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When consumers faced with the choice of competitive chain facilities that offer exclusive services, current rules cannot describe
these customers’ behaviors very well. So we propose a partially proportional rule to represent this kind of customer behavior. In
addition, the exact demands of customers in many real-world environments are often difficult to determine. -is is contradicting
to the assumption in most studies of the competitive facility location problem. For the competitive facility location problem with
the partially proportional rule, we establish a robust optimization model to handle the uncertainty of customers’ demands. We
propose two methods to solve the robust model by studying the properties of the counterpart problem. -e first method MIP is
presented by solving a mixed-integer optimization model of the counterpart problem directly.-e second method SAS is given by
embedding a sorting subalgorithm into the simulated annealing framework, in which the sorting subalgorithm can easily solve the
subproblem. -e effects of the budget and the robust control parameter to the location scheme are analyzed in a quasi-real
example.-e result shows that changes in the robust control parameter can affect the customer demands that were captured by the
new entrants, thereby changing the optimal solution for facility location. In addition, there is a threshold of the robust control
parameter for any given budget. Only when the robust control parameter is larger than this threshold, the market share captured
by the new entering firm increases with the increases of this parameter. Finally, numerical experiments show the superiority of the
algorithm SAS in large-scare competitive facility location problems.

1. Introduction

Competitive facility location (CFL) is the problem of lo-
cating new facilities in competitive markets with the aim of
maximizing market share [1, 2]. A lot of competitive facility
location models have been proposed in recent years because
these models are very useful in many competitive situations
[3]. -ere are various competitive facility location models
depending on the components to be considered. -ese
components usually include competitive type, location
space, and customer behavior (see survey paper [4]).

Suppose that there are different facilities offering similar
goods or services, customer behavior refers to the way that a
customer how to spend his buying power on these facilities.
It is obvious that customer behavior is a key ingredient in the
competitive facility location problem [5]. -e two most
common customer behavior rules employed in literature are

the binary rule and the proportional rule [6]. -e binary rule
dates back to the duopoly model proposed by Hotelling [7].
It is traditionally assumed that customers patronize the
nearest facility to be served, but other characteristics of the
facilities can also be taken into account [8–10]. In fact, if we
use the parameter (attraction) to uniformly represent the
different characteristics considered by competitive facilities,
then the essence of the binary rule is that the customers
always patronize the most attractive facility. -e propor-
tional rule is first proposed by Huff [11], which assumes that
the customers patronize all facilities in proportion to their
attractions [12–16]. Many researchers have studied different
customer behavior rules, but most of them can be regarded
as variants of the above two rules. Such as in [17], the authors
studied the customer behavior with minimal attraction re-
quirement. Drezner et al. [18] investigated the competitive
facility location problem based on the concept of “radius of

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 3107431, 12 pages
https://doi.org/10.1155/2020/3107431

mailto:yu_wuyang@163.com
https://orcid.org/0000-0002-7831-7783
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3107431


influence.” In their model, although the calculation of the
attraction is based on the facility’s cover distance, the di-
vision of the market share still relies on the proportional
rule. Qi et al. [19] observed that customers usually patronize
facilities within a range that they feel is convenient. -ey
proposed a proportional rule with a limited range to study
the competitive facility location problem. Fernández et al.
[20] studied the customer behavior that customer only
patronizes those facilities that the attraction greater than or
equal to a threshold value.

According to the classification of Suáez-Vega et al. [21],
there is another basic rule of customer behavior called the
partially binary rule. Following this rule, the customer first
selects the most attractive facility from each firm and then
splits his demand among those facilities proportionally to
their attractions [22]. -e partially binary rule is usually
studied together with the binary rule and/or the propor-
tional rule. For example, Suárez-Vega et al. [21] and Bie-
singer et al. [23] studied the competitive facility location
problems in the network space and the discrete space, re-
spectively. Six scenarios have been considered in both pa-
pers, they are combinations of two service types (essential
and unessential) and three customer behavior rules (binary,
proportional, and partially binary). Fernández et al. [24]
proposed two new heuristic algorithms to solve competitive
facility location problems with the binary rule and the
partially binary rule, respectively. Fernández et al. [25]
studied a continuous competitive single-facility location and
design problem with the partially binary rule. -e com-
parison with the proportional rule reveals their location
results are quite different.

Most of the customer behaviors in competitive facility
location problems can be described by these three rules.
However, when consumers faced with the choice of compet-
itive chain facilities that offer exclusive services, we find that
these three rules cannot describe customers’ behaviors well. For
example, when somebody wants to apply for a bank account
for deposit/withdrew or other services, because each bank has
several business service points (includingmanual service points
and ATMs), a customer usually uses the total attraction of all
business service points as the evaluation value of the bank.-e
typical customer behavior is as follows: the customer chooses
the most attractive bank to apply a bank account, and then he
will patronize the business service points of this bank in
proportion to their attractions. From the typical behavior of
how customers choose competitive chain facilities that provide
exclusive services, we can find that neither of the binary rule,
the proportional rule, nor the partially binary rule adequately
describes this kind of customer behavior. In this paper, we
propose a new kind of customer behavior rule to describe this
kind of customer behavior, and we call this rule as the partially
proportional rule.

In most studies of the competitive facility location
problem, it is usually assumed that the demands of cus-
tomers are known. However, due to different reasons such as
lack of historical data of customers or the high-cost to
conduct a comprehensive market survey, the exact demands
of customers in many real-world environments are often
difficult to determine. To the best of our knowledge, only two

literatures involved the uncertainty of the demands of
customers. Shiode and Drezner [26] assumed that the
weights of demand points are stochastic, and then they
studied the competitive facility location problem in the
Stackelberg game framework. Beresnev and Melnikov [27]
studied the competitive facility location problem in the
situation of there are several alternative demand scenarios.
-e uncertainty of demands in the above two papers is
actually expressed by random variables, but it is quite dif-
ficult to determine the corresponding random distribution
in many cases. -erefore, we use interval data to express the
uncertainty of demands and then adopt a robust optimi-
zation method to deal with this uncertainty.

-e remainder of this paper is organized as follows: Section
2 is devoted to present the definition of the partially pro-
portional rule and the robust optimization method. Section 3
consists the robust model of competitive facility location
problemwith the partially proportional rule. Section 4 includes
two solution methods MIP and SAS to solve the presented
model. -e effects of the budget and the robust control pa-
rameter in the location scheme are presented in Section 5, and
the superiority of SAS is also shown in large-scale numerical
tests. Finally, some conclusions are presented in Section 6.

2. Problem Definition

2.1. Partially Proportional Rule. In this section, we first
introduce a suitable rule to describe the behavior of how
customers choose competitive chain facilities that provide
exclusive services. Suppose there are several firms in the
competitive market, each firm has several chain facilities that
offer exclusive services. A customer only chooses one of
these services due to the exclusive of these services. If the
customer chooses one of these firms, any of the firm’s chain
facilities can provide the corresponding exclusive service to
the customer. In order to describe well this kind of customer
behavior, the partially proportional rule is defined as follows:
a customer chooses the most attractive firm from all firms at
first and then splits his buy powers on the selected firm’s
facilities in proportion to their attractions.

In order to illustrate the difference between the binary rule,
the proportional rule, the partially binary rule, and the partially
proportional rule, we give an example to show how customer
will patronize facilities under different behavior rules. Suppose
that there are three firms A, B, and C in the competing market.
Each firm has several chain facilities, firmA has facilities 1, 4, 5,
and 9, firm B has facilities 2, 6, and 7, and firmC has facilities 3,
8, and 10. For simplicity, suppose that for a customer, the
attraction a(k) of the facility k is equal to its serial number, i.e.,
a(k) � k. -e patronizing patterns under different customer
behavior rules are shown in Figure 1.

If the customer follows the binary rule, he only pa-
tronizes the facility 10 because this facility has the largest
attraction among all facilities. If the customer follows the
proportional rule, he patronizes all the facilities and splits his
demands to facility k with the proportion k/55, where 55 is
the total attraction of all facilities. If the customer follows the
partially binary rule, he selects the most attractive facility
from each firm at first, that is, facility 9 of firm A, facility 7 of
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firm B, and facility 10 of firm C. -en he patronizes facilities
9, 7, and 10 and splits his demands in proportion to 9/26, 7/
26, and 10/26, respectively. If the customer follows the
partially proportional rule, he compares the total attraction
of each firm at first. In this example, the total attraction of
firms A, B, and C is 19, 15, and 21, respectively. -e most
attractive firm is C; hence, he patronizes facilities 3, 8, and 10
of firm C and splits his demands in proportion to 3/21, 8/21,
and 10/21, respectively.

Note that for a customer, if there are multiple firms that
are most attractive, then the customer patronizes all the
facilities of these firms and splits his demands in proportion
to their attractions.

2.2. Robust Optimization. A robust model with interval data
uncertainty was first proposed by Soyster [28], but his method
usually leads to a solution that is too conservative because of
always considering the worst case. Ben-Tal and Nemirovsky
[29] addressed the over-conservatism by applying an ellipsoid
uncertainty set, but the robust counterpart model cannot
conserve the complexity of the original problem. Bertsims
and Sim [30] presented a method with the flexibility to adjust
the degree of conservativeness while maintaining the linear
robust counterparts. Before establishing a robust model, we
first briefly describe the robust model introduced in [30]. -e
authors considered the following problem:

max c′x,

s.t.
Ax≤ b,

l≤ x≤ u,


(1)

where x is the n-dimensional decision variable, and xj is the
j-th component of x. Some parameters of the coefficient
matrix A are uncertain. For a particular row i of A, let Ji

denote the set of coefficients aij, j ∈ Ji that are uncertain.
Suppose each entry aij takes values in [aij − aij, aij + aij].
For every i, a parameter Γi ∈ [0, |Ji|] is introduced as the
robust control parameter. -e goal is to be protected against
all cases that up to Γi of these coefficients are allowed to
change, and one coefficient ait changes by (Γi − ⌊Γi⌋)ait. -e
role of the parameter Γi is to adjust the robustness against the

level of conservatism of the solution. -en the robust model
of the original problem is

max c′x,

s.t.


j∈J

aijxj + β x, Γi( ≤ bi,∀i,

− yj ≤ xj ≤yj,∀j,

l≤x≤ u,

y≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where

β x, Γi(  � max
Si∪ ti{ } Si| ⊆Ji, Si| |�⌊Γ⌋,ti∈Ji\Si{ }


j∈Sj

aijyj + Γi − ⌊Γi⌋( aiti
yti

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(3)

3. Proposed Model

Suppose there are several firms in a region, each providing
exclusive services through their chain facilities. A new en-
tering firm wants to set up several chain facilities to offer its
exclusive service. -e problem of the new entering firm is
how to select the locations of its chain facilities to gain the
largest market share under a given budget. -ere is a set of
discrete customers that can aggregate to demand points. -e
demand of each customer is uncertain, but the range of its
value is known. -e following notations are used:

K: set of existing firms, indexed by k
I: set of demand points (customers), indexed by i
Jk: set of firm k’s chain facilities, k is an existing firm
J: set of existing facilities, i.e., J � ∪k∈KJk

Jn: set of potential facility locations, indexed by j
wi: demand of customer i ∈ I, it is uncertain within the
interval [ci, ci + di]

fj: opening cost at potential facility location j ∈ Jn

dij: distance between customer i and facility j
aij: attraction that customer i feels from facility j

Suppose that the attraction of facility k equals k
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Figure 1: Patronizing patterns under different customer behavior rules.
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G: budget of the new entering firm
yj, j ∈ Jn: binary variable, yj � 1 if facility j is select to
open and 0 otherwise

-e goal of the new entrant is to maximize the market
share. Hence, the competitive facility location problem for
the new entering firm is as follows:

z � max
i∈I

wiai(y),

s.t.

j∈Jn

fjyj ≤G,

yj ∈ 0, 1{ }, j ∈ Jn.

⎧⎪⎪⎨

⎪⎪⎩

(4)

where ai(y) indicates the proportion of demand that the
new entering firm captured from customer i. ∀i ∈ I, let

Ri � maxk∈Kj∈Jk
aij, and let Ki � k′ ∈ K | j∈J

k′
aij � Ri .

If customers follow the partially proportional rule, then
ai(y) can be expressed as

ai(y) �

1, 
j∈Jn

aijyj >Ri,

1
Ki


 + 1

, 
j∈Jn

aijyj � Ri,

0, 
j∈Jn

aijyj <Ri.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

By adding binary variables x+
i , x−

i , and let ϵ be a positive
real number that is small enough, condition (5) can be
expressed with some linear constraints. Hence, the above
competitive facility location model can be transformed into
an integer optimization model as follows:

z � max
i∈I

wi

Ki


x+

i + x−
i

Ki


 + 1

, (6)

s.t.


j∈Jn

fjyj ≤G,

x+
i Ri + ε( ≤ 

j∈Jn

aijyj, i ∈ I,

x−
i Ri − ε( ≤ 

j∈Jn

aijyj, i ∈ I,

x+
i , x−

i , yj ∈ 0, 1{ }, i ∈ I, j ∈ Jn.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Note that for any yj, if (Ri + ε)≤j∈Jn
aijyj, then the

optimal solution is x+
i � 1, x−

i � 1. In this case, the new
entering firm gets the total demand of customer i, i.e.,
ai(y) � 1. If (Ri − ε)≤j∈Jn

aijyj < (Ri + ε), then the opti-
mal solution is x+

i � 0, x−
i � 1, and the proportion of de-

mand that the new entering firm get from the customer i is
ai(y) � 1/(|Ki| + 1). If j∈Jn

aijyj < (Ri − ε), then the opti-
mal solution is x+

i � 0, x−
i � 0, that is, ai(y) � 0.-e role of ϵ

is to compare the size of Ri and j∈Jn
aijyj; hence, any

positive number that is less than
mini∈Imin

y∈ yj |Σj∈Jn
yj�s 

|Ri − j∈Jn
aijyj| can be used as ϵ.

Let D(x, y) denote the solution set of (7), and
D(Γ) � μ | i∈Iμi ≥Γ, 0≤ μi ≤ 1, i ∈ I , where 0≤ Γ≤ |I| is a

parameter which is used to control the total uncertainty of
wi. Naturally, the uncertainty of wi can be expressed as wi �

ci + μidi with μ ∈ D(Γ). Similar to the robust model that is
proposed in [30], the robust model of the above optimization
problem can be expressed as follows:

(RP)Z � max
x,y∈D(x,y)


i∈I

ci

Ki


x+

i + x−
i

Ki


 + 1

+ min
μ∈D(Γ)


i∈I

μidi

Ki


x+

i + x−
i

Ki


 + 1

⎛⎝ ⎞⎠.

(8)

4. Solution Method

In this section, we propose two methods to solve the robust
optimization problem (RP). -e first method MIP is based
on directly solving an integer model that is equivalent to the
origin robust model (RP).

4.1. MIP Method. Given x+
i , x−

i , i ∈ I, let us consider the
suboptimization problem (SP):

min 
i∈I

μidi

Ki


x+

i + x−
i

Ki


 + 1

,

(SP)s.t.

i∈I

μi ≥ Γ,

0≤ μi ≤ 1, i ∈ I.

⎧⎪⎪⎨

⎪⎪⎩

(9)

-e dual problem of (SP) is as follows:

max Γθ − 
i∈I

vi,

s.t.
θ − vi ≤di

Ki


x+

i + x−
i

Ki


 + 1

, i ∈ I,

θ≥ 0, vi ≥ 0, i ∈ I.

⎧⎪⎪⎨

⎪⎪⎩

(10)

So the robust optimization model (RP) can be converted
to (RP1) as follows:

max Γθ − 
i∈I

vi + 
i∈I

ci

Ki


x+

i + x−
i

Ki


 + 1

,

(RP1)s.t.


j∈Jn

fjyj ≤G

x+
i Ri + ε( ≤ 

j∈Jn

aijyj, i ∈ I,

x−
i Ri − ε( ≤ 

j∈Jn

aijyj, i ∈ I,

θ − vi ≤ di

Ki


x+

i + x−
i

Ki


 + 1

, i ∈ I,

θ ≥ 0, vi ≥ 0, x+
i , x−

i , yj ∈ 0, 1{ }, i ∈ I, j ∈ Jn.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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Since the equivalence model (RP1) is a mixed integer
optimization model, the first method is to solve it directly
using some commerce software such as CPLEX and
GUROBI. We denote this method as Method MIP.

4.2. SASMethod. -e second method to solve (RP) is based
on the simulated annealing framework. -e key point is that
we found the structure of the optimal solution to the sub-
problem. Now we first present a Lemma 1.

Lemma 1. For 0< a1 ≤ a2 ≤ · · · ≤ an, 0≤g≤ n, let D(g) �

x | 
n
i�1xi ≥g, 0≤ xi ≤ 1, i � 1, 2, . . . , n . Consider the opti-

mization problem (OP): minx∈D(g)z � 
n
i�1aixi. Let g be the

largest integer less than or equal tog. If x∗ is defined as follows, it
is the optimal solution of (OP):

x
∗
i �

1, i≤ g,

g − g, i � g +1,

0, i> g +1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

Proof. Firstly, we prove that 
n
i�1x
∗
i � g is a necessary

condition for the optimal solution x∗ of problem (OP).
Assuming this conclusion is wrong, i.e., there is


n
i�1x
∗
i − g � ε> 0. Let x∗

i′ � min x∗i > 0, i � 1, 2, . . . , n . We
can construct a new solution x as follows: set xi ≔ x∗i ,∀i≠ i′,
and xi′ ≔ x∗

i′ − min x∗
i′ , ε . It is easy to know that 

n
i�1xi �


n
i�1x
∗
i − min x∗

i′ ,ε ≥g, but z(x∗) − z(x) � ai′min x∗
i′ ,ε >0.

-is is a contradiction.
Secondly, we prove that there exists an optimal solution,

where at most one component xi takes the value 0< xi < 1,
and the other components are 0 or 1. Assuming this con-
clusion is wrong, i.e., for every optimal solution, there are at
least two components xi1 and xi2 such that 0< xi1, xi2 < 1.
Without loss of generality, we can assume that i1< i2. Now
we can construct a new solution. Set xi ≔ xi,∀i≠ i1, i2, and
xi1, xi2 as follows:

(1) If xi1 + xi2 ≤ 1, then xi1 ≔ xi1 + xi2, xi2 ≔ 0
(2) If xi1 + xi2 > 1, then xi1 ≔ 1, xi2 ≔ xi1 + xi2 − 1

Obviously, x ∈ D(g), for case (1) we know that z(x) −

z(x) � (ai1xi1 + ai2xi2)− ai1(xi1 + xi2) � (ai2 − ai1)xi2 ≥ 0.
For case (2), we know that z(x) − z(x) � (ai1xi1 + ai2xi2) −

[ai1 + ai2 (xi1 + xi2 − 1)] � (1 − xi1)(ai2 − ai1)≥ 0. So x is
also an optimal solution. -is is a contradiction.

Lastly, we prove that the solution defined in (11) is an
optimal solution of (OP). -erefore, we know that the
optimal solution of (OP) must satisfy 

n
i�1xi � g, and at

most one component xi takes the value 0<xi < 1. So we can
conclude that there are g components xi equal to 1, and one
component xi equals g − g and all other components are 0.
-erefore, according to Chebyshev’s sum inequality [31], we
know that x∗ defined by (11) is the optimal solution of the
problem (OP).

By applying the above Lemma 1 to the problem (SP), we
can get the following -eorem 1. □

Theorem 1. For given x+
i , x−

i , let I1 � i ∈ I | x+
i � 1, x−

i �

1}, I2 � i ∈ I |{ x+
i � 0, x−

i � 1}, I3 � i ∈ I | x+
i � 0, x−

i � 0}.
Let di � di, i ∈ I1, di � di/(|Ki| + 1), i ∈ I2. <en μ∗ is an
optimal solution of the problem (SP) if it is defined as follows:

(1) If Γ ≤ |I3|, μ∗i � 1, i ∈ I3, and μ∗i � 0, i ∈ I2∪I3
(2) If Γ > |I3|, record the sequence of di 

i∈I1∪I2
in the

ascending order as i1, i2, . . . , is, where s � |I1∪I2|,
then μ∗j � 1, j ∈ I3, and for j ∈ I1∪I2, μ∗j defined as
follows:

μ∗j �

1, j< ik′+1,

Γ − Γ, j � ik′+1,

0, j> ik′+1,

⎧⎪⎪⎨

⎪⎪⎩
(13)

where k′ � Γ − |I3|.

Proof. -e problem (SP) can be rewritten as follows:

(SP1)z(x) � min
μ∈D(Γ)


i∈I1

μidi + 
i∈I2

μidi

Ki


 + 1

⎛⎝ ⎞⎠. (14)

(1) If Γ ≤ |I3|, from μ∗i � 1, i ∈ I3, and μ∗i � 0, i ∈ I1 ∪ I2,
we can get that μ∗ ∈ D(Γ). Obviously, the objective
function corresponding to μ∗ is 0. Hence, we can
conclude that μ∗ is an optimal solution of (SP) in this
case.

(2) If Γ > |I3|, firstly, we prove that the optimal solution
of (SP1) satisfies μi � 1,∀i ∈ I3. Assuming this
conclusion is wrong, i.e., there is a i′ ∈ I3 such that
μi′ < 1. Let σ � 1 − μi′ > 0. It is easy to construct a new
solution as follows:

Set μi ≔ 1,∀i ∈ I3. Find any one i ∈ I1 ∪ I2 such that
μi > 0, let μi ≔ μi − min(σ, μi) and μi ≔ μi for other i≠i.
We can get that z(μ)> z(μ). -is is a contradiction. Hence,
there must be μi � 1, ∀i ∈ I3. We can conclude that μ∗i is an
optimal solution of (SP1) according to Lemma 1.

Given a facility location solution y, we propose a sorting-
based algorithm to solve (SP) as follows, this algorithm can
be used to calculate the market share that was captured by
the new entering firm:

SortA:

(1) Define di, i ∈ I, as follows:

di �

di, if Ri < 
j∈Jn

aijyj,

di

Ki


 + 1

, if Ri � 
j∈Jn

aijyj,

0, if Ri > 
j∈Jn

aijyj.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

And define ci, i ∈ I, in a similar way (just substitute di

by ci).
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(2) Record the sequence of d in the ascending order as d.
Take into account the uncertainty of wi, the market
share of the new entering firm is

Z(y) � 
i∈I

ci + 
i≤Γ

di + Γ − Γ( )dΓ+1. (16)

-e simulated annealing algorithm was introduced by
Kirkpatrick et al. [32]. By embedding the sorting-based
algorithm (SortA) into the simulated annealing framework,
we present the solution method in Algorithm 1.

-e process of CreateInitialSolution (ProblemSize) is as
follows:

Calculate sj � i∈IAij/fj,∀j ∈ Jn, by sorting sj in the
descend order. Record the rearranged index sequence as
j1, j2, . . . , jN. Find the maximal index jt such that
fj1

+ fj2
+ · · · + fjt

≤G, then let yj
′ � 1 for j � j1, j2, . . . , jt

and yj
′ � 0 for j � jt+1, . . . , jN to generate an initial feasible

solution y′ ∈ D, where D � y | j∈Jn
fjyj ≤G, yj ∈ 0, 1{ },

j ∈ Jn}.
-e process of CreateNeighborSolution (Ycurrent) is as

follows:
Let y′ ≔ Ycurrent, calculate the remaining budget after

opening new facilities Rbudget ≔ G − j∈Jn
fjyj
′. Let

I1(y′) ≔ j ∈ Jn | yj
′ � 1 , I0(y′) ≔ j ∈ Jn | yj

′ � 0 . Ran-
domly choose two subsets SI1 ⊂ I1(y′) and SI0 ⊂ I0(y′)
such that j∈SI0fj − j∈SI1fj ≤Rbudget, and then let
yj
″ ≔ 0, j ∈ SI1, yj

″ ≔ 1, j ∈ SI0, and yj
″ ≔ yj
′ for other j.

5. Numerical Example

5.1. A Quasi-Real Example. Consider the 49-node data set
described in Daskin [33] consisting of the capitals of the
continental United States plusWashington, DC.-e lower
and upper bounds of the customer demands (ci, ci) are
proportional to the population of the state (i) in 1890 and
1990, respectively. Hence di ≔ ci − ci. Now, there are two
firms (A and B) that offer similar exclusive services
through their chain facilities. Firm A has 5 facilities lo-
cated in the states of Alabama, Arizona, Iowa, Maine, and
Nebraska, respectively. Firm B has 5 facilities located in
the states of New Hampshire, Ohio, South Dakota, Utah,
and Wyoming, respectively. -e attraction aij that the
customer i feels from facility j is calculated as
1/(dij + 1),∀i ∈ I, j ∈ J∪Jn. -e opening cost at the po-
tential facility locations j ∈ Jn is also taken from the data
set of Daskin. Before the new firm C entered the com-
petitive market, the market was completely divided into
two parts by firm A and firm B. -e division pattern of the
market share is shown in Figure 2.

Now firm C wants to enter this market by opening
several chain facilities. Any customer point without an
existing facility can be regarded as a potential location for
new facilities. -e goal of firm C is to maximize the market
share captured by itself under the constraint of a limited
budget G. -e robust control parameter Γ can take any value
in the interval [0, 49]. For simplicity, Γ takes integer values in
our experiments. If the value of Γ is 0 or 49, then wi is equal

to the lower limit ci or the upper limit ci + di, respectively.
-is means that the demand of each customer has been
determined. Hence, we limit the parameter Γ to the integers
in the interval [1, 48].

For G � 100, 000, when the parameter Γ ≤ 42, the op-
timal decision of firm C is to open two facilities in
Pennsylvania and Mississippi, respectively. -e opening
cost of these two facilities is 93000. -e location of fa-
cilities and the customers that captured by each firm are
shown in Figure 3.

However, when Γ ≥ 43, the optimal locations of firm C’s
facilities are Pennsylvania and Michigan, respectively. -e
opening cost of these two facilities is 86,800. Similarly, all
information is shown in Figure 4.

For simplicity, we refer to location plans corresponding
to Γ � 42 and Γ � 43 as Plan 1 and Plan 2, respectively. Why
does firm C’s location plan change when Γ changes from 42
to 43? In order to find the cause of this change, we list the
customer demand ranges captured by firm C in Table 1. -e
overall contents of Table 1 are divided into two parts: Plan 1
and Plan 2. Take the part of Plan 1 as an example, the first
column is the customers captured by firm C, the second
column is the demand intervals of customers. -e column
μ∗42 denotes the optimal solution of μ in (SP) when Γ � 42,
and the definition of μ∗43 is similar.

Given a facility location plan y, denote the set of cus-
tomers captured by firm C as Cu(y). -en the minimal
demands captured by firm C can be expressed as
i∈Cu(y)(ci + μ∗i di). According to the Lemma 1 proposed in
Section 4.2, the values of μ∗42 and μ∗43 are easy to obtain.
When Γ � 42, the demands captured by firm C with Plan 1
and Plan 2 are 246.0530 and 240.3947, respectively. So in this
case, Plan 1 is better than Plan 2. However, when Γ � 43, the
demands captured by firm C with Plan 1 and Plan 2 are

Input: ProblemSize, T0, Tend, r, L
Output: Ybest
Ycurrent⟵CreateInitialSolution (ProblemSize)
Obj(Ycurrent)⟵ algorithm SortA
Ybest⟵Ycurrent
While (T0 ≥Tend)
For (i � 1 To L)

Ytemp⟵CreateNeighborSolution (Ycurrent)
Obj(Ytemp)⟵ algorithm SortA
If (Obj(Ytemp) ≥ Obj(Ycurrent))

Ycurrent⟵Ytemp
If (Obj(Ytemp) ≥ Obj(Ybest))

Ybest⟵Ytemp
End

Else If (Exp((Obj(Ytemp) − Obj(Ycurrent))/T0)
> Rand())

Ycurrent⟵Ytemp
End

End
T0⟵ r · T0

End
Return (Ybest)

ALGORITHM 1: SAS method.
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283.4438 and 285.7085, respectively. Obviously, Plan 2 is
better than Plan 1 in this case. -erefore, we can get a
conclusion that changes in the robust control parameter can
affect the customer demands that were captured by the new
entrants, thereby changing the optimal solution for facility
location.

For G � 100, 000, 150, 000, 200, 000, 250, 000, 300, 000,
the relationships between the demands captured by firm C
and the values of Γ are shown in Figure 5. From Figure 5, it
is obvious that a larger budget makes the entering firm
capture more demands. -is is in line with our intuition, as
more budgets expand the feasible range and the value of the
objective function increases accordingly. For a given

budget, there is a threshold for the parameter Γ. Only when
the parameter Γ is larger than this threshold, the market
share that was captured by the new entering firm increases
with the increase of Γ. In addition, the threshold of the
robust control parameter Γ decreases as the budget in-
creases. -erefore, uncertainty will have a greater impact
on the location of competitive facilities when the budget is
larger.

Let G � 100000. For each Γ ∈ 5, 10, 15, 20, 25, 30,{

35, 40, 45}, generate scenarios ξi(i � 1, 2, . . . , 10) as follows:
randomly select Γ number of customers, let their demands to
be the corresponding upper bounds, and the demands of the
remaining customers to be the corresponding lower bounds.

Figure 2: Division pattern of the market (blue circles: customers; red triangles: firm A’s facilities; black rectangles: firm B’s facilities; plum
red regions: customers captured by firm A; white regions: customers captured by firm B).

Figure 3: Division pattern of the market with G � 100000 and Γ ≤ 42 (blue circles: customers; red triangles: firm A’s facilities; yellow circles:
firm C’s facilities; black rectangles: firm B’s facilities; plum red regions: customers captured by firm A; white regions: customers captured by
firm B; orange regions: customers captured by firm C).
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For each ξi, we can solve the deterministic model of the
competitive facility location problem to get the optimal
location scheme for firmC. Denote the demands captured by
firm C in the worst case as ZD(ξi). Let ZD be the average of
ZD(ξi) and record the customer demands obtained by firm
C based on the robust model as ZR. For each value of Γ, the
comparison of ZD and ZR is listed in Table 2.

From Table 2, ZD <ZR for all values of Γ. In fact, for the
uncertain demands expressed by interval data, the solution

obtained by the robust model is better than the solution
obtained by other models in the worst case.

-e optimal solutions of firm C’s competitive facility
location problem are presented in Table 3. -e first column
denotes the budget G of the firm C, the second column
denotes the range of the parameter Γ, the third column
denotes the facilities’ opening cost of the firm C, the fourth
column denotes the optimal facility locations, and the last
column denotes the customers captured by the firm C.

Figure 4: Division pattern of the market with G � 100, 000 and Γ≥ 43 (blue circles: customers; red triangles: firmA’s facilities; yellow circles:
firm C’s facilities; black rectangles: firm B’s facilities; plum red regions: customers captured by firm A; white regions: customers captured by
firm B; orange regions: customers captured by firm C).

Table 1: Comparison of optimal solutions in Plan 1 and Plan 2.

Customer Demand interval μ∗42 μ∗43
Plan 1
Delaware [1.68493, 6.66168] 1 1
Illinois [38.26352, 114.30602] 0 0
Louisiana [11.18588, 42.19973] 1 1
Maryland [10.42390, 47.81468] 0 1
Mississippi [12.89600, 25.73216] 1 1
New Jersey [14.44933, 77.30188] 0 0
North Carolina [16.17949, 66.28637] 0 0
Pennsylvania [52.58113, 118.81643] 0 0
Virginia [16.55980, 61.87358] 0 0
Wisconsin [16.93330, 48.91769] 0 0
Washington DC [2.30392, 6.06900] 1 1
Plan 2
Delaware [1.68493, 6.66168] 1 1
Florida [3.91422, 129.37926] 0 0
Georgia [18.37353, 64.78216] 0 0
Kentucky [18.58635, 36.85296] 1 1
Maryland [10.42390, 47.81468] 1 1
Michigan [20.93890, 92.95297] 0 0
New Jersey [14.44933, 77.30188] 0 0
North Carolina [16.17949, 66.28637] 0 0
Pennsylvania [52.58113, 118.81643] 0 0
Virginia [16.55980, 61.87358] 0 1
Washington DC [2.30392, 6.06900] 1 1
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Figure 5: Curves between firm C’s market share and Γ (G � 100, 000, 150, 000, 200, 000, 250, 000, 300, 000).

Table 2: Comparison of the robust model and deterministic model (G � 100, 000).

Γ 5 10 15 20 25 30 35 40 45
ZD 167.4710 161.7401 154.7905 156.5370 145.0612 160.5284 153.0439 158.2890 352.7972
ZR 193.4612 193.4612 193.4612 193.4612 193.4612 193.4612 193.4612 202.2030 382.2240

Table 3: Locations for different budget G and parameter Γ.

G Γ Cost Locations Captured customers
100,000 [1, 42] 93,000 Pennsylvania Delaware, Illinois, Louisiana, Maryland, Mississippi, New Jersey

Mississippi North Carolina, Pennsylvania, Virginia, Wisconsin, Washington DC
[43, 48] 86,800 Pennsylvania Delaware, Florida, Georgia, Kentucky, Maryland, Michigan

Michigan New Jersey, North Carolina, Pennsylvania, Virginia, Washington DC
150,000 [1, 48] 141,400 Pennsylvania Delaware, Florida, Georgia, Illinois, Kentucky, Louisiana

Mississippi Maryland, Michigan, Mississippi, New Jersey, North Carolina
Michigan Pennsylvania, Virginia, Wisconsin, Washington DC

200,000 [1, 33] 200,000 Indiana Delaware, Illinois, Indiana, Kentucky, Louisiana
Louisiana Maryland, Michigan, Mississippi, Missouri, New Jersey
New Jersey Pennsylvania, Virginia, Wisconsin, Washington DC

[34, 40] 197,100 Kansas Arkansas, Delaware, Florida, Georgia, Illinois
Michigan Kansas, Kentucky, Louisiana, Maryland, Michigan
Missouri Mississippi, Missouri, New Jersey, North Carolina

Pennsylvania Pennsylvania, Virginia, Wisconsin, Washington DC
[41, 48] 174,300 Michigan Delaware, Florida, Georgia, Illinois, Kentucky, Louisiana, Maryland

Missouri Michigan, Mississippi, New Jersey, North Carolina, New York
New Jersey North Carolina, Pennsylvania, Virginia, Wisconsin, Washington DC

250,000 [1, 42] 242,000 Indiana Arkansas, Delaware, Florida, Georgia, Illinois, Indiana
Michigan Kentucky, Louisiana, Maryland, Michigan, Mississippi, Missouri
Missouri New Jersey, New York, North Carolina, Pennsylvania
New Jersey South Carolina, Tennessee, Virginia, Wisconsin, Washington DC

[43, 48] 247,900 Louisiana California, Delaware, Florida, Georgia, Illinois, Kentucky
Michigan Louisiana, Maryland, Michigan, Mississippi, Missouri, Nevada
New Jersey New Jersey, New York, North Carolina, Oregon, Pennsylvania
Oregon South Carolina, Virginia, Washington, Wisconsin, Washington DC

300,000 [1, 37] 299,600 Arkansas Arkansas, Delaware, Florida, Georgia, Illinois
Indiana Indiana, Kentucky, Louisiana, Maryland, Michigan
Michigan Mississippi, Missouri, New Jersey, New York, North Carolina
New Jersey Oklahoma, Pennsylvania, South Carolina, Tennessee
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5.2. Performances of Two Methods. To evaluate the perfor-
mances of the two methods proposed in this paper, we
generated the following 12 experimental examples.-ere are
already 3 firms in the competitive market, each with 5 chain
facilities. M is the number of customers, N is the number of
potential facility locations, and G is the budget of the new
entering firm. -e attraction aij are generated randomly
within [1, 100]. -e lower bound of demand ci and the
ranges of uncertain demand di are generated randomly
within [10, 100]. -e opening costs fj are generated ran-
domly within [500, 1000]. -e robust control parameter Γ
takes value as N/2.-emethodMIP is solved by CPLEX 12.5
to get the exact solutions, and the method SAS is coded on
the platform of Matlab R2015b. Parameters in the method
SAS are T0 � 1000, Tend � 1, r � 0.99, andL � 200. -e
settings of these parameters are determined based on the
results of multiple calculations, and they ensure that the
algorithm SAS can find an approximate optimal solution in a
short time. Due to the randomness of the algorithm SAS,
each example is calculated 20 times. -e results include the
objective values, CPU times for both methods, and the gaps
between objective values and CPU times are presented in
Table 4. Here the gaps of two indicators between two
methods are defined as follows: Gap (Obj, Time)� [(Obj,
Time)(MIP) − (Ave, Time)(SAS)]/(Ave, Time)(SAS).

From Table 4, it is obvious that only for small-scale
problems, method MIP is better than method SAS both in
objective value and CPU time. When the scale of problems

increases, the CPU time required for the method MIP in-
creases dramatically, while the CPU time required for the
method SAS remains stable. At the same time, the objective
values obtained by the method SAS are only slightly worse
than that obtained by the method MIP. -erefore, the
method SAS is a good choice to solve large-scale competitive
facility location problems.

6. Conclusion

When consumers faced with the choice of competitive chain
facilities that offer exclusive services, all current rules cannot
describe these customers’ behaviors very well. In this paper,
the partially proportional rule is proposed to describe this
kind of customer behavior. After expressing the uncertainty
of customer demand with interval data, we use robust op-
timization method to study the competitive facility location
problemwith uncertain demand. Twomethods are proposed
to solve the presented robust optimization model. One is an
exact method MIP, and it is based on directly solving an
integer model equivalent to the original robust model. -e
other is a heuristic method SAS, which is a combination of
the simulated annealing framework and a sorting-based
algorithm. A quasi-real example is analyzed in detail. One
result that is found through this example is the budget of the
new entering firm is an important factor for capturing more
market share. Another result is for any given budget, there is
a threshold of the robust control parameter Γ. If the

Table 3: Continued.

G Γ Cost Locations Captured customers
Oklahoma Texas, Virginia, Wisconsin, Washington DC

[38, 45] 292,700 Idaho Arkansas, California, Delaware, Florida, Georgia, Idaho
Indiana Illinois, Indiana, Kentucky, Louisiana, Maryland, Michigan

Minnesota Minnesota, Mississippi, Missouri, Nevada, New Jersey
Oklahoma North Carolina, Oklahoma, Oregon, Pennsylvania, Texas

Pennsylvania Virginia, Washington, Wisconsin, Washington DC
[46, 48] 296,400 Michigan Arkansas, California, Delaware, Florida, Georgia

Missouri Illinois, Kentucky, Louisiana, Maryland, Michigan
New Jersey Mississippi, Missouri, Nevada, New Jersey, New York
Oklahoma North Carolina, Oklahoma, Oregon, Pennsylvania, Texas
Oregon Virginia, Washington, Washington DC

Table 4: Comparison of the method MIP and the method SAS.

(M, N, G)
MIP SAS GAP

Time (s) Obj Time (s) Max Ave Min Time Obj
(100, 30, 2000) 4.6613 255 8.6972 255 255 255 − 0.46 0
(100, 30, 3000) 147.9407 938 5.6810 938 938 938 25.04 0
(100, 30, 4000) 486.3300 4435 6.0592 4435 4435 4435 79.26 0
(100, 50, 2000) 8.9027 306 7.0733 306 306 306 0.26 0
(100, 50, 3000) 1437.0 2331 8.0774 2331 2327.7 2265 176.90 0.0014
(100, 50, 4000) 4080.4 4618 8.2981 4618 4618 4618 490.73 0
(200, 30, 2000) 21.4404 413 7.2421 413 413 413 1.96 0
(200, 30, 3000) 330.1236 255 7.2915 255 255 255 44.28 0
(200, 30, 4000) 1422.3 7807 8.3080 7807 7807 7807 170.20 0
(200, 50, 2000) 147.4972 508 8.8188 508 508 508 15.73 0
(200, 50, 3000) 1843.5 3941 10.2389 3926 3926 3926 179.05 0.0038
(200, 50, 4000) 44326 8514 9.3528 8493 8492.7 8490 4738.4 0.0025
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parameter Γ is larger than this threshold, the market share
captured by the new entering firm will increase as this
parameter increases. Random example tests show that for
small scale problems, the method MIP is a good choice. But
for large-scale problems, the method SAS is better than MIP
because the former only requires very little computation
time, while maintaining a fairly good calculation result.

For customer behavior of choosing competitive facilities
that provide exclusive services, the partially proportional
rule is more suitable to describe it than other rules. -e
proposed model can be used to solve the competitive facility
location problem with different customer behavior rules, as
long as there is uncertainty in customer demand. We are
looking forward to studying the competitive facility problem
with more uncertain parameters in the future.
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