
Research Article
Research on Curved Path Tracking Control for Four-Wheel
Steering Vehicle considering Road Adhesion Coefficient

Runqiao Liu ,1 Minxiang Wei ,1 Nan Sang ,2 and Jianwei Wei 3

1Department of Vehicle Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, Jiangsu, China
2Department of Vehicle Engineering, Changzhou Institute of Technology, Changzhou 213002, Jiangsu, China
3Department of Automotive Engineering, Ningbo University of Technology, Ningbo 315336, Zhejiang, China

Correspondence should be addressed to Minxiang Wei; vbe@nuaa.edu.cn

Received 14 October 2019; Revised 14 December 2019; Accepted 26 December 2019; Published 20 January 2020

Academic Editor: Ramon Sancibrian

Copyright © 2020 Runqiao Liu et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Curved path tracking control is one of the most important functions of autonomous vehicles. First, small turning radius circular
bends considering bend quadrant and travel direction restrictions are planned by polar coordinate equations. Second, an es-
timator of a vehicle state parameter and road adhesion coefficient based on an extended Kalman filter is designed. To improve the
convenience and accuracy of the estimator, the combined slip theory, trigonometric function group fitting, and cubic spline
interpolation are used to estimate the longitudinal and lateral forces of the tire model (215/55 R17). +ird, to minimize the lateral
displacement and yaw angle tracking errors of a four-wheel steering (4WS) vehicle, the front-wheel steering angle of the 4WS
vehicle is corrected by a model predictive control (MPC) feed-back controller. Finally, CarSim® simulation results show that the
4WS autonomous vehicle based on the MPC feed-back controller can not only significantly improve the curved path tracking
performance but also effectively reduce the probability of drifting or rushing out of the runway at high speeds and on low-
adhesion roads.

1. Introduction

Path tracking control enables autonomous vehicles to travel
accurately, smoothly, and safely along a predetermined path
and to remain stable under all driving conditions [1]. As
early as 1980, MacAdam [2] proposed an optimal preview
path tracking control method, which could minimize the
tracking error in channel-changing simulation. Currently,
this control method has been applied to the path tracking
model in CarSim® software [3]. In addition, the model
predictive control (MPC) method can easily handle the
nonholonomic constraints of a vehicle system and solve the
trade-off problem between path tracking and driving safety
[4]. Due to these advantages, many researchers have studied
the MPC path tracking method. Borrelli et al. [5] presented a
nonlinear MPC approach for active front-wheel steering
control. Katriniok and Abel [6] used a predictive controller
based on a linear time-varying model (LTV-MPC) to
minimize tracking error and response lag. Kim et al. [7] used

an MPC path tracking control method based on quadratic
programming (QP) optimization to improve the path
tracking performance of autonomous vehicles. Schwarting
et al. [8] used a receding horizon planner based on nonlinear
model predictive control (NMPC) to ensure safety collision
avoidance. However, the above control methods ignore the
influence of high speeds and low-adhesion roads on curved
path tracking.

Road adhesion coefficient plays an important role in
vehicle electronic control systems. Accurate road adhesion
coefficient estimation is critical to improve the path tracking
performance of autonomous vehicles. In recent years, to
estimate accurate road adhesion coefficient, scholars have
proposed various estimation methods. Hahn et al. [9] re-
ported a road friction coefficient estimation algorithm based
on a differential global positioning system (DGPS). Wenzel
et al. [10] proposed an estimation method based on a double
extended Kalman filter (DEKF). Enisz et al. [11] used an
extended Kalman filter (EKF) method to estimate the
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instantaneous and maximum values of road friction coef-
ficient. Zhao et al. [12] designed an EKF method based on a
braking dynamics model considering the load transfer of
front and rear axles.

For steering on a wet and slippery road, when the front-
wheel loses most of the lateral force (grip), the vehicle (front-
drive) will push ahead or rush out of the runway (under-
steer); when the rear wheel loses most of the lateral force
(grip), the vehicle (rear-drive) will drift out or have a tail
flicking (oversteer) [13]. To reduce the understeer and
oversteer in path tracking, Hang and Chen [14] used a path
tracking integrated control based on four-wheel steering
(4WS) and direct yaw-moment control to improve the path
tracking performance of vehicles on low-adhesion roads. It
is generally known that the handling stability and driving
safety of 4WS vehicles are much higher than those of front-
wheel steering (FWS) vehicles [15, 16]. As early as 1986, Sano
et al. [17] proposed a speed function and a steering angle
function for 4WS vehicles. In a small steering wheel angle
range or at high speed, the rear wheels of the 4WS vehicle
were steered in the same direction as the front ones. In a
large steering wheel angle range or at low speed, the rear
wheels of the 4WS vehicle were steered in the opposite
direction to the front ones. +is greatly improves the
handling stability and driving safety of 4WS vehicles. In
[18, 19], by setting the zero-sideslip angle of 4WS vehicle, the
stability at high speed and the sensitivity at low speed were
significantly improved. In a recent study by Liu et al. [20], a
feed-forward controller that can adjust the steering sensi-
tivity coefficient of the 4WS vehicle based on zero-sideslip
angle according to the steering angular frequency and ve-
hicle speed is proposed, but this controller is not suitable for
low-adhesion curved roads.

+e rest of this paper is organized as follows. First of all,
small turning radius circular bends (single circle center)
considering different restrictions on bend quadrant and
travel direction are planned by polar coordinate equations in
Section 2. +en, in Section 3, an estimator based on the
extended Kalman filter for the vehicle state parameter and
road adhesion coefficient is designed. To improve the
convenience and accuracy of the estimator, we use the
combined slip theory, trigonometric function group fitting,
and cubic spline interpolation to estimate the longitudinal
and lateral forces of the tire model (215/55 R17). Next, in
Section 4, a 4WS vehicle based on a MPC feed-back con-
troller is used to improve the curved path tracking per-
formance at high speeds and on low-adhesion roads, and the
lateral displacement and yaw angle tracking errors of the
4WS vehicle in path tracking are minimized. Furthermore,
CarSim® simulation effects for the optimal preview feed-
back and MPC feed-back controllers under different curved
paths, vehicle speeds, and road adhesion coefficients are
compared in Section 5. Finally, Section 6 presents the
conclusions of the work.

2. Circular Bend and Vehicle Model

2.1.CircularBend. It is necessary for autonomous vehicles to
plan a predetermined curved path in curved path tracking

[21–25]. +e predetermined path (target path) is usually
obtained by high-precision vehicle positioning system,
combining the global positioning system (GPS) with the
inertial navigation system (INS) [26]. In the absence of
electronic map (E-map) data, to facilitate calculations and
simulations on small turning radius circular bends (single
circle center), the circular bends used as target paths can be
planned by polar coordinate equations.

A polar coordinate equation can express a circular bend
simply and accurately, and the arc length L0 of the circular
bend is defined as follows:

L0 � θ0R, (1)

where θ0 is themaximum radian of the circular bend and R is
the turning radius (m).

To plan all forms of circular bends based on the ground
inertial coordinate system, we introduce constraints on bend
quadrant and travel direction. +e equations of the radian
with respect to t for the circular bends under different re-
strictions are described as follows.

(1) Travel clockwise:

θi �
π
2

−
uct

R
, i � 1,

θi � −
uct

R
, i � 2,

θi � −
π
2

−
uct

R
, i � 3,

θi � π −
uct

R
, i � 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

(2) Travel anticlockwise:

θi �
uct

R
, i � 1,

θi � −
π
2

+
uct

R
, i � 2,

θi � π +
uct

R
, i � 3,

θi �
π
2

+
uct

R
, i � 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where t is the driving time; θi is the radian value corre-
sponding to time t; uc represents the longitudinal speed based
on vehicle coordinate system; i � 1 is the first quadrant; i � 2
is the second quadrant; i � 3 is the third quadrant; and i � 4 is
the fourth quadrant. +en, the coordinate equations for the
circular bends are expressed as follows:

Xd � X0 + R cos θi( 􏼁,

Yd � Y0 + R sin θi( 􏼁,
􏼨 (4)
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where (X0, Y0) is the circle center coordinate; Yd is the
desired lateral displacement based on the ground inertial
coordinate system; and Xd is the desired longitudinal dis-
placement based on the ground inertial coordinate system.

After the derivative of the function of Yd with respect to
Xd, the function of the desired yaw angle Ωd with respect to
Xd is expressed as follows:

Ωd Xd( 􏼁 � arctan Yd′ Xd( 􏼁( 􏼁, (5)

where Ωd represents the desired yaw angle based on the
ground inertial coordinate system.

After the derivative of the function of Ωd with respect to
t, the function of the desired yaw rate rd with respect to t is
formulated as follows:

rd(t) � Ωd′(t). (6)

Taking the restriction of traveling clockwise as an ex-
ample, Figure 1 shows the right-angle circular bends under
four different quadrants, where α is the corner angle and
0≤ α≤ 180 (deg).

Taking the restrictions of traveling anticlockwise and the
second quadrant (i � 2) as an example, Figure 2 shows the
four circular bend diagrams with acute, right, obtuse, and
U-shaped angles that meet the restrictions.

Finally, the target paths can be converted into the desired
front and rear wheel steering angles and used as initial inputs
of autonomous vehicles. For a 4WS vehicle, the yaw rate
response is generally set to a first-order lag response and the
sideslip angle response is generally set to 0 [27–31]. Its initial
inputs can be formulated as follows:
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where s is a Laplace operator; δsw � rd/Grd; Grd is the desired
steering sensitivity coefficient and Grd � uc/(i0l + i0lKu2

c); K

is the stability factor and K � m(bCar − aCaf )/(l2CafCar); δfd
and δrd are initial inputs of front and rear wheel steering
angles for 4WS vehicles, respectively; and Tr � 1/�������������������������

((l2CafCar(1 + Ku2
c))/(u2

cmIz))
􏽰

.

2.2. Vehicle Model. A vehicle model (D-class Sedan) of
CarSim® is used in the following simulations. +e vehicle
model is front-drive (Generic 200KW powertrain with an
automatic transmission). A tire model (215/55 R17) used in
the vehicle model is a standard lookup table tire model. +e
main parameters for the vehicle model are shown in Table 1.

3. Estimator Based on EKF

3.1. Vehicle State Parameter Estimation. Ignoring the effects
of the suspension system, road roughness, and air resistance,
a three-degree-of-freedom (3DOF) vehicle dynamics model
considering lateral, longitudinal, and yaw motions is used to
estimate the longitudinal speed, sideslip angle, and yaw rate
of vehicles [32]. +e state space equation of the vehicle
dynamics model is shown as follows:
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+e measurement equation of the vehicle model is
shown as follows:

ay �
bCar − aCaf

muc
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m
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m
δf , (9)

where δf is the front-wheel steering angle, r is the yaw rate
based on the vehicle coordinate system, β is the sideslip angle
based on the vehicle coordinate system, ax is the longitudinal
acceleration based on the vehicle coordinate system, ay is the
lateral acceleration based on the vehicle coordinate system,
the input vector is u � δf ax􏼂 􏼃

T, the state vector is x �

r β uc􏼂 􏼃
T, and the measurement vector is y � ay. After the

partial differential of equations (8) and (9) with respect to x,
the Jacobian matrices F and H in Figure 3 are calculated as
follows:
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+en, the flow chart of EKF algorithm is shown in
Figure 3, where Φ � eF∗Δt ≈ I + FΔt; Δt � 0.01 is the sam-
pling time; Q1 is the covariance matrix of process noise; R1 is
the covariance matrix of measurement noise; f is the state
space equation; x

⌢

k is the state estimation vector at time k; Pk

is the state error covariance matrix at time k; x
⌢

k− 1 is the state
estimation vector at time k − 1; and Pk− 1 is the state error
covariance matrix at time k − 1. Given the initial values x

⌢

k− 1
and Pk− 1 and x

⌢

k and Pk can be updated cyclically. +e above
estimation process is continually looped until the number of
set steps.

3.2. Tire Longitudinal and Lateral Forces Estimation.
Professor Pacejka put forward a “magic formula” tire model
in 1987, which estimates the tire longitudinal and lateral
forces by constructing the trigonometric function group.
+e tire longitudinal and lateral force estimation equations
under a single working condition are shown as follows:

Fx0 � μ0Dx sin Cxarctan Bxλ − Ex Bxλ − arctan Bxλ( 􏼁( 􏼁( 􏼁( 􏼁,
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where μ0 � 1; λ is the slip ratio; Bx and By are the stiffness
factors of the tire longitudinal and lateral forces, respectively;
Cx and Cy are the curve shape factors of the tire longitudinal
and lateral forces, respectively; Dx and Dy are the curve peak
factors of the tire longitudinal and lateral forces, respectively;
and Ex and Ey are the curvature factors at the curve peak of
the tire longitudinal and lateral forces, respectively. +ese
factors are represented by equations containing several
different coefficients [33].

Although the “magic formula” has a high fitting accuracy
for the tire longitudinal and lateral forces, these coefficients
in the above factors are difficult to fit [34, 35]. In order to
estimate the longitudinal and lateral forces of the tire model
(215/55 R17) conveniently and accurately, we use the
combined slip theory, trigonometric function group fitting,
and cubic spline interpolation to estimate longitudinal and
lateral forces of the tire model.

Firstly, combined with the longitudinal and lateral force
tabular data of the tire model (the tabular data are measured
on a laboratory or on-road tester, and they are all measured
under the condition that the road adhesion coefficient μ is 1),
tabular data under 10 different tire loads are selected, which
are represented by the purple, pink, green, cyan, and blue
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Figure 1: Right-angle circular bends under four different quadrants: (a) fourth quadrant; (b) first quadrant; (c) third quadrant; (d) second
quadrant.
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lines in Figure 4. Using the trigonometric function group to
fit these tabular data, the fitting results are represented by the
five types of black lines in Figure 4. +ese factors after fitting
are shown as follows (RMSE is the root mean square error):

(1) Tire load 1725: By1 is 9.342; Cy1 is 2.753; Dy1 is
1891.4; Ey1 is 1.123; and RMSE is 0.0096

(2) Tire load 3500: By2 is 9.909; Cy2 is 2.694; Dy2 is
3698.8; Ey2 is 1.114; and RMSE is 0.0089

(3) Tire load 6100: By3 is 10.17; Cy3 is 2.626; Dy3 is
5382.1; Ey3 is 1.109; and RMSE is 0.0077

(4) Tire load 6950: By4 is 9.943; Cy4 is 2.573; Dy4 is
6971.6; Ey4 is 1.112; and RMSE is 0.0066

(5) Tire load 9005: By5 is 9.029; Cy5 is 2.565; Dy5 is
8564.5; Ey5 is 1.126; and RMSE is 0.0055

(6) Tire load 2105: Bx1 is 11.37; Cx1 is 1.528; Dx1 is
2729.5; Ex1 is − 0.5744; and RMSE is 0.0016

(7) Tire load 3995: Bx2 is 11.37; Cx2 is 1.528; Dx2 is
5459.1; Ex2 is − 0.5744; and RMSE is 0.0016.

(8) Tire load 6120: Bx3 is 11.37; Cx3 is 1.528; Dx3 is
8188.6; Ex3 is − 0.5744; and RMSE is 0.0016

(9) Tire load 7900: Bx4 is 11.37; Cx4 is 1.528; Dx4 is
10918; Ex4 is − 0.5744; and RMSE is 0.0016

(10) Tire load 10100: Bx5 is 11.37; Cx5 is 1.528; Dx5 is
13648; Ex5 is − 0.5745; and RMSE is 0.0016

Secondly, the cubic spline interpolation is used to estimate
these factors under other tire loads. Taking the By estimation
under a certain tire load as an example, the circular calling
format of the cubic spline interpolation is shown as follows:

yz � int erp1 z0, y(i, :), z, “spline”( 􏼁, (12)

where z0 � [1725, 3500, 6100, 6950, 9005]; z is a certain tire
load; y(i, :) � Byi, i � (1: 5); yz is the interpolation result;
and “spline” is the function about cubic spline interpolation.
Similarly, the remaining factors can be estimated. +en, the
longitudinal force estimation equation (under pure braking/
driving conditions) and lateral force estimation equation (under
pure steering conditions) under any tire load can be obtained.
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Figure 2: Four circular bend diagrams under the restrictions of travel anticlockwise and second quadrant (i � 2): (a) acute angle; (b) right
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Finally, using the combined slip theory [36, 37], the tire
longitudinal and lateral forces under joint conditions can be
described as follows:

Fxij � μ0Fx0 Fz, λ( 􏼁 ·
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where μ0 � 1; σx � − (λ/1 + λ); σy � − (tan β/1 + λ);
σ �

������
σ2x + σ2y

􏽱
; Fz is the tire load; i � f, r; j � l, r; Fxfl, Fxrl,

Fxfr, and Fxrr are the left front, left rear, right front, and right

rear wheel longitudinal forces under joint conditions, re-
spectively; and Fyfl, Fyrl, Fyfr, and Fyrr are the left front, left
rear, right front, and right rear wheel lateral forces under
joint conditions, respectively.

3.3. Road Adhesion Coefficient Estimation. A 3DOF vehicle
dynamics model involving tire lateral and longitudinal
forces under joint conditions is used to estimate the road
adhesion coefficient [38]. +e state space equation of the
vehicle dynamics model is shown as follows:
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where the input vector u � δf Fxfl Fxfr Fxrl Fxrr Fyfl􏽨

FyfrFyrl ]
T; the state vector x � μfl μfr μrl μrr􏼂 􏼃

T, μfl, μfr,
μrl, and μrr are the left front, right front, left rear, and right
rear wheel adhesion coefficients, respectively; and

the measurement vector y � ax ay _r􏽨 􏽩
T
. After the par-

tial differential of equation (14) with respect to x, the
Jacobian matrices F and H in Figure 3 are calculated as
follows:

Table 1: Parameters of D-class sedan.

Model parameter Notation Unit Value
Yaw moment of inertia Iz kg·m2 4607.47
Vehicle mass m kg 1530
Distances from vehicle C.G. to front
axle a m 1.11

Distances from vehicle C.G. to rear
axle b m 1.66622

Front-wheel track width Twf m 1.55
Rear wheel track width Twr m 1.55
Vehicle wheelbase l m 2.77622
Vehicle height h0 m 1.471
Vehicle length l0 m 4.52
Vehicle width w0 m 1.8
Cornering stiffness of front axle Caf N/rad 97937∗ 2
Cornering stiffness of rear axle Car N/rad 70287∗ 2
Longitudinal stiffness of front axle Clf N/rad 85740∗ 2
Longitudinal stiffness of rear axle Clr N/rad 57110∗ 2
Initial transmission ratio of δsw to δf i0 23
Front-wheel optimal slip ratio sf 0.2
Rear wheel optimal slip ratio sr 0.2

Prediction module

Gain equation:
Correction module

( (−xk = f (xk−1, uk−1, 0)

Pk = (1 − KkH)Pk

Error covariance update equation:

Filter equation:

Initial condition input:
Pk−1andxk−1

State prediction equation:

Error covariance prediction equation:
Pk = ΦPk−1ΦT + Q1

−

−Kk = HT[HPkHT + R1]−1

−

−

−xk = xk + Kk(yk − Hxk)

( ( (

(

Figure 3: Flow chart of EKF algorithm.

6 Mathematical Problems in Engineering



F �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H �

Fxfl − Fyflδf
m

Fxfr − Fyfrδf
m

Fxrl

m

Fxrr

m

Fxflδf + Fyfl Fxfrδf + Fyfr Fyrl Fyrr

H(3, 1) H(3, 2) H(3, 3) H(3, 4)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H(3, 1) �
a Fxflδf + Fyfl􏼐 􏼑 + Twf − Fxfl + Fyflδf􏼐 􏼑/2􏼐 􏼑

Iz

,

H(3, 3) �
− bFyrl − TwrFxrl/2􏼐 􏼑

Iz

,

H(3, 2) �
a Fxfrδf + Fyfr􏼐 􏼑 + Twf Fxfr − Fyfrδf􏼐 􏼑/2􏼐 􏼑

Iz

,

H(3, 4) �
− bFyrr + TwrFxrr/2􏼐 􏼑

Iz

.

(15)

+e flow chart of the road adhesion coefficient esti-
mation algorithm is similar to that of the vehicle state pa-
rameter estimation, as shown in Figure 3.

3.4. Verification of the Estimator. +e overall block diagram
of the estimator for vehicle state parameter and road ad-
hesion coefficient is shown in Figure 5.

A joint adhesion road is used in the verification. +e
features of the joint adhesion road are detailed as follows:
a road of a total length of about 321m, with the first 28m a
high-μ section (a road adhesion coefficient of 0.85), and
the rest a low-μ section (a road adhesion coefficient of 0.5).
In addition, a two-way single-lane road is used in the
estimation, and it is a right-angled circular bend (the
corner angle α is 90 deg), as shown in Figure 6(a), where
the width of each lane is 6m, the blue dashed line is the
target path, and the turning radius is 37.5 m. +e esti-
mated road adhesion coefficient and vehicle state pa-
rameters at uc � 50 km/h are shown in Figures 6(b)–6(e),
where a uniformly distributed random signal (the mini-
mum value is 0 and the maximum value is 0.02) is added to
the actual outputs of CarSim® vehicle considering un-
certain disturbances. +e parameter settings of vehicle
state parameter estimation are shown as follows:
Q1 � I3×3; x

⌢

k− 1 � 0 0 50/3.6􏼂 􏼃; Pk− 1 � I3×3; R1 � 0.01; and
Pk can be updated cyclically in the form of 3 × 3 matrix.
+e parameter settings of road adhesion coefficient esti-
mation are shown as follows: Q1 � I4×4; x

⌢

k− 1 �

0.5 0.5 0.5 0.5􏼂 􏼃; Pk− 1 � I4×4; R1 � I3×3; and Pk can be
updated cyclically in the form of 4 × 4 matrix. Figure 6
shows that even in the case of a small turning radius and
low-adhesion road, the estimator can quickly and accu-
rately estimate the vehicle state parameters and road
adhesion coefficient.
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Figure 4: Longitudinal and lateral force tabular data under μ � 1: (a) the lateral tire forces under pure steering conditions; (b) the
longitudinal tire forces under pure driving/braking conditions.
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Figure 5: Overall block diagram of the estimator.
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Figure 6: Continued.
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4. MPC Feed-Back Controller

MPC generally includes predictive model, rolling optimi-
zation, and feed-back correction. It mainly compensates for
system errors through feed-back correction and compen-
sates for the effects caused by time variance and interference
through rolling optimization [39, 40]. Since the effects of the
tire nonlinearity, tire load transfer, road low-adhesion, and
crosswind, the actual trajectories often deviate from the

desired trajectories in path tracking [20]. To minimize these
deviations, a MPC feed-back controller is used to follow the
desired lateral displacement and the desired yaw angle and
minimize the tracking errors between the desired values and
the actual values. First, a nonlinear dynamic model con-
sidering the transformation between the vehicle coordinate
system and the ground inertial coordinate system is de-
scribed as follows:

_vy �
− Caf + Car( 􏼁

muc

vy +
bCar − aCaf

muc

− uc􏼠 􏼡r +
Caf

m
δf +

Car

m
δr +

Clf sf

m
δf +

Clrsr

m
δr,

_r �
aClfsf

Iz

δf −
bClrsr

Iz

δr −
Cafa

2 + Carb
2

Izuc

r +
bCar − aCaf

Izuc

vy +
aCaf

Iz

δf −
bCar

Iz

δr,

_uc � vyr +
Clf sf

m
+

Clrsr

m
+

Caf vy + ar/uc􏼐 􏼑 − δf􏼐 􏼑

m
δf +

Car vy − br􏼐 􏼑/uc􏼐 􏼑 − δr􏼐 􏼑

m
δr,

_Y � uc sinΩ + vy cosΩ,

_X � uc cosΩ − vy sinΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

where δr is the rear-wheel steering angle; vy is the lateral
speed based on the vehicle coordinate system; _Y is the
lateral speed based on the ground inertial coordinate
system; _X is the longitudinal speed based on the ground
inertial coordinate system; and Ω is the yaw angle based on

the ground inertial coordinate system. +en, it is trans-
formed into

_􏽥x � A􏽥x + B􏽥u, (17)

where
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Figure 6: Estimation results: (a) animation effect; (b) road adhesion coefficient; (c) sideslip angle; (d) yaw rate; (e) vehicle speed.
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􏽥x � x − xd,

􏽥u � u − ud,

u � δf ,

ud � δfd,

x � vy uc Ω r Y X􏽨 􏽩
Τ
,

xd � vyd ucd Ωd rd Yd Xd􏽨 􏽩
Τ
,

A �

− Caf + Car( 􏼁

muc

zfvy

zuc

0
bCar − aCaf

muc

− uc 0 0

r +
Cafδf,t− 1

muc

+
Carδr,t− 1

muc

zfuc

zuc

0 vy +
Cafaδf,t− 1

muc

−
Carbδr,t− 1

muc

0 0

0 0 0 1 0 0

bCar − aCaf

Izuc

zfr

zuc

0
− Cafa

2 + Carb
2( 􏼁

Izuc

0 0

cos(Ω) sin(Ω) uc cos(Ω) − vy sin(Ω) 0 0 0

− sin(Ω) cos(Ω) − vy cos(Ω) − uc sin(Ω) 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

Caf

m
+

Clfsf

m

− 2Cafδf,t− 1 + Caf vy + ar􏼐 􏼑/uc􏼐 􏼑

m

0

aClf sf

Iz

+
aCaf

Iz

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

zfuc

zuc

� −
Cafδf,t− 1 vy + ar􏼐 􏼑

mu2
c

−
Carδr,t− 1 vy − br􏼐 􏼑

mu2
c

,

zfvy

zuc

�
Caf + Car( 􏼁

mu2
c

vy +
aCaf − bCar

mu2
c

r − r,

zfr

zuc

�
Cafa

2 + Carb
2( 􏼁

Izu2
c

r −
bCar − aCaf

Izu2
c

vy.

(18)

To apply equation (17) to the MPC system, it is dis-
cretized as follows:

􏽥x(k + 1) � A(k)􏽥x(k) + B(k)􏽥u(k),

A(k) � I + TA,

B(k) � TB,

⎧⎪⎨

⎪⎩
(19)
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where T is the sampling time. It is further converted into

ξ(k + 1) � 􏽥Aξ(k) + 􏽥BΔ􏽥u(k),

η(k) � 􏽥Cξ(k),

⎧⎨

⎩ (20)

where the state vector ξ(k) �
􏽥x(k)

􏽥u(k − 1)
􏼢 􏼣; the input vector

Δ􏽥u(k) � 􏽥u(k) − 􏽥u(k − 1); the output vector η � X Y􏼂 􏼃
T;

􏽥A �
An×n Bn×m

0m×n Im×m

􏼢 􏼣 and 􏽥B �
Bn×m

Im×m

􏼢 􏼣; and n and m are the

dimensions of the state vector and output vector,
respectively.

Next is a rolling optimization process, we can convert the
MPC problem into a quadratic programming problem [41].
Its mathematical model is expressed as follows:

min
ΔU,ε

1
2

ΔU

ε

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

T

H2

ΔU

ε

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ + f

T
2

ΔU

ε

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

s.t.
Acons ΔU ε􏼂 􏼃

T ≤ bcons,

lb≤ ΔU ε􏼂 􏼃
T ≤ ub,

⎧⎪⎪⎨

⎪⎪⎩

(21)

where ΔU is the input increment; H2 is the quadratic matrix
of quadratic programming; f2 is the one item vector of
quadratic programming; Acons is the coefficient matrix in
linear inequality constraint; bcons is the right-end vector
in linear inequality constraint; lb � ΔUmin 0􏼂 􏼃

T; ub �

ΔUmax ε􏼂 􏼃
T; and ε is the relaxation factor. Its optimization

objective function is set to

J(ξ(k), 􏽥u(k − 1),ΔU(k)) � 􏽘

Np

i�1
η(k + i | k) − ηd(k + i | k)

����
����
2
Q2

+ 􏽘

Nc− 1

i�1
‖Δ􏽥u(k + i | k)‖

2
R2

+ ρε2,

(22)

where Q2 and R2 are weighting matrices; ρ is the weight
coefficient; Np is the prediction time domain; and Nc is the
control time domain.

To avoid a sudden change in the input vector, the
problem of constrained optimization for each step is shown
as follows [42, 43]:

min
ΔUt,ε

J(ξ(k), 􏽥u(k − 1),ΔU(k)),

s.t. Δ􏽥umin(i + k)≤Δ􏽥u(i + k)≤Δ􏽥umax(i + k), i � 0, 1, . . . , Nc − 1,

􏽥umin(i + k)≤ 􏽥u(i + k)≤ 􏽥umax(i + k), i � 0, 1, . . . , Nc − 1,

􏽥ηmin(i + k) − ε≤ 􏽥η(i + k)≤ 􏽥ηmax(i + k) + ε, i � 0, 1, . . . , Nc − 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(23)

Calling the quadratic programming function (quad-
prog), which is expressed as follows:

[ΔU, fval, exitflag]

� quadprog H2, f2, Acons, bcons, [ ], [ ], lb, ub,ΔU0, options( 􏼁,

(24)

where ΔU0 � zeros(Nc + 1, 1) and options �

optimset(“Algorithm”, “active − set”).
After solving each control cycle, a series of input in-

crements in the control time domain are obtained:

ΔU � Δ􏽥u(k | k),Δ􏽥u(k + 1 | k), . . . ,Δ􏽥u k + Nc − 1
􏼌􏼌􏼌􏼌 k􏼐 􏼑􏽨 􏽩

T
.

(25)

Finally, there is a process of feed-back correction. +e
first element of the control sequence acts on the MPC
system:

Ue(k) � u(k) � u(k − 1) + Δ􏽥u(k | k), (26)

where Ue represents the feed-back control (front-wheel
steering angle). +e above control process is continually
looped until path tracking is completed.

5. Curved Path Tracking Simulations

5.1. Two-Path Tracking Controllers. Two-path tracking
controllers for autonomous vehicles in the following sim-
ulations are shown as follows:

(1) +e optimal preview feed-back controller for an FWS
autonomous vehicle is defined as controller 1, which
is an FWS path tracking controller. CarSim® has its
own optimal preview path tracking control model
located in “Steering by the Closed-loop Driver
Model.” +e red vehicle in the following simulations
represents controller 1.

(2) +e MPC feed-back controller for a 4WS autono-
mous vehicle is defined as controller 2, which is a
4WS path tracking controller. +e blue vehicle in the
following simulations represents controller 2. +e
block diagram of controller 2 is shown in Figure 7,
where δf � δfd + Ue and δr � δrd.

5.2. Circular Bend Simulations at Low Speeds and on High-
Adhesion Roads. For the circular bend simulation, the co-
ordinates (Xd andYd) of the target path can be updated
continuously by polar coordinate equations depending on R,
uc, α, and (X0, Y0) variables.

+e target path of this simulation is a right-angled
circular bend (travel anticlockwise and second quadrant),
which is shown in Figure 2(b) (the corner angle α is 90 deg).
A one-way four-lane road is applied to the simulation, where
the width of each lane is 3.5m, the turning radius R is 37.5m,
the initial coordinates of the autonomous vehicle are (0, 0),
the ending coordinates of the autonomous vehicle are
(300, 300), the circle center coordinates are
(X0, Y0) � (262.5, 37.5), and the road adhesion coefficient
of the dry asphalt road is set to 0.85. +e road conditions
meet the SAE standards J3087_201710 [44]. +e path
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Figure 8: Curved path tracking simulation results for red and blue vehicles at uc � 50 km/h and μ � 0.85: (a) animation effect; (b) front-
wheel steering angle; (c) rear-wheel steering angle.
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tracking animation effects and steering angles for the red and
blue vehicles at uc � 50 km/h and μ � 0.85 are shown in
Figure 8. +e longitudinal and lateral displacements, lateral
accelerations, yaw angles, and yaw rates for the red and blue
vehicles at uc � 50 km/h and μ � 0.85 are shown in Figure 9.
+e detailed constraints of the MPC are shown as follows:
the input increment constraints, − 1 rad/s≤Δu � Δδf ≤
1 rad/s; the input vector constraints, − 0.25 rad≤ u � δf ≤

0.25 rad; the output vector constraints: 0m
0m􏼢 􏼣≤ η �

X

Y
􏼢 􏼣≤ 300m

300m􏼢 􏼣; Q2 �

800 0 0
0 80 0
0 0 80

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦; Np � 30; Nc � 10;

T � 0.01; ε � 1000; ρ � 1000; and R2 � 5∗ 105. +e detailed
optimal preview parameter settings are shown as follows: the
driver preview time is 0.5 s; the driver time lag is 0 s; the low-
speed dynamic limit is 10 km/h; the maximum steering

wheel angle is 720 deg; and the maximum steering wheel
angle rate is 1200 deg/s.

It can be seen from Figures 8(b) and 8(c) that the red
vehicle is an FWS vehicle and the blue vehicle is a 4WS
vehicle. Even if the two vehicles have different front and rear
wheel steering angles, Figures 9(a) and 9(c) show that they
can still achieve effective path tracking without pushing
ahead (understeer) or tail flicking (oversteer) at low speeds
and on high-adhesion roads. It can be seen that there is little
difference in the control effect under steady-state conditions
in Figures 9(b) and 9(d).

5.3. Circular Bend Simulations at Low Speeds and on Low-
Adhesion Roads. +e target path of this simulation is the
same as in Section 5.2. +e road adhesion coefficient of the
wet and slippery road is set to 0.5. +e curved path tracking
animation effects and steering angles for red and blue
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Figure 9: Simulation results for red and blue vehicles at uc � 50 km/h and μ � 0.85: (a) Y with respect to X; (b) rwith respect to t; (c)Ωwith
respect to t; (d) ay with respect to t.
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vehicles at uc � 50 km/h and μ � 0.5 are shown in Figure 10.
+e longitudinal and lateral displacements, lateral acceler-
ations, yaw angles, and yaw rates for red and blue vehicles at
uc � 50 km/h and μ � 0.5 are shown in Figure 11. +e
constraints of the MPC and the optimal preview parameter
settings are the same as in Section 5.2.

When μ drops to 0.5, Figure 10(a) shows that the red
vehicle has obvious sideslip (the maximum deviation is
about 4m). Figure 10(a) shows that the blue vehicle has
smaller sideslip (the maximum deviation is about 1m), and
its path tracking performance is significantly better than that
of the red vehicle on the low-adhesion road. +e reason for
this phenomenon is that the rear wheels of the blue vehicle
are steered in the opposite direction to the front ones when
entering the corner, and its rear wheels are steered in the

same direction as the front ones when driving out of the
corner, as shown in Figures 10(b) and 10(c). +is situation
greatly improves the safety and stability of the 4WS vehicle
in path tracking on a small turning radius and low-adhesion
curved road [45]. Figure 11 shows that the yaw angle, yaw
rate, and lateral acceleration values of the blue vehicle are
closer to the desired values, and the vehicle maintains good
path tracking performance even on low-adhesion roads with
small turning radius.

5.4. True Variable Curvature Curved Road Simulations at
High Speeds and on Low-Adhesion Roads. For the curved
path tracking on real roads, the polar coordinate equation (4)
are replaced by the coordinates of the electronic map (E-
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Figure 10: Curved path tracking simulation results for red and blue vehicles at uc � 50 km/h and μ � 0.5: (a) animation effect; (b) front-
wheel steering angle; (c) rear-wheel steering angle.
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Figure 11: Simulation results for red and blue vehicles at uc � 50 km/h and μ � 0.5: (a) Y with respect to X; (b) r with respect to t; (c)Ωwith
respect to t; (d) ay with respect to t.
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Figure 12: True variable curvature curved road: (a) coordinates (Xd, Yd) and (b) cross slopes.
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map), and the coordinates (Xd, Yd) of the target path can be
updated continuously by high-precision vehicle positioning
system combining GPS with INS.

A true variable curvature curved road is shown as
follows: the road adhesion coefficient of the wet and
slippery road is set to 0.5; the minimum turning radius of
the bend① is Rmin ≈ 167m; the minimum turning radius
of the bend② is Rmin ≈ 143m; and the minimum turning

radius of the bend ③ is Rmin ≈ 125m. +e coordinates
(Xd, Yd) of the true variable curvature curved road are
shown in Figure 12(a). +e cross slopes of the
true variable curvature curved road are shown in
Figure 12(b).

+e constraints of the MPC are shown as follows: the

output vector constraints is 0m
− 350m􏼢 􏼣≤ η �

X
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Figure 13: Curved path tracking effects for red and blue vehicles: (a) bend ①; (b) bend ②; (c) bend ③; (d) Y with respect to X.
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900m
0m􏼢 􏼣, and other constraints are the same as in Section

5.2. +e optimal preview parameter settings are the same as
in Section 5.2. +e curved path tracking effects for red and
blue vehicles at uc � 100 km/h and μ � 0.5 are shown in
Figure 13. Figure 13 shows that the red vehicle loses control
and rushes out of the runway when passing the bend③, but
the blue vehicle maintains good path tracking performance
even at high speeds and on low-adhesion roads.

6. Conclusions

+e results of this paper can be summarized as follows.
Since the combined slip theory, trigonometric function

group fitting, and cubic spline interpolation are used, it is
more convenient and accurate in estimating longitudinal
and lateral forces and road adhesion coefficients. Compared
to the FWS vehicle with an optimal preview path tracking
controller, the 4WS vehicle with a MPC path tracking
controller canmore effectively improve safety and stability at
high speeds and on low-adhesion roads. In the future, the
path tracking test in the real 4WS autonomous vehicles
needs to be implemented and the suspension and braking
control systems for 4WS autonomous vehicles in curved
path tracking need to be studied further.
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