K � 10, ζ � 1 , and n � 0.6. (a) Γ � − 1. (b) Γ � 1.
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Figure 5: ,e effect of Γ on velocity distribution for K � 10, ζ � 1 , and n � 1.2. (a) Γ � − 1. (b) Γ � 1.
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Joule heating parameter S � − 4, the Nusselt number in-
creases as the power-law index increases, which is not re-
ported before in any other geometry. In the initial phase, the
velocity and the temperature field in the flow of a fluid are
determined properly with momentum and energy equations
along with the microduct system; following this aspect, we
tried to obtain the thermodynamic irreversibilities because
of heat conduction, fluid friction, and Joule heating, and we
derived explicit expressions concerning entropy generation
analysis. As we stated earlier, temperature variation in the
microtriangular duct system is essentially dominated by the

Joule heating effect because of the external applied electric
field. ,erefore, the effect of the power-law effect on
characteristics of the entropy production is consisted by the
conductive heat transfer and viscous dissipation effects.
Increasing the value of power-law index and ζ increases the
average entropy, which is expected, because we obtained
large gradients of the flow velocity and temperature in the
microtriangular duct. Comparing entropy generation with
shear thickening fluid, we can see that entropy generation is
more pronounced for shear thickening fluid than that of the
shear thinning fluid, which is seen clearly in Figure 9 for
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Figure 6: ,e effect of ζ on temperature distributions for K � 10, S � − 4 , and SV � 5. (a) ζ � 1, n � 0.6. (b) ζ � 2, n � 0.6. (c) ζ � 1, n � 1.2.
(d) ζ � 2, n � 1.2.
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higher values of wall zeta function. We obtained larger
average entropy generation as seen in Figure 9. We also
examined the average entropy generation for negative S, and
we found that average entropy generation increases with
power-law index. Finally, we tried to find the effect of the
Debye–Hückel parameter on temperature, Nusselt number,

and average entropy generation while keeping the other
parameters fixed. Figure 10 shows the effect of centerline
temperature distribution, and we can see that the value of
temperature distribution increases with increasing the
Debye–Hückel parameter. Figure 11 represents the effect of
Debye–Hückel parameter on the Nusselt number, and we
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Figure 7: Temperature distributions for ζ � 1, Γ � 1, n � 0.6, K � 10, S � 1, and SV � 5.
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Figure 8: ,e effect of power-law index on the Nusselt number for Γ � 1, n � 0.6, andK � 10. (a) S � 1 and SV � 5.

(b) S � − 4 and SV � 5, ζ � 1.

12 Mathematical Problems in Engineering



see that the Nusselt number increases with the increase in
the value of the Debye–Hückel parameter. Finally, Figure 12
shows the effect of the Debye–Hückel parameter on the

average entropy generation, and we can see that the average
entropy generation decreases with the increase in the value
of the Debye–Hückel parameter as expected.

9

8

7

6

0.6 0.8
n

1.0 1.2 1.4

ζ = 1, 2

SG

(a)

0.6 0.8
n

1.0 1.2 1.4

–2

–2.2

–2.4

–2.6

–2.8

–3

–3.2

–3.4

–3.6

–3.8

SG

(b)

Figure 9: ,e effect of power-law index on the average entropy generation for Γ � 1, n � 0.6, andK � 10. (a) S � 1 and SV � 5.

(b) S � − 4 and SV � 5, ζ � 1.
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8. Conclusions

In this study, flow of power-law fluid, convective heat
transfer, and entropy generation characteristics are con-
sidered for the microtriangular prism for both hydro-
dynamically and thermally developed EOF. We developed
numerical algorithm based on the finite difference method
with a nonuniform grid.,e effects of key parameters such
as power-law index in particular, viscous dissipation,
Joule heating parameter on the flow, heat transfer, and
entropy production are examined for the triangular
geometry.

,e following result can be drawn from the current
research:

(a) A new finite difference algorithm with a nonuniform
grid is developed for our flow problem

(b) Suitable adjustment of the Joule heating may control
the fluid temperature distribution

(c) Nusselt number decreases with the increase of
power-law index, and average entropy generation
increases with power-law index

(d) We could use algorithm developed here for the
simulation of electrokinetically modulated trans-
port of blood at the microcirculatory system; one
example concerning this system is where the human
body is subjected to modern diagnostic tests such as
MRI

,e results of the numerical algorithm undertaken in
this research are useful to verify theoretical/experimental
models that may be involved with more complex three-
dimensional electrokinetic flows. Also, we believe that
concepts of the present research may be used to develop
more realistic ionic tissue models to investigate the elec-
trokinetic blood flow.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

References

[1] A. V. Lemoff and A. P. Lee, “An AC magnetohydrodynamic
micropump,” Sensors and Actuators B: Chemical, vol. 63,
no. 3, pp. 178–185, 2000.

[2] H. T. G. van Lintel, F. C. M. van de Pol, and S. Bouwstra, “A
piezoelectric micropump based on micromachining of sili-
con,” Sensors and Actuators, vol. 15, no. 2, pp. 153–167, 1988.

[3] A. Richter, A. Plettner, K. A. Hofmann, and H. Sandmaier, “A
micromachined electrohydrodynamic (EHD) pump,” Sensors
and Actuators A: Physical, vol. 29, no. 2, pp. 159–168, 1991.

[4] S. Arulanandam and D. Li, “Liquid transport in rectangular
microchannels by electroosmotic pumping,” Colloids and
Surfaces A: Physicochemical and Engineering Aspects, vol. 161,
no. 1, pp. 89–102, 2000.

[5] F. F. Reuss, “Sur un nouveleffet de I’electricitegalvanique,”
Memoires de la SocieteImperiale des Naturalistes de Moscou,
vol. 2, pp. 327–337, 1809.

[6] H. Helmholtz, “Studien uber electrische Grenzschichten,”
Annalen der Physik und Chemie, vol. 243, no. 7, pp. 337–382,
1879.

[7] M. Smoluchowski, ElektrischeEndosmose und Stromungsstr,
J. A. Barth, Leipzig, Germany, 1914.

[8] D. Burgreen and F. R. Nakache, “Electrokinetic flow in ul-
trafine capillary Slits1,” 5e Journal of Physical Chemistry,
vol. 68, no. 5, pp. 1084–1091, 1964.

[9] C. L. Rice and R. Whitehead, “Electrokinetic flow in a narrow
cylindrical capillary,” 5e Journal of Physical Chemistry,
vol. 69, no. 11, pp. 4017–4024, 1965.

[10] S. Levine, J. R. Marriott, G. Neale, and N. Epstein, “,eory of
electrokinetic flow in fine cylindrical capillaries at high zeta-
potentials,” Journal of Colloid and Interface Science, vol. 52,
no. 1, pp. 136–149, 1975.

[11] Y. Kang, C. Yang, and X. Huang, “Dynamic aspects of
electroosmotic flow in a cylindrical microcapillary,” Inter-
national Journal of Engineering Science, vol. 40, no. 20,
pp. 2203–2221, 2002.

[12] D. Y. Yang, “Analytical solution of mixed electroosmotic and
pressure-driven flow in rectangular microchannels,” Key
Engineering Materials, vol. 483, pp. 679–683, 2011.

[13] C. Y. Wang, Y. H. Liu, and C. C. Chang, “Analytical solution
of electro-osmotic flow in a semicircular microchannel,”
Physics of Fluids, vol. 20, no. 6, Article ID 063105, 2008.

[14] M. Azari, A. Sadeghi, and S. Chakraborty, “Graetz problem for
combined pressure-driven and electroosmotic flow in
microchannels with distributed wall heat flux,” International
Journal of Heat andMass Transfer, vol. 128, pp. 150–160, 2019.

[15] S. Das and S. Chakraborty, “Analytical solutions for velocity,
temperature and concentration distribution in electroosmotic
microchannel flows of a non-Newtonian bio-fluid,” Analytica
Chimica Acta, vol. 559, no. 1, pp. 15–24, 2006.

[16] C. Zhao, E. Zholkovskij, J. H. Masliyah, and C. Yang,
“Analysis of electroosmotic flow of power-law fluids in a slit
microchannel,” Journal of Colloid and Interface Science,
vol. 326, no. 2, pp. 503–510, 2008.

5
K

10 15 20

7

SG
6

6.5

5.5

5

Figure 12: ,e effect of Debye–Hückel parameter on average
entropy distribution for ζ � 1, Γ � 1, n � 0.6, S � 1, and SV � 5.

14 Mathematical Problems in Engineering



[17] C. Zhao and C. Yang, “Nonlinear Smoluchowski velocity for
electroosmosis of Power-law fluids over a surface with ar-
bitrary zeta potentials,” Electrophoresis, vol. 31, no. 5,
pp. 973–979, 2010.

[18] C. Zhao and C. Yang, “Electroosmotic flows of non-Newtonian
power-law fluids in a cylindrical microchannel,” Electrophoresis,
vol. 34, no. 5, pp. 662–667, 2013.

[19] A. Bandopadhyay and S. Chakraborty, “Steric-effect induced
alterations in streaming potential and energy transfer effi-
ciency of non-Newtonian fluids in narrow confinements,”
Langmuir, vol. 27, no. 19, pp. 12243–12252, 2011.

[20] M. A. Vakili, A. Sadeghi, M. H. Saidi, and A. A. Mozafari,
“Electrokinetically driven fluidic transport of power-law fluids
in rectangular microchannels,” Colloids and Surfaces A:
Physicochemical and Engineering Aspects, vol. 414, pp. 440–
456, 2012.

[21] C. L. Chaves, J. N. N. Quaresma, E. N. Macedo, L. M. Pereira,
and J. A. Lima, “Forced convection heat transfer to power-law
non-Newtonian fluids inside triangular ducts,” Heat Transfer
Engineering, vol. 25, no. 7, pp. 23–33, 2004.

[22] S. Mukherjee, A. K. Gupta, and R. P. Chhabra, “Laminar
forced convection in power-law and Bingham plastic fluids in
ducts of semi-circular and other cross-sections,” International
Journal of Heat and Mass Transfer, vol. 104, pp. 112–141, 2017.

[23] M. I. Khan, M. Waqas, T. Hayat, and A. Alsaedi, “A
comparative study of Casson fluid with homogeneous-
heterogeneous reactions,” Journal of Colloid and Interface
Science, vol. 498, pp. 85–90, 2017.

[24] M. A. Vakili, A. Sadeghi, and M. H. Saidi, “Pressure effects on
electroosmotic flow of power-law fluids in rectangular
microchannels,” 5eoretical and Computational Fluid Dy-
namics, vol. 28, no. 4, pp. 409–426, 2014.

[25] M. A. Vakili, M. H. Saidi, and A. Sadeghi, “,ermal transport
characteristics pertinent to electrokinetic flow of power-law
fluids in rectangular microchannels,” International Journal of
5ermal Sciences, vol. 79, pp. 76–89, 2014.

[26] S. Deng, Q. An, and M. Li, “,e effect of streaming potential
and viscous dissipation in the heat transfer characteristics of
power-law nanofluid flow in a rectangular microchannel,”
Micromachines (Basel), vol. 11, no. 4, p. 421, 2020.

[27] S. Deng, “,ermally fully developed electroosmotic flow of
power-law nanofluid in a rectangular microchannel,”
Micromachines, vol. 10, no. 6, p. 363, 2019.

[28] A. Bejan, “A study of entropy generation in fundamental
convective heat transfer,” Journal of Heat Transfer, vol. 101,
no. 4, pp. 718–725, 1979.

[29] M. I. Khan, F. Alzahrani, A. Hobiny, and Z. Ali, “Fully de-
veloped second order velocity slip Darcy-Forchheimer flow by
a variable thicked surface of disk with entropy generation,”
Int. Commun. Heat Mass Transfer, vol. 117, Article ID 104778,
2020.

[30] J. Wang, R. Muhammad, M. I. Khan, W. A. Khan, and
S. Z. Abbas, “Entropy optimized MHD nanomaterial flow
subject to variable thicked surface,” Computer Methods and
Programs in Biomedicine, vol. 189, Article ID 105311, 2020.

[31] R. Muhammad, M. I. Khan, N. B. Khan, and M. Jameel,
“Magnetohydrodynamics (MHD) radiated nanomaterial
viscous material flow by a curved surface with second order
slip and entropy generation,” Computer Methods and Pro-
grams in Biomedicine, vol. 189, Article ID 105294, 2020.

[32] R. Muhammad, M. I. Khan, M. Jameel, and N. B. Khan, “Fully
developed Darcy-Forchheimer mixed convective flow over a
curved surface with activation energy and entropy

generation,”ComputerMethods and Programs in Biomedicine,
vol. 188, Article ID 105298, 2020.

[33] X. Y. Chen, K. C. Toh, J. C. Chai, and C. Yang, “Developing
pressure-driven liquid flow in microchannels under the
electrokinetic effect,” International Journal of Engineering
Science, vol. 42, no. 5-6, pp. 609–622, 2004.

[34] H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows
in small devices,” Annual Review of Fluid Mechanics, vol. 36,
no. 1, pp. 381–411, 2004.

[35] D. Maynes and B. W. Webb, “,e effect of viscous dissipation
in thermally fully-developed electro-osmotic heat transfer in
microchannels,” International Journal of Heat and Mass
Transfer, vol. 47, no. 5, pp. 987–999, 2004.

[36] R. K. Shukla and X. Zhong, “Derivation of high-order
compact finite difference schemes for non-uniform grid using
polynomial interpolation,” Journal of Computational Physics,
vol. 204, no. 2, pp. 404–429, 2005.

[37] C.-Y. Wang, C.-F. Kung, and C.-C. Chang, “Approach to
analytic solutions for electroosmotic flow in micro-ducts by
eigenfunctions of the Helmholtz equation,” Microfluid
Nanofluid, vol. 20, p. 111, 2016.

[38] A. C. Pipkin and R. S. Rivlin, “Normal stresses in flow through
tubes of non-circular cross-section,” Zeitschrift für ange-
wandte Mathematik und Physik, vol. 14, no. 6, pp. 738–742,
1963.

[39] A. K. Nayak, A. Haque, B. Weigand, and W. Steve, “,er-
mokinetic transport of dilatant/pseudoplastic fluids in a
hydrophobicpatterned micro-slit,” Physics of Fluids, vol. 32,
Article ID 072002, 2020.

[40] B. Z. Lu, Y. C. Zhou, M. J. Holst, and J. A. Mc Cammon,
“Recent Progress in Numerical Methods for the Pois-
sonBoltzmann Equation in Biophysical Applications,” Com-
munication in Computational Physics, vol. 3, no. 5,
pp. 973–1009, 2008.

Mathematical Problems in Engineering 15


