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Fast nondominated sorting genetic algorithm II (NSGA-II) is a classical method for multiobjective optimization problems and has
exhibited outstanding performance in many practical engineering problems. However, the tournament selection strategy used for
the reproduction in NSGA-II may generate a large amount of repetitive individuals, resulting in the decrease of population
diversity. To alleviate this issue, Lévy distribution, which is famous for excellent search ability in the cuckoo search algorithm, is
incorporated into NSGA-II. To verify the proposed algorithm, this paper employs three different test sets, including ZDT, DTLZ,
and MaF test suits. Experimental results demonstrate that the proposed algorithm is more promising compared with the state-of-
the-art algorithms. Parameter sensitivity analysis further confirms the robustness of the proposed algorithm. In addition, a two-
objective network topology optimization model is then used to further verify the proposed algorithm. .e practical comparison
results demonstrate that the proposed algorithm is more effective in dealing with practical engineering optimization problems.

1. Introduction

In the real world, there exist many engineering optimization
problems, such as water resource optimization problem [1],
malicious code detection [2,3], and big data optimization
problem [4–6]. Over the past years, many efficient methods
[7] have been proposed to tackle them. Multiobjective op-
timization problems [8] (MOPs) generally refer to problems
having two or three objectives. In general, these objectives
are contradictory with each other because the improvement
of one objective may result in the deterioration of another
objective. Over the past few decades, many excellent
methods have been proposed for MOPs, such as NSGA-II
[9], SPEA2 [10], and PSEA-II [11]. .ese methods can be
roughly divided into the four categories in terms of core
ideas for improving algorithm performance.

.e first category is to introduce new strategies..is idea
has been proved to be useful in single optimization prob-
lems, and many researchers have tried it in MOPs. For
example, Zitler et al. [12] investigated various problem
features and concluded that elitism is proved to be a vital
factor in keeping the efficiency of the multiobjective evo-
lutionary algorithm. Furthermore, Zitzler et al. [13] intro-
duced an improved fitness assignment strategy to SPEA,
resulting in the improvement of overall performance. Wang
et al. [7] systemically investigated the control parameter of
the firefly algorithm and proposed a firefly algorithm with
adaptive control parameters.

Reducing the computational complexity is another as-
pect. .e most classical exemplar is NSGA-II [9], which
incorporates a fast nondominated sorting strategy to NSGA,
effectively reducing the complexity of NSGA. MOEA/D [14]
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is also a famous method for its decomposition-based
strategy, which decomposes a multiobjective problem into
many single-objective optimization problems and then
optimizes the subproblems simultaneously.

Optimizing search manner corresponds to the third
category. Exploration and exploitation are two important
factors, based on which many methods have been proposed.
For example, Li et al. [15] proposed a general learning
paradigm based on jumping genes to enhance the explo-
ration ability of multiobjective evolutionary algorithms. In
contrast to that, to enhance the overall exploitation of a
memetic algorithm for multiobjective optimization, Chong
[16] employed a multiobjective evolutionary gradient search
as a form of local search.

Research on application of various algorithms is also a
vital part. To estimate the demand of water resources, Wang
et al. [1] specially designed three estimation models to
evaluate the historical water use and local economic
structure and then incorporated the three models into the
firefly algorithm, achieving high prediction accuracy. Abd
and Lu [17] proposed a many-objective optimization
problem with seven objectives and then employed the knee-
driven evolutionary algorithm to optimize the model. To
optimize the network topology structure, Li and Chen [18]
specially designed a modified NSGA-II, in which asexual
crossover and double swap mutation operation are
proposed.

.e tournament selection strategy, which is used to
select the individuals for reproduction in NSGA-II [9], may
repeatedly select the same individual with better quality,
resulting in a large amount of repetitive individuals and
decreasing the population diversity. To alleviate this issue,
this paper attempts to introduce the Lévy distribution to
fast nondominated sorting genetic algorithm II and pro-
poses the fast nondominated sorting genetic algorithm II
with the Lévy distribution (LDNSGA-II). Note that the Lévy
distribution is originally introduced to cuckoo search al-
gorithm and has been proved to be effective in improving
search ability. In addition, parameter sensitivity analysis is
further conducted to demonstrate the robustness of the
Lévy distribution. After that, this paper further applies
LDNSGA-II to a practical network topology optimization
problem. .e contributions of this paper can be summa-
rized as follows:

(1) Firstly, this paper analyzes the phenomenon of re-
petitive individuals caused by the tournament se-
lection strategy. .en, to alleviate that problem, this
paper proposes to employ the Lévy distribution,
which has shown excellent performance in helping
individuals to conduct effective local search and
escape from the local optima.

(2) To verify the performance of the proposed method,
this paper utilizes three common test sets including
ZDT, DTLZ, andMaF test suits. Experimental results
demonstrate that LDNSGA-II is more promising in
dealing with common multiobjective optimization
problems compared with some state-of-the-art
algorithms.

(3) Parameter sensitivity analysis is conducted to test the
impact of delta in the Lévy distribution. To have a
direct understanding of parameter delta, different
settings of delta are tested. According to the ex-
perimental results, the performance of LDNSGA-II
is less sensitive to the change of delta.

(4) .is paper further applies LDNSGA-II to a network
topology optimization problem, which is a discrete
multiobjective optimization problem. .e results
illustrate that the proposed method is effective in
dealing with practical optimization problems.

.is paper is organized as follows: Section 2 introduces
the basic concepts of MOPs and related work. Section 3
presents the basic framework of NSGA-II and our moti-
vation for this paper and proposes the nondominated
sorting genetic algorithm with Lévy distribution (LDNSGA-
II). Section 4 verifies LDNSGA-II using various test prob-
lems and applies the proposed method to a network to-
pology optimization problem. .e conclusion is drawn in
Section 5.

2. Definition and Related Work

2.1. Definition. A typical multiobjective problem [8] can be
defined as follows:

minf(x) � min f1(x), f2(x), ..., fM(x)􏼂 􏼃,

x � x1, x2, ..., xD( 􏼁 ∈ R
D

,

gi(x)≥ 0, i � 1, 2, ..., K,

hj(x) � 0, j � 1, 2, ..., P,

⎧⎨

⎩

(1)

where fM(x) is the M-th subobjective function and x is a
vector of the solution, which should satisfy the above
constraints. RD is the decision variable space, gi(x)≥ 0 is an
inequality constraint, and hj(x) � 0 is an equality
constraint.

.ere are two kinds of relationships between any two
solutions: dominated relationship and nondominated rela-
tionship. Let u� (u1, u2, . . ., uM) and v � (v1, v2, . . . , vM) be
two vectors consisting ofM objectives. u is said to dominate
v if and only if ui ≤ vi for each corresponding component in
both u and v, and there exists at least one index j which
makes uj < vj. Otherwise, u and v have the nondominated
relationship.

2.2. Related Work. .e Lévy distribution is firstly incor-
porated into the cuckoo search (CS) by Yang and Deb [19] to
deal with single-objective optimization problems. In CS, the
Lévy distribution is adopted to satisfy the heavy-tailed
probability distribution. As a result, CS boosts a more ef-
fective random search than the genetic algorithm and other
swarm intelligent algorithms [20–22]. Besides, CS gets wide
recognition for its strong global search ability. .e section
mainly focuses on the review of the Lévy distribution and its
variants.

.e Lévy distribution is a particular class of random
walk, in which the step lengths during the walk are described
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as a heavy-tailed probability distribution. As Barthelemy
et al. [23] pointed out that the Lévy distribution can be
applicable to a diverse range of fields, describing animal
foraging patterns and the distribution of human travel. .e
popularity of CS has confirmed the efficiency of the Lévy
distribution. In 2009, Yang [24] formulated a new meta-
heuristic algorithm by combining the Lévy distribution with
the firefly algorithm, in which the Lévy distribution provides
a random step for a random sign or direction. In 2010, Yang
and Deb [25] further proposed an eagle strategy (ES) to
combine the Lévy distribution with the firefly algorithm. In
ES, the Lévy distribution replaces simple randomization,
resulting in more search space. In 2013, Xie et al. [26] in-
corporated the Lévy distribution into the bat algorithm to
ensure the diversity of the population against premature
convergence and to make the algorithm effectively jump out
of local minima. In 2018, Xiong et al. [27] adapted the
continuous CS to a discrete multiobjective CS with Lévy
distribution being selection probability. Different from the
methods above, in 2019, Cui et al. [28,29] attempted to apply
the Lévy distribution to many-objective optimization
problems and further replaced the global best individual
with the upper and lower boundaries of variables.

From the discussion above, it can be known that the Lévy
distribution is commonly used in swarm-based intelligent
optimizers, and it is considered to be effective in avoiding
premature convergence. In addition, the fact can be seen that
few papers apply Lévy distribution to NSGA-II. .erefore,
combining the Lévy distribution with NSGA-II is the main
contribution of this paper.

3. Proposed Method

3.1. Basic Framework of NSGA-II. NSGA-II [9] has two vital
components, including the fast nondominated sorting
strategy and the crowding distance. .e fast nondominated
sorting strategy is used to control evolutionary pressure,
which can divide the population into multiple Pareto fronts,
while the crowding distance is useful in improving the
population diversity. .e content below mainly introduces
the core ideas of them.

Let Pi and Qi correspond to the parent and offspring
populations with N individuals. .e first step is to select N
better individuals from the combined population
Ri � Pi∪Qi. To achieve that goal, the fast nondominated
sorting strategy is used to generate various Pareto fronts.
Generally speaking, the number of the first Pareto front is
less than N. .en, the second and even the third Pareto
fronts may be included until the i-th front, of which indi-
viduals will be selected partially because the number of the i-
th front plus previous Pareto fronts will exceed the total
number N. To distinguish the individuals in the i-th Pareto
front, crowding distance is used. Individuals with better
diversity will be selected as the candidate individuals to do
crossover operator. .e crossover and mutation operators
are common operators, and they can be conducted as usual.
Readers are encouraged to refer to the original paper [5]
(Algorithm 1).

3.2. Our Motivation. In NSGA-II [9], the tournament se-
lection strategy is employed for the selection of better in-
dividuals. .e whole process can be described as shown in
Figure 1. As illustrated in Figure 1, all individuals are firstly
compared with each other. After that, better individuals are
randomly selected as the parents for the reproduction. Note
that, due to the characteristics of multiobjective optimiza-
tion problems, there does not exist a global best individual
but a set of trade-off solutions. .erefore, if individual I is a
solution in the first Pareto front, then, it is likely to be
selected in the next round, thus resulting the same individual
as the parents and reducing the diversity of the next
population.

To visually exhibit the analysis above, this paper con-
ducts an experiment on ZDT1 and records the number of
repetitive individuals with 100 individuals being population
size and 100 iterations. Detailed settings are presented in
later experiments. Figure 2 presents the statistics of repet-
itive individuals per generation, and Figure 3 exhibits the
statistics of repetitive individuals at the 80th generation.
From Figure 2, it can be seen that there are many repeatedly
selected individuals from generation 7 to 60. As can be seen
from Figure 3, the first individual is selected six times, and
some other individuals are also picked up several times.

To avoid the phenomenon above, this paper intends to
incorporate the Lévy distribution into the crossover operator
and alleviates the phenomenon without destroying the
guiding information. Lévy distribution is an excellent
method, which can not only help efficiently search local
potential individuals but also help escape from the local
optima, resulting in improving the diversity of population.
Detailed illustration of Lévy distribution can be found in the
next section.

3.3. Proposed Method. For clarity, this section firstly in-
troduces the Lévy distribution and then incorporates it into
NSGA-II. Lévy distribution can be formally expressed as
follows:

Lévy(δ) ∼ u � t− 1− δ
, 0< δ < 2. (2)

For simplicity, it can be represented as follows:

Lévy(δ) ∼ ϕ ×
u

|v|1/δ
, (3)

where u and v are the two parameters based on the Gaussian
distribution and δ (delta) is originally set to 1.5 [14], and in
later experiments, it will be systematically examined, and ϕ is
defined as follows:

ϕ �
Γ(1 + δ) × sin(π × δ/2)

Γ(1 + δ/2) × δ × 2(δ− 1)/2􏼠 􏼡

1/δ

. (4)

Figure 4 plots five hundred points generated with Lévy
distribution. From Figure 4, it can be seen that most points
are centered towards (0, 0), while several points are far away
from the center. Statistically, the points in the rectangle
account for more than 96% of all the points. .at is to say,
the Lévy distribution is able to conduct sufficient local search
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to enhance the convergence, as well as the global search to
avoid premature convergence and enhance diversity.

.e crossover operator has been discussed and analyzed
widely. Here, this paper does not intend to describe it in
detail but presents how to combine it with Lévy distribution.
Formally, the crossover operator can be expressed as follows:

Q1 �
P1 + P2( 􏼁

2
+ beta ×

P1 − P2( 􏼁

2
, (5)

where P1 and P2 are the two selected parents and beta [5] is a
parameter related to the crossover probability. Readers can refer

to the original paper [5] for more details. Q1 is the generated
offspring individual. .en, the combination of the crossover
operator and Lévy distribution can be formulated as follows:

Input: population size, crossover probability, mutation probability, and maximum evaluation time
Output: the best solution set
(1) Begin
(2) For each individual, initialize the positions
(3) Evaluate the positions
(4) Perform selection operator (using nondominated sorting and crowding distance)
(5) Perform crossover operator
(6) Perform mutation operator
(7) Combine parent and offspring populations
(8) While (stop criterion is met)
(9) Evaluate the positions
(10) Update the population (using nondominated sorting and crowding distance)
(11) Perform selection operator (using nondominated sorting and crowding distance)
(12) Perform crossover operator
(13) Perform mutation operator
(14) Combine parent and offspring population
(15) End
(16) Output the optimal solutions of the population
(17) End

ALGORITHM 1: .e pseudocode of NSGA-II.

I1 I2 I3 In

I1 I6 In–1

I6

Randomly select individuals

Choose the best individual

Figure 1: Illustration of the tournament selection strategy.
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Figure 2: Statistics of the repetitive individuals per generation.
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Figure 3: Statistics of the repetitive individuals at 80th generation.
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Figure 4: Illustration of the Lévy distribution.
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Q1 �
P1 + P2( 􏼁

2
+ beta × Lévy ×

P1 − P2( 􏼁

2
, (6)

where Lévy is a parameter sampled with Lévy distribution.
.e Lévy distribution is used not only to alleviate the
phenomenon of repetitive individuals without destroying
the leading information but also to help enhance the overall
performance of the crossover operator (Algorithm 2).

4. Experimental Results and Analysis

.is section is divided into four subsections. Section 4.1 in-
troduces the test problems, comparison algorithms [9–11], and
the indicator used to evaluate the performance of the proposed
methods. After that, comparisons of LDNSGA-II with other
outstanding methods are conduced and corresponding ana-
lyses are also presented in Section 4.2. Following that, the
sensitivity analysis of parameter delta in Lévy distribution is
presented in Section 4.3. In the end, LDNSGA-II is applied to a
network topology optimization problem to verify LDNSGA-II
in practical optimization problem in Section 4.4.

4.1. Test Problems and Experimental Settings. Parameter
settings of comparison algorithms are listed in Table 1. pc is
the crossover probability, and pm indicates the mutation
probability. ZDT [30], DTLZ [31], and MaF [32] test sets are
the widely used test problems. In the experiments, ZDT1,
ZDT2, ZDT3, DTLZ4, DTLZ5, DTLZ6, MaF11, and MaF12
are employed, and corresponding parameters are listed in
Table 2, where D is the dimension of decision space andM is
the dimension of objective space. Note that, in Table 2, due
to the extreme complexity of MaF11 and MaF12, they are
not presented completely. More specific details of them are
ignored considering the limited paper length. Readers can
refer to paper [32] for more detailed presentation. .e in-
dicator used in the experiments is IGD [33], which can
measure the convergence and diversity of one algorithm.
IGD is formulated as follows:

IGD P, P
∗

( 􏼁 �
􏽐v∈P∗dist(v, P)

P∗| |
, (7)

where P∗ is a set of uniformly distributed points on the true
Pareto front of objective space. P is the solution set obtained
with one algorithm. dist(v, P) is the minimum Euclidean
distances between v and point in P. For all test problems, the
number (the closest integer to 500 among the possible
values) of reference points is used for the IGD calculation.

For each test instance, each algorithm is run 20 inde-
pendent times on the same machine with Intel Core i5-2400
3.10GHz CPU, 6.00GB memory, and Windows 7 operating
system withMatlab 7.9. In this paper, the maximum number
of evaluations is used as the stopping criterion. For all the
test problems, the population is set to 100. For the ZDT test
suit, the maximum evaluation number is set to 10000. For
DTLZ4, DTLZ5, and DTLZ6, the maximum evaluation is
25000. .e maximum evaluation is set to 40000 for MaF11
andMaF12. For detailed parameter settings of test problems,
refer to paper [34].

4.2. Comparison with State-of-the-Art Algorithms. Table 3
lists the average IGD values of different algorithms over 20
independent runs. Note that the best results are highlighted
in bold. .e values in parentheses are the variances of the
IGD values. From Table 3, it can be seen that the LDNSGA-II
performs better on ZDT1, ZDT2, ZDT3, DTLZ4, DTLZ5,
MaF11, and MaF12. On DTLZ6, it is evident that LDNSGA-
II has superiority over NSGA-II but is still worse than
SPEA2. From the comparison results, it can be concluded
that the overall performance of LDNSGA-II has been sig-
nificantly improved.

To have a direct comparison, Figure 5 further presents
the Pareto fronts of LDNSGA-II and NSGA-II. From Fig-
ure 5, it can be seen that both LDNSGA-II and NSGA-II
have similar Pareto fronts on ZDT1, ZDT2, DTLZ4, DTLZ5,
DTLZ6, MaF11, and MaF12. Note that although MaF11 and
ZDT3 have similar shapes, they are essentially different
problems, which can be seen from the formulations pre-
sented in Table 2. Furthermore, on ZDT3, LDNSGA-II
performs better than NSGA-II because the bottom right
region has no solutions found by NSGA-II.

4.3. Parameter Sensitivity Analysis. To test the effect of
parameter delta on Lévy distribution, Figure 6 presents the
comparison curves with different delta settings on ZDT2 and
DTZL5. .e horizontal axis indicates the generation, while
the vertical axis is the IGD value. From the comparison
curves, it can be seen that different settings of delta result in
similar curves. .e performance of LDNSGA-II is less
sensitive to the change of delta.

4.4. Application of LDNSGA-II to Network Typology
Optimization. .e fourth industrial revolution marks the
coming of deep integration of information and communi-
cation technology. A stable and reliable network topology is
greatly essential for users to achieve the data acquisition in
Internet of .ings. .e switched Ethernet (as illustrated in
Figure 7 [18], there are various network devices with dif-
ferent functions. Smart camera, Robots, PLC, and CNC are
common devices in Internet of .ings) has been widely
applied to industrial control field due to its acceptable fault
tolerance, high communication speed, and broadcast storm
restrict.

A �

0 ... a1i ... a1n

... ... ... ... ...

ai1 ... 0 ... ain

... ... ... ... ...

an1 ... ani ... 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

However, in practical operations, designer trends to add
new devices to those devices with higher connectivity under
the influence of the Matthew effect [18], reducing the sta-
bility and reliability of horizontal device interconnection
and vertical networking integration. To this end, Li and
Chen [18] proposed a multiobjective switched industrial
Ethernet topology structure, in which each network device is
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presented with a symbol. Supposing there are n leaf nodes
(such as PC, industrial personal computer, and radio fre-
quency identification sensor) which are added to the
specified switch Ethernet, the communication between each
device is expressed with the following matrix:where aij is the
communication quantity from node i to node j, and it can be
expressed with the unit kbps. Note that the communication
quantity from node i to itself is considered to be zero.

To exhibit the connectivity of the specified switch
Ethernet, the adjacencymappingmatrix is further employed.
Supposing there are n leaf devices and N switches as the
backbone of the switch Ethernet, if node k is connected to
node l, then the corresponding element can be expressed as
Xkl � 1, otherwise Xkl � 0. Due to the control requirement
of industrial Ethernet, the n leaf nodes in the switch Ethernet
can be connected with each other. .erefore, the entire
mapping adjacent matrix can be presented as follows:

X �

0 ... X1N X1(N+1) ... X1(N+n)

... ... ... ... ... ...

XN1 ... X(N− 1),N XN(N+1) ... XN(N+n)

X(N+1)1 ... X(N+1)N 0 ... 0

... ... ... ... ... ...

X(N+n)1 ... X(N+n)N 0 ... 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

Where X(N− 1),N indicates that the N-th switch is connected
to the (N− 1)-th switch and XN(N+1) means that the N-th

switch is connected to the first leaf node. Note that the leaf
nods are not allowed to connected with each other, so
Xi,j � 0, where i>N, j>N.

In industrial Ethernet topology, there are two special
requirements, information transmission load between
subnetworks and transmission load difference between
switches, both of which should be minimized to achieve the
load balance. .e first goal is defined as follows:

f1 � 􏽘
D− 1

m�2
􏽘

n

i�1,j�1
(m − 1) × B

m+1
ij × aij, (10)

where D � max(d) |∃XD
kl � 1, N + 1≤K<L≤N + n􏼈 􏼉,

1≤m≤D − 1, and aij is the corresponding element of the
communication matrix A. If Xm+1

(N+i)(N+j) � 1, then
B

(m+1)
i,j � 1; otherwise, B

(m+1)
i,j � 0.

.e second goal is to minimize the transmission load
difference between switches, and it can be defined as follows:

f2 � 􏽘
n

s�2
|w(s) − w(s − 1)|, (11)

where w(s) the transmission load of each switch, and it can
be defined as follows:

w(s) � 􏽘
n

i�1,j�1
Xs(N+i) × aij􏼐 􏼑, (12)

where s � 1, 2, ..., N{ }.
Different from the loosely connected Internet, there are

relatively strict requirements in the industrial Ethernet
network:

(1) Strong constraint: isolated lead node is not allowed.
(2) Weak constraint: there are two constraints. .e first

is that each switch should be connected to one leaf
node. .e second is that maximum connection de-
gree of each switch is limited. In this paper, the

Input: population size, crossover probability, mutation probability, and maximum evaluation time
Output: the best solution set
(1) Begin
(2) For each individual, initialize the positions
(3) Evaluate the positions
(4) Perform selection operator (using nondominated sorting and crowding distance)
(5) Perform crossover operator
(6) Perform mutation operator
(7) Combine parent and offspring populations
(8) While (stop criterion is met)
(9) Evaluate the positions
(10) Update the population (using nondominated sorting and crowding distance)
(11) Perform selection operator (using nondominated sorting and crowding distance)
(12) Perform crossover operator using equation (6)
(13) Perform mutation operator
(14) Combine parent and offspring population
(15) End
(16) Output the optimal solutions of the population
(17) End

ALGORITHM 2: .e pseudocode of LDNSGA-II.

Table 1: Parameter settings.

Algorithms Parameter settings
NSGA-II pc� 1, pm� 1/dimension
SPEA2 pc� 1, pm� 1/dimension
PEASII pc� 1, pm� 1/dimension, div� 10
LDNSGA-II delta� 1.5, pc� 1, pm� 1/dimension
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maximum connection degree is set to 16. Additional
illustrations can be found in original paper [18].

To achieve a balanced network topology, LDNSGA-II is
used to optimize the model above in combination with
modified NSGA-II method in paper [18] (MNSGA-II for

short in this experiment). To exhibit the optimization
performance, this randomly generated network topology is
also presented as a baseline. In this experiment, 4 switches
and 40 leaf nodes are used, and the communication matrix
between leaf nodes in [35] is applied. .e maximum gen-
eration is set to 1000, and 100 individuals constitute the

Table 2: Illustrations of test problems.

Problems Dimension Variable
bounds Objective functions

ZDT1 30 [0, 1]

f1(x) � x1
f2(x) � g(x)[1 −

�������
x1/g(x)

􏽰
]

g(x) � 1 + 9(􏽐
n
i�2xi)/(n − 1)

ZDT2 30 [0, 1]

f1(x) � x1
f2(x) � g(x)[1 − (x1/g(x))2]

g(x) � 1 + 9(􏽐
n
i�2xi)/(n − 1)

ZDT3 30 [0, 1]

f1(x) � x1
f2(x) � g(x)[1 −

�������
x1/g(x)

􏽰
− x1/g(x) sin(10πx1)]

g(x) � 1 + 9(􏽐
n
i�2xi)/(n − 1)

ZDT4 10
x1 ∈ [0, 1]

xi ∈ [− 5, 5]

i � 2, ..., n

f1(x) � x1
f2(x) � g(x)[1 −

�������
x1/g(x)

􏽰
]

g(x) � 1 + 10(n − 1) + 􏽐
n
i�2[x2

i − 10 cos(4πxi)]

DTLZ4 11 [0, 1]

f1(x) � (1 + g(xM))􏽑
M− 1
t�1 cos(xα

i π/2)

fm�2: M− 1(x) � (1 + g(xM))sin(xM− m+1π/2)􏽑
M− 1
t�1 cos(xα

i π/2)

fM(x) � (1 + g(xM))sin(xα
i π/2)

s.t. g(xM) � 􏽐xi∈xM
(xα

i − 0.5)2, i � 1, 2, ..., n, α � 100

DTLZ5 11 [0, 1]

f1(x) � (1 + g(xM))􏽑
M− 1
t�1 cos(((1 + 2g(xM)xi)/(2 + (1 + g(xM)))π)/2)

fm�2: M− 1(x) � (1 + g(xM))sin(xM− m+1π/2)􏽑
M− 1
t�1 cos(((1 + 2g(xM)xi)/(2 + (1 + g(xM)))π)/2)

fM(x) � (1 + g(xM))sin(((1 + 2g(xM)xi)/(2 + (1 + g(xM)))π)/2)

s.t. g(xM) � 􏽐xi∈xM
((1 + 2g(xM)xi)/(2 + (1 + g(xM))) − 0.5)2, i � 1, 2, ..., n

DTLZ6 11 [0, 1]

f1(x) � (1 + g(xM))􏽑
M− 1
t�1 cos(((1 + 2g(xM)xi)/(2 + (1 + g(xM)))π)/2)

fm�2: M− 1(x) � (1 + g(xM))sin(xM− m+1π/2)􏽑
M− 1
t�1 cos(((1 + 2g(xM)xi)/(2 + (1 + g(xM)))π)/2)

fM(x) � (1 + g(xM))sin(((1 + 2g(xM)xi)/(2 + (1 + g(xM)))π)/2)

s.t. g(xM) � 􏽐xi∈xM
x0.1, i � 1, 2, ..., n

MaF11 11 x ∈ 􏽑
D
i�1[0, 2i]

f1(x) � yM + 2(1 − cos((π/2)y1))...(1 − cos((π/2)yM− 2))(1 − cos((π/2)yM− 1))

f2(x) � yM + 4(1 − cos((π/2)y1))...(1 − cos((π/2)yM− 2))(1 − sin((π/2)yM− 1))

...

fM− 1(x) � yM + 2(M − 1)(1 − cos((π/2)y1))(1 − sin((π/2)y2))

fM(x) � yM + 2M(1 − y1cos2(5πy1))

MaF12 11 x ∈ 􏽑
D
i�1[0, 2i]

f1(x) � yM + 2 sin((π/2)y1)... sin((π/2)yM− 2)sin((π/2)yM− 1)

f2(x) � yM + 4 sin((π/2)y1).... sin((π/2)yM− 2)sin((π/2)yM− 1)

...

fM− 1(x) � yM + 2(M − 1)sin((π/2)y1)cos((π/2)y2)

fM(x) � yM + 2M cos((π/2)y1)

Table 3: Comparison of different algorithms.

Problem LDNSGA-II NSGA-II SPEA2 PESAII
ZDT1 1.0477e − 1 (3.83e − 2) 2.2805e − 1 (8.00e − 2) 1.3602e − 1 (7.55e − 2) 3.5496e − 1 (1.07e − 1)
ZDT2 2.3905e − 1 (1.69e − 1) 5.7633e − 1 (9.83e − 2) 5.5212e − 1 (1.89e − 1) 5.1306e − 1 (1.15e − 1)
ZDT3 1.0448e − 1 (1.86e − 2) 1.0396e − 1 (4.38e − 2) 1.3252e − 1 (6.10e − 2) 3.0291e − 1 (6.38e − 2)
DTLZ4 5.2499e − 3 (2.65e − 1) 1.5241e − 1 (3.11e − 1) 2.2555e − 1 (3.56e − 1) 1.5651e − 1 (3.09e − 1)
DTLZ5 5.0841e− 3 (2.41e − 3) 5.2258e − 3 (1.85e − 4) 5.1050e − 3 (4.35e − 5) 1.0215e − 2 (1.54e − 3)
DTLZ6 5.0579e − 3 (1.22e − 4) 5.5626e − 3 (2.70e − 4) 4.0756e − 3 (2.33e − 5) 1.4282e − 2 (2.76e − 3)
MaF11 1.3151e − 2 (8.90e − 4) 2.0795e − 2 (7.85e − 4) 2.3795e − 2 (8.80e − 4) 1.3309e − 2 (6.73e − 4)
MaF12 2.7729e − 2 (2.90e − 3) 2.9268e − 2 (2.61e − 3) 4.0268e − 2 (3.97e − 3) 2.9456e − 2 (2.48e − 3)
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Figure 5: Continued.
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population. .e crossover probability is 0.9, while the
mutation probability is set to 1/D, where D is the number of
variables. Due to the characteristics of discrete optimization
problem, the Lévy distribution cannot be directly applied to
the model above. Instead, this paper converts the Lévy
distribution into a probability model. As illustrated in
Section 3.2, the Lévy distribution can help individual escape
from local optima. In this experiment, to achieve the same
purpose, each node is randomly replaced with other leaf
node with probability 0.1 under strict requirements men-
tioned above. Note that the probability 0.1 is set according to
paper [18], where each node can be randomly replaced with
probability 0.1 to increase the diversity of network topology.
Figure 8 presents the obtained results. Note that the symbol
“◊” indicates the solutions which are generated randomly

and they can be regarded as the common case without
optimization.

From Figure 8(a), it can be seen that the network
topology without optimization may increase the infor-
mation transmission load between switches. Meanwhile,
the transmission load difference between switches is also
obvious, which is harmful for the entire network. On the
contrary, for both MNSGA-II and LDNSGA-II, the
optimized network topology can greatly reduce the
transmission load and achieve a balanced transmission
load. In addition, compared to MNSGA-II proposed in
original paper [18], LDNSGA-II is more efficient in
optimizing the network topology according to the ob-
tained Pareto fronts. From Figure 8(b), it can be seen that
the Pareto front obtained by LDNSGA-II is more out-
standing than other methods. Also, the fact can be

ZDT2
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Figure 6: Comparison curves with different delta settings. (a) ZDT2. (b) DTLZ5.
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Figure 5: Comparison of Pareto fronts of LDNSGA-II and NSGA-II. (a) ZDT1. (b) ZDT2. (c) ZDT3. (d) DTLZ4. (e) DTLZ5. (f ) DTLZ6.
(g) MaF11. (h) MaF12.
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observed that SPEA2 and NSGA-II are slightly better
than PEASII. For users, if the time delay is a primary
goal, then the corresponding network topology of the
upper left points should be considered, while if good
extendibility is preferred, then the lower right points can
be selected.

5. Conclusion and Further Work

Lévy distribution is widely researched in cuckoo search
because of its outstanding search ability. To incorporate
Lévy distribution into NSGA-II, this paper proposes a fast
nondominated sorting genetic algorithm II with Lévy
distribution (LDNSGA-II). To verify the proposed algo-
rithm, this paper employs three test suits and IGD

indicator in our experiments. In addition, this paper
systematically investigates the effect of parameter delta.
.e experimental results demonstrate that LDNSGA-II is
comparable with the state-of-the-art algorithms and the
parameter delta has less influence on LDNSGA-II. Further
application of LDNSGA-II to the network topology op-
timization verifies its efficiency and effectiveness. Further
work will focus on the improvement of NSGA-II and its
applications.

Data Availability

.e data sets used in this paper are standard test data sets
which are all available online. .e experimental data in
Section 4.4 are obtained from the authors of paper [18].
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