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In this manuscript, we investigate the stability problems of neutral-type neural networks withD− operator andmixed delays. Some
sufficient conditions are obtained for guaranteeing the existence, uniqueness, and global asymptotical stability of periodic
solutions to the considered neural networks. Finally, a numerical example is performed to illustrate the theoretical results.

1. Introduction

In this article, we consider the following neutral neural
networks with D− operator and mixed delays:

(Ax)′(t) � − Bα(x(t)) + Kf(x(t)) + Ug(x(t − τ(t))) + W 􏽚
t

t− μ(t)
h(s)ds + I(t), t> 0,

x(s) � ϕ(s), s ∈ [− ρ, 0],

⎧⎪⎪⎨

⎪⎪⎩
(1)

where x(t) � (x1(t), . . . , xn(t))⊤ corresponds to the state of
the ith unit at time t and (Ax)(t) � ((A1x1)

(t), . . . , (Anxn)(t))⊤, which is defined by

(Ax)(t) � x(t) − Cx(t − σ), t ∈ R, (2)

where σ > 0 is a constant delay, C � diag c1, . . . , cn􏼈 􏼉 with
|ci|< 1; α(x(t)) � (Ax)(t) denotes the behaved function; the
functions f(x(·)) � (f1(x1(·)), . . . , fn(xn(·)))⊤, g(x(·)) �

(g1(x1(·)), . . . , gn(xn(·)))⊤, and h(x(·)) � (h1(x1(·))

, . . . , hn(xn(·)))⊤ denote the neuron activations; τ(t) and
μ(t) are the discrete time-varying delay and the distributed
time-varying delay, respectively, which satisfy
(0≤ τ(t)≤ τ, 0≤ μ(t)≤ μ), where τ and μ are positive con-
stants; and ρ � max σ, τ, μ􏼈 􏼉, for ϕ ∈ C([− ρ, 0],Rn), and the
norm is defined by ‖ϕ‖ρ � sup− ρ≤s≤0|ϕ(s)|. ,e matrix B �

(bij)n×n> 0 is a constant matrix, and K � (kij)n×n> 0, U �

(uij)n×n, andW � (wij)n×n are some unknown constant
matrices. I(t) denotes the exogenous inputs at time t.

Remark 1. ,e neutral-type operator A in (2) represents the
D− operator form which was put forward by Hale [1]. ,en,
we give the following properties for the difference operator
A. Define the operator A on CT:

A : CT⟶ CT,

[Ax](t) � x(t) − cx(t − τ), ∀t ∈ R,
(3)

where CT � x : x ∈ C(R,R), x(t + T) ≡ x(t){ } and c is a
constant.

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 3096762, 12 pages
https://doi.org/10.1155/2020/3096762

mailto:dubo7307@163.com
https://orcid.org/0000-0002-4484-8789
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3096762


Lemma 1 (see [2, 3]). When |c|≠ 1, then A has a unique
continuous bounded inverse A− 1 satisfying

A
− 1

f􏽨 􏽩(t) �

􏽘
j≥0

cjf(t − jτ), if |c|< 1, ∀f ∈ CT,

− 􏽘
j≥1

c− jf(t + jτ), if |c|> 1, ∀f ∈ CT,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A
− 1􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1

|1 − |c||
.

(4)

When the neutral-type operator A is defined on con-
tinuous function space C(R,R), we have the following
lemma:

Lemma 2 (see [3]). If |c|< 1, then the inverse of difference
operator A denoted by A− 1 exists, and

A
− 1􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1

1 − c
. (5)

Proof. ,e proof of Lemma 2 is similar to the proof in [3].
For the convenience of the reader, we provide a detailed
proof. Let Bx(t) � cx(t − τ), then |B| � |c|< 1. ,us, A− 1 �

(I − B)− 1 exists, and

A
− 1􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � (I − B)
− 1􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1

1 − |c|
. (6)

□

Remark 2. Since the matrices K, U, and W in (1) are un-
certain matrices, system (1) is interval neural networks. In
the real world, the dynamic systems are often destroyed by
various inevitable factors, such as parameter fluctuation,
external disturbance, and random disturbance. Hence, the
research for interval neural networks has important practical
application value. ,ere are lots of results for interval neural
networks, e.g., [4, 5].

Let us recall the research for the stability problems of
neural networks. Zhang [6] studied the stability problem of
periodic solutions for a time-varying recurrent cellular neural
network with time delays and impulses. ,en, Zhang and
Wang [7] further investigated dynamic properties of periodic
solutions for high-order Hopfield neural networks with time
delays and impulses. ,emodels in [6, 7] are nonneutral-type
models which are different from the model in the present
paper. In [8], periodic oscillation problems of discrete-time
bidirectional associative memory neural networks have been
studied by employing the theory of coincidence degree and
Halanay-type inequality technique. In the present paper, we
obtain the existence, uniqueness, and global asymptotical
stability of periodic solutions by using LMI approach, Lya-
punov function, and a blend of matrix theory which are
different from themethods in [8]. Zhu and Cao [9, 10] studied
two different types of stochastic neural networks which are
not neutral-type neural networks and are different from the
model in the present paper. In [11, 12], the authors considered
the following two kinds of neutral-type neural system:

xi( 􏼁′(t) � − ai(t)xi(t) + 􏽘
n

j�1
bij(t)fj t, xj(t)􏼐 􏼑 + dij(t)gj t, xj

′ t − τij(t)􏼐 􏼑􏼐 􏼑􏽨 􏽩 + Ii(t),

xi(t) � ϕi(t), t ∈ [− τ, 0], i � 1, 2, . . . , n,

⎧⎪⎪⎨

⎪⎪⎩

y′(t) � − Ay(t) + Bg(y(t)) + Cg(y(t − τ(t))) + Dy′(t − h(t)), t≠ tk,

Δy(t) � Ik(y(t)), t � tk,

y t
+
0 + s( 􏼁 � ϕ(s), s ∈ t0 − ρ, t0􏼂 􏼃, k ∈ N.

(7)

Liu et al. [13] studied a class of Markovian jumping
neutral-type neural networks with mode-dependent mixed
time delays:

_x(t) � E(r(t)) _x t − τ1,r(t)􏼐 􏼑 − A(r(t))x(t) − B(r(t))f(x(t))

+ c(r(t))g x t − τ2,r(t)􏼐 􏼑􏼐 􏼑 + D(r(t)) 􏽚
t− τ4,r(t)

t− τ3,r(t)

h(x(s))ds.

(8)

By the above work, we note that the neutral character in
neural networks shows by the nonlinear term g(t, x′(t −

τ(t))) or differential operator (x′(t − τ(t))). In this paper,
we will study the neutral-type neural networks when the
neutral term has the D− operator form which is shown by

Ax(t). For more references about neutral-type neural net-
works with mixed delays, see [14, 15].

To best knowledge of the authors, few authors have
studied the global asymptotical stability problems of periodic
solutions to neutral-type neural networks with mixed delays.
,emain areas of challenge are as follows: (1) since system (1)
contains neutral-type operator A, constructing a viable
Lyapunov–Krasovskii functional seems to be very difficult; (2)
as themixed delays exist in system (1), the corresponding LMI
approach becomes more complicated since the LMI approach
is required to reflect mixed delay’s influence; and (3) it is
extraordinary to establish a unified framework to dispose of
the uncertain matrices, the neutral-type terms, and mixed
delays’ influence.,erefore, the main purpose of this article is
to try for the first time to address the challenges listed.
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In this paper, we will study global asymptotical stability
of interval neural networks for a neutral-type neural network
with mixed delays. Note that system (1) contains uncertain
matrices, the neutral-type terms, and mixed delays that are
all dependent on the properties of the neutral operator.

Remark 3. ,e main purpose of this paper is to obtain some
sufficient conditions for guaranteeing asymptotic stability of
system (1). We develop LMI approach to answer the addressed
challenges. A simulation example is given to show the use-
fulness of the main results in the present paper. ,ere are three
aspects to the contribution of this paper: (1) For using the LMI
method, we have to take into account the properties of the
neutral-type operator. (2) Unlike the most existing results, we
develop a new unified framework to deal with global asymp-
totical stability of interval neural networks by LMI approach,
Lyapunov function, and a blend of matrix theory which may be
of independent interest. It is worth pointing out that our main
methods are also important for the case of nonneutral system
with constant delays. (3) ,is article uses some new inequality
techniques. In particular, using the properties of the neutral-
type operator, we construct an appropriate Lyapunov–
Krasovskii functional to handle the considered system.

,e following sections are organized as follows: Section 2
gives some preliminaries including some useful lemmas and
definitions. In Section 3, we obtain some sufficient conditions

for existence, uniqueness, and global asymptotic stability of
periodic solution to system (1). In Section 4, a numerical
example verifies the accuracy of the results in the present paper.

2. Some Preliminaries

,roughout the paper, Λ � 1, 2, . . . , n{ }, andRn and Rn×m

denote the n-dimensional Euclidean space and the set of all
n × m real matrices, respectively. ,e superscript “T” rep-
resents the matrix transposition. A> 0 (or A< 0) denotes
that A is a symmetric and positive definite (or negative
definite) matrix. |z| denotes the Euclidean norm of a vector z
and ‖A‖ denotes the induced norm of the matrix A, that is,
‖A‖ �

����������
λmax(A⊤A)

􏽰
, where λmax(·) means the largest ei-

genvalue of A. If their dimensions are not explicitly stated,
they are assumed to be compatible for algebraic operations.

Lemma 3 (see [16]). For any vectors with x, y ∈ Rn, the
inequality

±2x
⊤

y≤x
⊤
Mx + y

⊤
My, (9)

holds, where M is any n × n matrix with M> 0.

Lemma 4 (see [17]). Let p, q, c, τ, and σ be the positive
constants, and the function f ∈ PC(R,R+) satisfies the scalar
impulsive differential inequality:

D+f(t)≤ − pf(t) + q sup
t− τ≤s≤t

f(s) + 􏽚
σ

0
r(s)f(t − s)ds, t≠ tk, t≥ 0,

f tk( 􏼁≤f t−
k( 􏼁, k ∈ Z+,

⎧⎪⎪⎨

⎪⎪⎩
(10)

where r(·) ∈ PC([0, σ],R+). Assume that
p> q + c 􏽒

σ
0 r(s)ds, then

f(t)≤f(0)e
− λt

, t≥ 0, (11)

where f(0) � sup− ρ≤s≤0f(s), ρ � max σ, τ{ }, and λ> 0 sat-
isfies λ<p − qeλτ − c 􏽒

σ
0 r(s)eλsds.

Remark 4. When f(tk) � f(t−
k ), then f(t) is a continuous

function on [0,∞), and the results of Lemma 4 also hold.
,roughout this paper, the following assumptions are

needed:

(H1) For i ∈ Λ, the neuron activation functions in (1)
satisfy

l
−
i ≤

fi s1( 􏼁 − fi s2( 􏼁

s1 − s2
≤ l

+
i ,

σ −
i ≤

gi s1( 􏼁 − gi s2( 􏼁

s1 − s2
≤ σ+

i ,

υ−
i ≤

hi s1( 􏼁 − hi s2( 􏼁

s1 − s2
≤ υ+

i ,

(12)

where l−i , l+i , σ−
i , σ+

i , υ−
i , and υ+

i are the real constants and
they may be positive, zero, or negative.
(H2) τ(t), μ(t), and I(t) are all continuously
T− periodic functions on [0,∞).

3. Main Results

Assume that the unknown constant matrices K, U, andW

satisfy

K ∈ K,

U ∈ U,

W ∈ W,

(13)

where

K � K, K􏼂 􏼃≕ kij􏼐 􏼑
n×n

􏼌􏼌􏼌􏼌􏼌 kij ≤ kij ≤ kij, i, j ∈ Λ􏼚 􏼛,

U � U, U􏼂 􏼃≕ uij􏼐 􏼑
n×n

􏼌􏼌􏼌􏼌􏼌 uij ≤ uij ≤ uij, i, j ∈ Λ􏼚 􏼛,

W � W, B􏼂 􏼃≕ wij􏼐 􏼑
n×n

􏼌􏼌􏼌􏼌􏼌 wij ≤wij ≤wij, i, j ∈ Λ􏼚 􏼛,

(14)
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with

K � kij􏼐 􏼑
n×n

,

K � kij􏼐 􏼑
n×n

,

U � uij􏼐 􏼑
n×n

,

U � uij􏼐 􏼑
n×n

,

W � wij􏼐 􏼑
n×n

,

W � wij􏼐 􏼑
n×n

.

(15)

Let

Δ≕ diag δ11, . . . , δ1n, . . . , δn1, . . . , δnn( 􏼁 ∈ Rn2×n2
, δij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 1, i, j ∈ Λ􏼚 􏼛,

K0 �
K + K

2
,

U0 �
U + U

2
,

W0 �
W + W

2
,

ηij􏼐 􏼑
n×n

�
K − K

2
,

ιij􏼐 􏼑
n×n

�
U − U

2
,

κij􏼐 􏼑
n×n

�
W − W

2
,

Γ1 �
���
η11

√
e1, . . . ,

���
η1n

√
e1, . . . ,

���
ηn1

√
en, . . . ,

���
ηnn

√
en􏼈 􏼉n×n2,

Γ2 �
��
ι11

√
e1, . . . ,

��
ι1n

√
e1, . . . ,

��
ιn1

√
en, . . . ,

��
ιnn

√
en􏼈 􏼉n×n2,

Γ3 �
���
κ11

√
e1, . . . ,

���
κ1n

√
e1, . . . ,

���
κn1

√
en, . . . ,

���
κnn

√
en􏼈 􏼉n×n2,

Υ1 �
���
η11

√
e1, . . . ,

���
η1n

√
e1, . . . ,

���
ηn1

√
en, . . . ,

���
ηnn

√
en􏼈 􏼉
⊤
n2×n,

Υ2 �
��
ι11

√
e1, . . . ,

��
ι1n

√
e1, . . . ,

��
ιn1

√
en, . . . ,

��
ιnn

√
en􏼈 􏼉
⊤
n2×n,

Υ3 �
���
κ11

√
e1, . . . ,

���
κ1n

√
e1, . . . ,

���
κn1

√
en, . . . ,

���
κnn

√
en􏼈 􏼉
⊤
n2×n,

(16)

where ei ∈ Rn and i ∈ Λ denotes the column vector with ith
element to be 1 and others to be 0. ,en, system (1) can be
rewritten as

(Ax)′(t) � − Bα(x(t)) + K0 + Γ1Δ1Υ1( 􏼁f(x(t)) + U0 + Γ2Δ2Υ2( 􏼁g(x(t − τ(t))) + W0 + Γ3Δ3Υ3( 􏼁 􏽚
t

t− μ(t)
h(s)ds + I(t), t> 0,

x(s) � ϕ(s), s ∈ [− ρ, 0],

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(17)
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i.e.,

(Ax)′(t) � − Bα(x(t)) + K0f(x(t)) + U0g(x(t − τ(t))) + W0 􏽚
t

t− μ(t)
h(s)ds + ΘΨ(t) + I(t), t> 0,

x(s) � ϕ(s), s ∈ [− ρ, 0],

⎧⎪⎪⎨

⎪⎪⎩
(18)

where Θ � Γ1, Γ2, Γ3􏼈 􏼉n×3n2,

Ψ(t) �

Δ1Υ1 0 0

0 Δ2Υ2 0

0 0 Δ3Υ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3n2×n

×

f(x(t))

g(x(t − τ(t)))

􏽚
t

t− μ(t)
h(s)ds

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Δi ∈ Δ, i � 1, 2, 3.

(19)

Now, we present the main results of the present paper.

Theorem 1. Assume that the assumptions (H1) and (H2)
hold. Ben, system (1) has a global asymptotically stable
periodic solution if there exist three constants εi > 0, i � 1, 2, 3,
n × n diagonal matrices P> 0, and Qi > 0, i � 1, 2, 3, and
three n2 × n2 diagonal matrices Qi > 0, i � 4, 5, 6, such that
the following inequalities hold:
Ξ≥ 0,

ε2P − 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

g
Q2L

g
− 􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

gΥ⊤1 Q5Υ1L
g ≥ 0,

ε3P − 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

h
Q3L

h
− 􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

hΥ⊤3 Q6Υ3L
h ≥ 0,

ε1 − ε2 − ε3μ> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where

Ξ �

Ξ1 PK0 PU0 PW0 PΘ

∗ Q1 0 0 0

∗ ∗ Q2 0 0

∗ ∗ ∗ Q3 0

∗ ∗ ∗ ∗ Ξ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ξ1 � 2PB − ε1P − 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

f
Q1L

f
− 􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

fΥ⊤1 Q4Υ1L
f

,

Ξ2 �

Q4 0 0

∗ Q5 0

∗ ∗ Q6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

L
f

� diag l1, . . . , ln( 􏼁, lj � max l
−
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, l
+
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, j ∈ Λ􏼚 􏼛,

L
g

� diag σ1, . . . , σn( 􏼁, σj � max σ−
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, σ
+
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, j ∈ Λ􏼚 􏼛,

L
h

� diag υ1, . . . , υn( 􏼁, υj � max υ−
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, υ
+
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, j ∈ Λ􏼚 􏼛.

(21)

Proof. Let x(t, ϕ) be an arbitrary solution of system (1) with
initial value (0, ϕ). Define y(t,ψ) � x(t + T, ϕ), where T> 0
is a constant and ψ � x(s + T, ϕ), − ρ≤ s≤ 0.,en y(t,ψ) is a
solution of system (1) with initial value (0,ψ). Let
z(t) � y(t,ψ) − x(t, ϕ). In view of system (18), we have

(Ax)′(t) � − Bα[y(t) − x(t)] + K0[f(y(t)) − f(x(t))] + U0[g(y(t − τ(t))) − g(x(t − τ(t)))]

+ W0 􏽚
μ(t)

0
[h(y(t − s)) − h(x(t − s))]ds + ΘΨz(t), t> 0,

x(s) � ψ(s) − ϕ(s), s ∈ [− ρ, 0],

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

where

Ψz(t) �

Δ1Υ1 0 0
0 Δ2Υ2 0
0 0 Δ3Υ3

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

3n2×n

×

f(y(t)) − f(x(t))

g(y(t − τ(t))) − g(x(t − τ(t)))

􏽚
μ(t)

0
[h(y(t − s)) − h(x(t − s))]ds

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(23)

Construct the following Lyapunov function:

V(t) � [(Az)(t)]
⊤

P[(Az)(t)], t≥ 0. (24)

Derivation of the above Lyapunov function along the
solution of (22) gives
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D
+
V(t) � 2[(Az)(t)]

⊤
P − Bα[y(t) − x(t)] + K0[f(y(t))􏼨

− f(x(t))] + U0[g(y(t − τ(t))) − g(x(t − τ(t)))]

+ W0 􏽚
μ(t)

0
[h(y((t − s))) − h(x(t − s))]ds + ΘΨz(t)􏼩

� − 2[(Az)(t)]
⊤

PB[(Az)(t)] + 2[(Az)(t)]
⊤

PK0[f(y(t))

− f(x(t))] + 2[(Az)(t)]
⊤

PU0[g(y(t − τ(t)))

− g(x(t − τ(t)))] + 2[(Az)(t)]
⊤

W0

· 􏽚
μ(t)

0
[h(y(t − s)) − h(x(t − s))]ds + 2[(Az)(t)]

⊤ΘΨz(t).

(25)

We calculate every term of D+V(t). It follows from the
assumption (H1), Lemma 2, and Lemma 3 that

2[(Az)(t)]
⊤

PK0[f(y(t)) − f(x(t))]

≤ [(Az)(t)]
⊤

PK0Q
− 1
1 K
⊤
0 P[(Az)(t)]

+[g(y(t − τ(t))) − g(x(t − τ(t)))]
⊤

Q2

· [g(y(t − τ(t))) − g(x(t − τ(t)))]

≤ [(Az)(t)]
⊤

PK0Q
− 1
1 K
⊤
0 P[(Az)(t)]

+ 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2[(Az)(t)]

⊤
L

f
Q1L

f
[(Az)(t)],

(26)

2[(Az)(t)]
⊤

PU0[g(y(t − τ(t))) − g(x(t − τ(t)))]

≤ [(Az)(t)]
⊤

PU0Q
− 1
2 U
⊤
0 P[(Az)(t)]

+[g(y(t − τ(t))) − g(x(t − τ(t)))]
⊤

Q2

· [g(y(t − τ(t))) − g(x(t − τ(t)))]

≤ [(Az)(t)]
⊤

PU0Q
− 1
2 U
⊤
0 P[(Az)(t)]

+ 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2[(Az)(t − τ(t))]

⊤
L

g
Q2L

g

[(Az)(t − τ(t))],

(27)

2[(Az)(t)]
⊤

W0 􏽚
μ(t)

0
[h(y(t − s)) − h(x(t − s))]ds

≤ [(Az)(t)]
⊤

PW0Q
− 1
3 W
⊤
0 P[(Az)(t)]

+ 􏽚
μ(t)

0
[h(y(t − s)) − h(x(t − s))]ds􏼢 􏼣

⊤

Q3

· 􏽚
μ(t)

0
[h(y(t − s)) − h(x(t − s))]ds􏼢 􏼣

≤ [(Az)(t)]
⊤

PW0Q
− 1
3 W
⊤
0 P[(Az)(t)]

+ 􏽚
μ(t)

0
􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2[(Az)(t − v)]

⊤
L

h
Q3L

h

[(Az)(t − v)]dt.

(28)

Using the definition of Ψz(t), assumption (H1), and
Lemma 2, we have

Ψz(t)
⊤

Q4 0 0

0 Q5 0

0 0 Q6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Ψz(t)

�

f(x(t)) − f(y(t))

g(x(t − τ(t))) − g(y(t − τ(t)))

􏽚
μ(t)

0
[h(x(t − s)) − h(y(t − s))]ds

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊤

×

Υ⊤1Δ1Q4Δ1Υ1 0 0

0 Υ⊤2Δ2Q5Δ2Υ2 0

0 0 Υ⊤3Δ3Q6Δ3Υ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

f(x(t)) − f(y(t))

g(x(t − τ(t))) − g(y(t − τ(t)))

􏽚
μ(t)

0
[h(x(t − s)) − h(y(t − s))]ds

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2[(Az)(t)]

⊤
L

fΥ⊤1 Q4Υ1L
f
[(Az)(t)]

+ 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2[(Az)(t − τ(t))]

⊤
L

gΥ⊤1 Q5Υ1L
g
[(Az)(t − τ(t))]

+ 􏽚
μ(t)

0
􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2[(Az)(t − v)]

⊤
L

hΥ⊤3 Q6Υ3L
h
[(Az)(t − v)]dt.

(29)

By (29), we have

2[(Az)(t)]
⊤ΘΨz(t)≤ [(Az)(t)]

⊤
PΘ

Q− 1
4 0 0
0 Q− 1

5 0
0 0 Q− 1

6

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠Θ⊤P[(Az)(t)]

+ Ψz(t)
⊤

Q4 0 0
0 Q5 0
0 0 Q6

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠Ψz(t)

≤ [(Az)(t)]
⊤

⎧⎨

⎩PΘ
Q− 1

4 0 0
0 Q− 1

5 0
0 0 Q− 1

6

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠Θ⊤P

+ 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

fΥ⊤1 Q4Υ1L
f

⎫⎬

⎭[(Az)(t)]

+ 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2[(Az)(t − τ(t))]

⊤
L

gΥ⊤1 Q5Υ1L
g

[(Az)(t − τ(t))]

+ 􏽚
μ(t)

0
􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2[(Az)(t − v)]

⊤
L

hΥ⊤3 Q6Υ3L
h

[(Az)(t − v)]dt.

(30)
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Adding the terms on the right-hand side of (26)–(28)
and (30) to (25), and using condition (20), we get

D
+
V(t)≤ [(Az)(t)]

⊤
⎧⎨

⎩ − 2PB + PK0Q
− 1
1 K
⊤
0 P + 􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

f
Q1L

f
+ PU0Q

− 1
2 U
⊤
0 P + PW0Q

− 1
3 W
⊤
0 P + PΘ

·

Q− 1
4 0 0

0 Q− 1
5 0

0 0 Q− 1
6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Θ⊤P + 􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

fΥ⊤1 Q4Υ1L
f

⎫⎬

⎭[(Az)(t)]

+ 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2[(Az)(t − τ(t))]

⊤
L

g
Q2L

g
+ L

gΥ⊤1 Q5Υ1L
g

􏽨 􏽩[(Az)(t − τ(t))]

+ 􏽚
μ(t)

0
􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2[(Az)(t − v)]

⊤
L

h
Q3L

h
+ L

hΥ⊤3 Q6Υ3L
h

􏽨 􏽩[(Az)(t − v)]dt

≤ − ε1[(Az)(t)]
⊤

P[(Az)(t)] + ε2[(Az)(t − τ(t))]
⊤

P[(Az)(t − τ(t))]

+ ε3 􏽚
μ

0
(t)[(Az)(t − v)]

⊤
P[(Az)(t − v)]dv

≤ − ε1V(t) + ε2V(t − τ(t)) + ε3 􏽚
μ

0
(t)V(t − v)dv,

(31)

which together with Remark 4 yields

V(t)≤ 􏽢Vρe
− λt

, t≥ 0, (32)

where 􏽢Vρ � sups∈[− ρ,0]V(s) and λ> 0 satisfies λ< ε1 −

ε2eλτ − ε3(eλμ/λ). ,us,

λmin(P)|Az(t)|
2 ≤V(t)≤ λmax(P) max

− ρ≤s≤0
|A(ϕ(s) − ψ(s))|

2
􏽮 􏽯e

− λt
, t≥ 0,

|Az(t)|≤

�������
λmax(P)

λmin(P)

􏽳

max
− ρ≤s≤0

|A(ϕ(s) − ψ(s))|􏼈 􏼉e
− 0.5λt

, t≥ 0.

(33)

By (33) and Lemma 2, we have

|z(t)|≤

����������������

􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2|Az(t)|

􏽶
􏽴

≤

������������������������������������������

􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

�������
λmax(P)

λmin(P)

􏽳

max
− ρ≤s≤0

|A(ϕ(s) − ψ(s))|􏼈 􏼉e
− 0.5λt

􏽶
􏽴

, t≥ 0,

(34)
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i.e.,

|y(t,ψ) − x(t, ϕ)|≤

����������������

􏽘

n

i�1

λmax(P)

1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2λmin(P)

􏽶
􏽴

max
− ρ≤s≤0

|A(ϕ(s) − ψ(s))|􏼈 􏼉e
− 0.5λt

, t≥ 0. (35)

Let

Xm(t) � x(t, ϕ) + 􏽘
m

k�1
[x(t + kT,ϕ) − x

· t +(k − 1)T, ϕ)], t≥ 0, m ∈ Z+.(

(36)

We show that Xm(t) is uniformly convergent. For
s ∈ Z+, by (35), we have

Xm+s(t) − Xm(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽘
m+s

k�m+1
[x(t + kT, ϕ) − x(t +(k − 1)T, ϕ)]

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
m+s

k�m+1
|x(t + kT, ϕ) − x(t +(k − 1)T, ϕ)|

� 􏽘
m+s

k�m+1
|y(t +(k − 1)T,ψ) − x(t +(k − 1)T, ϕ)|

≤

�����������������

􏽘

n

i�1

λmax(P)

1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2λmin(P)

􏽶
􏽴

max
− ρ≤s≤0

|A(ϕ(s) − ψ(s))|􏼈 􏼉e
− 0.5λt

􏽘

m+s

k�m+1
e

− 0.5λ(k− 1)T

≤

���������������������������������������������

􏽘

n

i�1

λmax(P)

1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2λmin(P)

max
− ρ≤s≤0

|A(ϕ(s) − ψ(s))|􏼈 􏼉
e− 0.5λTm

1 − e− 0.5λT

􏽶
􏽴

.

(37)

It is obvious that the function sequence Xm(t)􏼈 􏼉
∞
m�1 is

uniformly convergent by the Cauchy convergence criterion.
In addition,

x(t + mT, ϕ) � x(t, ϕ) + 􏽘

m

k�1
[x(t + kT, ϕ) − x(t +(k − 1)T, ϕ)]

� Xm(t).

(38)

Hence, x(t + mT, ϕ) is also uniformly convergent, which
implies that

lim
m⟶∞

x(t + mT, ϕ) � x0(t), (39)

x0′(t) � lim
Δ⟶0

x0(t + Δ) − x0(t)

Δ

� lim
Δ⟶0

lim
m⟶∞

x(t + Δ + mT, ϕ) − x(t + mT, ϕ)

Δ
� lim

m⟶∞
x0′(t + mT, ϕ).

(40)

Hence, we can deduce that x0(t) is a T− periodic solution
of system (1) since x(t + mT, ϕ) is a solution of system (1).
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Now, we prove that x0(t) is a unique T− periodic solution of
system (1). Let x1(t) � x1(t, ϕ1) and x2(t) � x2(t, ϕ2) be

different T− periodic solutions of system (1), where
ϕ1, ϕ2 ∈ C([− ρ, 0],Rn). It follows by (35) that

x1 t, ϕ1( 􏼁 − x2 t, ϕ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � x1 t + kT,ϕ1( 􏼁 − x2 t + kT,ϕ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤

����������������������������������������������������������

􏽘

n

i�1

λmax(P)

1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2λmin(P)

max
− ρ≤s≤0

A ϕ1(s) − ϕ2(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯e
− 0.5kt⟶ 0 as k⟶∞

􏽶
􏽴

.

(41)

,us, x1(t, ϕ1) � x2(t, ϕ2) for t≥ 0. □

Remark 5. In the proof of ,eorem 1, since z(t) is not a
continuous T− periodic solution, Lemma 1 cannot be used
for the proof of ,eorem 1. We generalize the results of
Lemma 1 to the continuous function space which can be
used for the proof of ,eorem 1. However, when the pa-
rameter |c|≥ 1 in (2), we cannot prove the result of ,eorem
1. We hope that subsequent researchers can solve the above
problems.

Remark 6. Obviously, the periodic solution of system (1) is
global asymptotical stability by ,eorem 1. On the contrary,
using Lemma 2, we have

‖ϕ − ψ‖ρ ≤

������������������������������

􏽘

n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 max

− ρ≤s≤0
|A(ϕ(s) − ψ(s))|􏼈 􏼉

􏽶
􏽴

. (42)

If there exists suitable 􏽥ci, i ∈ Λ, such that

‖ϕ − ψ‖ρ �

������������������������������

􏽘

n

i�1

1
1 − 􏽥ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 max

− ρ≤s≤0
|A(ϕ(s) − ψ(s))|􏼈 􏼉

􏽶
􏽴

. (43)

Hence, it follows by (35) and (43) that

|y(t,ψ) − x(t, ϕ)|≤

�������
λmax(P)

λmin(P)

􏽳

‖ϕ − ψ‖ρe
− 0.5λt

, t≥ 0,

(44)

and the periodic solution of system (1) is global exponential
stability.

Corollary 1. Assume that B, U, and K are some known
constant matrices. Assume that the assumptions (H1) and
(H2) hold. Ben, system (1) exists a global asymptotically
stable periodic solution if there exist three constants
εi > 0, i � 1, 2, 3, n × n diagonal matrices P> 0, and
Qi > 0, i � 1, 2, 3, such that the following inequalities hold:

Ξ≥ 0,

ε2P − 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

g
Q2L

g ≥ 0,

ε3P − 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

h
Q3L

h ≥ 0,

ε1 − ε2 − ε3μ> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

where

Ξ �

Ξ1 PK PU PW

∗ Q1 0 0

∗ ∗ Q2 0

∗ ∗ ∗ Q3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ξ1 � 2PB − ε1P − 􏽘
n

i�1

1
1 − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2L

f
Q1L

f
,

L
f

� diag l1, . . . , ln( 􏼁,

lj � max l
−
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, l
+
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, j ∈ Λ􏼚 􏼛,

L
g

� diag σ1, . . . , σn( 􏼁,

σj � max σ −
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, σ
+
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, j ∈ Λ􏼚 􏼛,

L
h

� diag υ1, . . . , υn( 􏼁,

υj � max υ−
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, υ
+
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, j ∈ Λ􏼚 􏼛.

(46)

4. Numerical Example

In this section, a simulation example is presented for il-
lustrating the usefulness of our main results. Consider a 2-
neuron neural network (1) with the following parameters:
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C � diag
1
2
,
1
2

􏼒 􏼓,

σ �
π
2

,

τ(t) � μ(t) � 0.1,

I(t) � 6 sin
2π
T

t, 5 cos
2π
T

t􏼒 􏼓
⊤

,

B �

0.9 1.2

1.5 0.6
⎛⎝ ⎞⎠,

K ∈
[0.2, 1.4] [− 0.8, 0.2]

[− 0.2, 0.4] [0, 1.2]

⎛⎝ ⎞⎠,

U ∈
[0.3, 1.5] [− 0.1, 0.9]

[− 1.2, − 0.6] [0.6, 1.8]

⎛⎝ ⎞⎠,

W ∈
[− 1.3, − 0.1] [0.1, 1.1]

[− 0.9, − 0.3] [0.3, 1.5]

⎛⎝ ⎞⎠,

f(x) � tanh(x),

g(x) � 0.1 sinx,

h(x) � 3 cosx.

(47)

By simple calculation, Lf � I2×2, Lg � 0.1
I2×2, Lh � 3I2×2,

Γi �

���
0.6

√ ���
0.5

√
0 0

0 0
���
0.3

√ ���
0.6

√􏼠 􏼡,

Υi �

���
0.6

√ ���
0.5

√
0 0

0 0
���
0.3

√ ���
0.6

√􏼠 􏼡

⊤

, i � 1, 2, 3.

(48)

Let ε1 � 6, ε2 � 2, and ε3 � 4.2. We can obtain the fol-
lowing feasible solutions to LMIs in ,eorem 1:

P � 2.8042I2×2,

Q1 � 2.7821I2×2,

Q2 � 4.4652I2×2,

Q3 � 1.6052I2×2,

Q4 � 2.9372I4×4,

Q5 � 12.1125I4×4,

Q6 � 1.5632I4×4.

(49)

Hence, all the conditions in ,eorem 1 hold, and the 2-
neuron neural networks (47) have a stationary oscillation
with T period.

Particularly, let the concrete parameter matrices in
(47) be

K0 �

0.2 − 0.6

− 0.2, 1 0.8

⎛⎜⎜⎝ ⎞⎟⎟⎠,

U0 �

0.5 − 0.1

− 0.5 1.7

⎛⎜⎜⎝ ⎞⎟⎟⎠,

W0 �

− 0.2 0.7

− 0.3 1.2

⎛⎜⎜⎝ ⎞⎟⎟⎠.

(50)

,e corresponding numerical simulations for different T
are presented in Figures 1–4. Figure 1 shows the state tra-
jectories of system (47) with the period T � 10. Figure 2
shows the phase plots of system (47) with the period T � 10.
Figure 3 shows the state trajectories of system (47) with the
period T � 0.2. Figure 4 shows the phase plots of system (47)
with the period T � 0.2.
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Figure 1: State trajectories of system (47) with T � 10.
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Figure 2: Phase plots of system (47) with T � 10.
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Remark 7. In [4, 5, 8, 9, 11], the authors studied the stability
problems of some nonneutral interval neural networks with
delays. However, there are few results for neutral-type in-
terval neural networks with impulsive delays which is the
problem we will solve in the future.

5. Conclusions

In this paper, we had investigated the stability problems of
neutral-type neural networks with D− operator and mixed
delays. It is interesting and challenging to extend our results
to the stochastic delay system [18], impulsive stochastic
delay differential systems [19], semi-Markov switched sto-
chastic systems [20], and stochastic systems with Lévy noise
[21].

Data Availability

,e data used to support the findings of this study are in-
cluded in this paper.

Conflicts of Interest

,e authors declare that they have no conflicts of interests.

Authors’ Contributions

All authors contributed equally to the writing of this paper.
All authors read and approved the final manuscript.

Acknowledgments

,is work was supported by the Natural Science Foundation
of Jiangsu High Education Institutions of China (Grant no.
17KJB110001).

References

[1] J. Hale, Beory of Functional Differential Equations, Springer,
New York, NY, USA, 1977.

[2] M. Zhang, “Periodic solutions of linear and quasilinear
neutral functional differential equations,” Journal of Mathe-
matical Analysis and Applications, vol. 189, no. 2, pp. 378–392,
1995.

[3] S. Lu, W. Ge, and Z. Zheng, “Periodic solutions to neutral
differential equation with deviating arguments,” Applied
Mathematics and Computation, vol. 152, no. 1, pp. 17–27,
2004.

[4] M. Syed Ali, N. Gunasekaran, and Q. Zhu, “State estimation of
T-S fuzzy delayed neural networks with Markovian jumping
parameters using sampled-data control,” Fuzzy Sets and
Systems, vol. 306, pp. 87–104, 2017.

[5] G. Zong and J. Liu, “New delay-dependent global robust
stability conditions for interval neural networks with time-
varying delays,” Chaos, Solitons & Fractals, vol. 42, no. 5,
pp. 2954–2964, 2009.

[6] Y. Zhang, “Stationary oscillation for cellular neural networks
with time delays and impulses,” Mathematics and Computers
in Simulation, vol. 79, no. 10, pp. 3174–3178, 2009.

[7] Y. Zhang and Q.-G. Wang, “Stationary oscillation for high-
order Hopfield neural networks with time delays and im-
pulses,” Journal of Computational and Applied Mathematics,
vol. 231, no. 1, pp. 473–477, 2009.

[8] H. Zhao, L. Sun, and G. Wang, “Periodic oscillation of dis-
crete-time bidirectional associative memory neural net-
works,” Neurocomputing, vol. 70, no. 16–18, pp. 2924–2930,
2007.

[9] Q. Zhu and J. Cao, “Stability analysis of Markovian jump
stochastic BAM neural networks with impulse control and
mixed time delays,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 23, no. 3, pp. 467–479, 2012.

[10] Q. Zhu, J. Cao, and R. Rakkiyappan, “Exponential input-to-
state stability of stochastic Cohen-Grossberg neural networks
with mixed delays,” Nonlinear Dynamics, vol. 79, no. 2,
pp. 1085–1098, 2015.

[11] Z. Gui, W. Ge, and X.-S. Yang, “Periodic oscillation for a
Hopfield neural networks with neutral delays,” Physics Letters
A, vol. 364, no. 3-4, pp. 267–273, 2007.

[12] R. Rakkiyappan, P. Balasubramaniam, and J. Cao, “Global
exponential stability results for neutral-type impulsive neural
networks,” Nonlinear Analysis: Real World Applications,
vol. 11, no. 1, pp. 122–130, 2010.

[13] Y. Liu, Z. Wang, and X. Liu, “Stability analysis for a class of
neutral-type neural networks with Markovian jumping

0
5

10
15

20

–1.5
–1

–0.5
0

x2

t
x1

–0.1

0

0.1

0.2

0.3

Figure 4: Phase plots of system (47) with T � 0.2.

–4

–3

–2

–1

0

1

2

3

4

5

6

x(
t)

2 3 4 5 6 7 8 9 101
t

x1
x2

Figure 3: State trajectories of system (47) with T � 0.2.

Mathematical Problems in Engineering 11



parameters and mode-dependent mixed delays,” Neuro-
computing, vol. 94, pp. 46–53, 2012.

[14] S. Senthilraj, R. Raja, F. Jiang, Q. Zhu, and R. Samidurai, “New
delay-interval-dependent stability analysis of neutral type
BAM neural networks with successive time delay compo-
nents,” Neurocomputing, vol. 171, pp. 1265–1280, 2016.

[15] R. Raja, Q. Zhu, S. Senthilraj, and R. Samidurai, “Improved
stability analysis of uncertain neutral type neural networks
with leakage delays and impulsive effects,” Applied Mathe-
matics and Computation, vol. 266, pp. 1050–1069, 2015.

[16] S. Cui, T. Zhao, and J. Guo, “Global robust exponential
stability for interval neural networks with delay,” Chaos,
Solitons & Fractals, vol. 42, no. 3, pp. 1567–1576, 2009.

[17] Z. Wang, H. Shu, J. A. Fang, and X. Liu, “Robust stability for
stochastic Hopfield neural networks with time delays,”
Nonlinear Analysis: Real World Applications, vol. 7, no. 5,
pp. 1119–1128, 2006.

[18] Q. Zhu, “Stabilization of stochastic nonlinear delay systems
with exogenous disturbances and the event-triggered feed-
back control,” IEEE Transactions on Automatic Control,
vol. 64, no. 9, pp. 3764–3771, 2019.

[19] W. Hu, Q. Zhu, and H. R. Karimi, “Some improved Razu-
mikhin stability criteria for impulsive stochastic delay dif-
ferential systems,” IEEE Transactions on Automatic Control,
vol. 64, no. 12, pp. 5207–5213, 2019.

[20] B. Wang and Q. Zhu, “Stability analysis of semi-Markov
switched stochastic systems,” Automatica, vol. 94, pp. 72–80,
2018.

[21] Q. Zhu, “Stability analysis of stochastic delay differential
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