
Research Article
Precise Asymptotics for Complete Integral Convergence under
Sublinear Expectations

Qunying Wu

College of Science, Guilin University of Technology, Guilin 541004, China

Correspondence should be addressed to Qunying Wu; wqy666@glut.edu.cn

Received 21 December 2019; Accepted 28 February 2020; Published 5 May 2020

Academic Editor: Chaudry M. Khalique

Copyright © 2020QunyingWu.+is is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

+e aim of this paper is to study and establish the precise asymptotics for complete integral convergence theorems under a
sublinear expectation space. As applications, the precise asymptotics for p (0≤p≤ 2) order complete integral convergence
theorems have been generalized to the sublinear expectation space context. We extend some precise asymptotics for complete
moment convergence theorems from the traditional probability space to the sublinear expectation space. Our results generalize
corresponding results obtained by Liu and Lin (2006). +ere is no report on the precise asymptotics under sublinear expectation,
and we provide the method to study this subject.

1. Introduction

+e sublinear expectation space has advantages of modelling
the uncertainty of probability and distribution. +erefore,
limit theorems for sublinear expectations have raised a large
number of issues of interest recently. Limit theorems are
important research topics in probability and statistics. +ey
were widely used in finance and other fields. Classical limit
theorems only hold in the case of model certainty. However,
in practice, such model certainty assumption is not realistic
in many areas of applications because the uncertainty
phenomena cannot be modeled using model certainty.
Motivated by modelling uncertainty in practice, Peng [1]
introduced a new notion of sublinear expectation. As an
alternative to the traditional probability/expectation, ca-
pacity/sublinear expectation has been studied in many fields
such as statistics, finance, economics, and measures of risk
(see Denis and Martini [2]; Gilboa [3]; Marinacci [4]; Peng
[1, 5–7], etc.). +e general framework of the sublinear ex-
pectation in a general function space was introduced by Peng
[1, 7, 8], and sublinear expectation is a natural extension of
the classical linear expectation.

Because the sublinear expectation provides a very flexible
framework to model sublinear probability problems, the
limit theorems of the sublinear expectation have received

more and more attention and research recently. A series of
useful results have been established. Peng [1, 7, 8] con-
structed the basic framework, basic properties, and central
limit theorem under sublinear expectations, Zhang [9–11]
established the exponential inequalities, Rosenthal’s in-
equalities, strong law of large numbers, and law of iterated
logarithm, Hu [12], Chen [13], and Wu and Jiang [14]
studied strong law of large numbers, Wu et al. [15] studied
the asymptotic approximation of inverse moment, Xi et al.
[16] and Lin and Feng [17] studied complete convergence,
and so on. In general, extending the limit properties of
conventional probability space to the cases of sublinear
expectation is highly desirable and of considerably signifi-
cance in the theory and application. Because sublinear ex-
pectation and capacity is not additive, many powerful tools
and common methods for linear expectations and proba-
bilities are no longer valid, so that the study of the limit
theorems under sublinear expectation becomes much more
complex and difficult.

Since the concept of complete convergence of a sequence
of random variables was introduced by Hsu and Robbins
[18], there have been extensions in several directions. One of
them is to discuss the precise rate, which is more exact than
complete convergence. Precise asymptotics for complete
convergence and complete moment convergence is one of
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the most important problems in probability theory. Many
related results have been obtained in the probabilistic
space. +eir recent results can be found in the studies of
Heyde [19]; Liu and Lin [20]; Zhao [21]; Li [22]; Zhou
[23]; Gut and Steinebach [24]; He and Xie [25]; Wang
et al. [26–29]; Spaataru [30]; and Kong and Dai [31].
However, in sublinear expectations, due to the uncer-
tainty of expectation and capacity, the precise asymptotics
is essentially different from the ordinary probability space.
+e study of precise asymptotics of complete convergence
and complete integral convergence for sublinear expec-
tations is much more complex and difficult. +e precise
asymptotics theorems under sublinear expectation have
not been reported. +e purpose of this paper is to establish
the precise asymptotics theorems for p (0≤p≤ 2) order
complete integral convergence for independent and
identically distributed random variables under sublinear
expectation. As a result, the corresponding results ob-
tained by Liu and Lin [20] have been generalized to the
sublinear expectation space context.

In the next section, we summarize some basic notations
and concepts and related properties under the sublinear
expectations.

2. Preliminaries

We use the framework and notations of Peng [8]. Let (Ω,F)

be a given measurable space, and let H be a linear space of
real functions defined on (Ω,F) such that if X1, . . . ,

Xn ∈H, then φ(X1, . . . , Xn) ∈H for each φ ∈ Cl,Lip(Rn),
where Cl,Lip(Rn) denotes the linear space of (local Lipschitz)
functions φ satisfying

|φ(x) − φ(y)|≤ c 1 +|x|
m

+|y|
m

( 􏼁|x − y|, ∀x, y ∈ Rn,

(1)

for some c> 0, m ∈ N, depending on φ. H is considered as
a space of “random variables.” In this case, we denote
X ∈H.

Definition 1. A sublinear expectation 􏽢E on H is a function
􏽢E: H⟶ [−∞,∞] satisfying the following properties: for
all X, Y ∈H,

(a) Monotonicity: If X≥Y, then 􏽢EX≥ 􏽢EY

(b) Constant preserving: 􏽢Ec � c

(c) Subadditivity: 􏽢E(X + Y)≤ 􏽢EX + 􏽢EY whenever
􏽢EX + 􏽢EY is not of the form +∞ −∞ or −∞ +∞

(d) Positive homogeneity: 􏽢E(λX) � λ􏽢EX, λ≥ 0

+e triple (Ω,H, 􏽢E) is called a sublinear expectation
space.

Given a sublinear expectation 􏽢E, let us denote the
conjugate expectation 􏽢ε of 􏽢E by

􏽢εX ≔ − 􏽢E(−X), ∀X ∈H. (2)

From the definition, it is easily shown that for all
X, Y ∈H,

ε̂X≤ ÊX,

Ê(X + c) � ÊX + c,

|Ê(X − Y)|≤ Ê|X − Y|,

Ê(X − Y)≥ ÊX − ÊY.

(3)

If 􏽢EY � 􏽢εY, then 􏽢E(X + aY) � 􏽢EX + a􏽢EY for any a ∈ R.
Next, we consider the capacities corresponding to the

sublinear expectations. Let G ⊂ F. A function
V: G⟶ [0, 1] is called a capacity if

V(∅) � 0,

V(Ω) � 1,

V(A)≤V(B), for∀A⊆B, A, B ∈ G.

(4)

It is called to be subadditive if V(A∪B)≤V(A) + V(B)

for all A, B ∈ G with A∪B ∈ G. In the sublinear space
(Ω,H, 􏽢E), we denote a pair (V , ]) of capacities by

V(A) ≔ inf 􏽢Eξ; I(A)≤ ξ, ξ ∈H}, ](A) ≔ 1 − V A
c

( 􏼁,∀A ∈F,􏽮

(5)

where Ac is the complement set of A. By definition of V and
], it is obvious that V is subadditive, and

](A)≤V(A), ∀A ∈ F;

V(A) � 􏽢E(I(A)), ](A) � 􏽢ε(I(A)), if I(A) ∈H,
(6)

􏽢Ef≤V(A)≤ 􏽢Eg,􏽢εf≤ ](A)≤􏽢εg, if f≤ I(A)≤g, f, g ∈H.

(7)

+is implies Markov inequality: ∀X ∈H,

V(|X|≥x)≤
􏽢E |X|p( 􏼁

xp
, ∀x> 0, p> 0, (8)

from I(|X|≥x)≤ |X|p/xp ∈H. By Lemma 4.1 in Zhang
[10]; we have Holder inequality: ∀X, Y ∈H, p, q> 1 sat-
isfying p− 1 + q− 1 � 1,

􏽢E(|XY|)≤ 􏽢E |X|
p

( 􏼁)
1/p 􏽢E |Y|

q
( 􏼁)

1/q
.􏼐􏼐 (9)

And particularly, we have Jensen inequality: ∀X ∈H,
􏽢E |X|

r
( 􏼁)

1/r ≤ 􏽢E |X|
s

( 􏼁)
1/s

, for 0< r≤ s.􏼐􏼐 (10)

Also, we define the Choquet integrals/expectations
(CV , C]) by

CV(X) ≔ 􏽚
∞

0
V(X> x)dx + 􏽚

0

−∞
(V(X> x) − 1)dx,

(11)

with V being replaced by V and ], respectively.

Definition 2 (Peng [1] and Zhang [9]).

(i) Identical distribution: let X1 and X2 be two n-di-
mensional random vectors defined, respectively, in
sublinear expectation spaces (Ω1,H1,

􏽢E1) and
(Ω2,H2,

􏽢E2). +ey are called identically distributed if
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􏽢E1 φ X1( 􏼁( 􏼁 � 􏽢E2 φ X2( 􏼁( 􏼁, ∀φ ∈ Cl,Lip Rn( 􏼁,

(12)

whenever the subexpectations are finite. A sequence
Xn; n≥ 1􏼈 􏼉 of random variables is said to be iden-
tically distributed if for each i≥ 1, Xi and X1 are
identically distributed.

(ii) Independence: in a sublinear expectation space
(Ω,H, 􏽢E), a random vector Y � (Y1, . . . , Yn),
Yi ∈H, is said to be independent of another ran-
dom vector X � (X1, . . . , Xm), Xi ∈H, under 􏽢E

if for each test function φ ∈ Cl,Lip(Rm × Rn), we
have 􏽢E(φ(X,Y)) � 􏽢E[􏽢E(φ(x,Y))|x�X], whenever
φ(x) ≔ 􏽢E(|φ(x,Y)|)<∞ for all x and
􏽢E(|φ(X)|) <∞.

(iii) Independent random variables: a sequence of ran-
dom variables Xn; n≥ 1􏼈 􏼉 is said to be independent,
if Xi+1 is independent of (X1, . . . , Xi) for each i≥ 1.

In the following, let Xn; n≥ 1􏼈 􏼉 be a sequence of random
variables in (Ω,H, 􏽢E) and Sn � 􏽐

n
i�1 Xi. +e symbol c stands

for a generic positive constant which may differ from one
place to another. Let ax ∼ bx denote limx⟶∞ax/bx � 1,
ax≪ bx denote that there exists a constant c> 0 such that
ax ≤ cbx for sufficiently large x, and I(·) denote an indicator
function.

To prove our results, we need the following four lemmas.

Lemma 1 (Theorem 3.1 in Zhang [10]). Let Xk; k≥ 1􏼈 􏼉 be a
sequence of independent random variables in (Ω,H, 􏽢E) with
􏽢EXk ≤ 0. ,en,

(i) For any x, y> 0,

V Sn ≥x( 􏼁≤V max
1≤k≤n

Xk > y􏼠 􏼡 + exp −
x2

2 xy + Bn( 􏼁
1 +

2
3
ln 1 +

xy

Bn

􏼠 􏼡􏼨 􏼩􏼠 􏼡. (13)

(ii) If 􏽢EXk � 􏽢E(−Xk) � 0, then

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑≤ c

Bn

x2 , (14)

where Bn � 􏽐
n
k�1

􏽢EX2
k.

Lemma 2. For any X ∈H, we have

CV X
2

􏼐 􏼑<∞⟺􏽚
∞

1
xV(|X|> x)dx<∞, (15)

CV X
2 ln|X|􏼐 􏼑<∞⟺􏽚

∞

3
x lnxV(|X|> x)dx<∞.

(16)

Proof. We only prove (16). Let f(x) ≔ x2lnx and f− 1(·)

denote the inverse function of f(·). +en, (16) follows from
the following three equations:

􏽚
∞

f(3)
V X

2ln|X|>x􏼐 􏼑dx≤CV X
2ln|X|􏼐 􏼑≤f(3) + 􏽚

∞

f(3)
V X

2ln|X|> x􏼐 􏼑dx,

􏽚
∞

f(3)
V X

2ln|X|>x􏼐 􏼑dx � 􏽚
∞

f(3)
V |X|>f

− 1
(x)􏼐 􏼑dx � 􏽚

∞

3
(2y lny + y)V(|X|>y)dy letf

− 1
(x) � y􏼐 􏼑,

2y lny≤ 2y lny + y≤ 3y lny,

fory≥ 3.

(17)

+erefore, (16) holds.
Here, we give the notations of G-normal distribution

which is introduced by Peng [7]. □

Definition 3 (G-normal random variable). For
0≤ σ2 ≤ σ2 <∞, a random variable ξ in a sublinear expec-
tation space (Ω,H, 􏽢E) is called a normal N(0, [σ2, σ2])
distributed random variable (write ξ ∼ N(0, [σ2, σ2]) under
􏽢E); if for any φ ∈ Cl,Lip(R), the function
u(x, t) � 􏽢E(φ(x +

�
t

√
ξ)) (x ∈ R, t≥ 0) is the unique vis-

cosity solution of the following heat equation:

ztu − G z
2
xxu􏼐 􏼑 � 0,

u(0, x) � φ(x),
(18)

where G(α) � (σ2α+ − σ2α− )/2.

Lemma 3 (Theorem 3.3 and Remark 3.4 in Peng [7]
(CLT)). Suppose that Xn; n≥ 1􏼈 􏼉 is a sequence of indepen-
dent and identically distributed random variables with
􏽢E(X1) � 􏽢E(−X1) � 0. Write σ2 � 􏽢E(X2

1) and σ2 � 􏽢ε(X2
1).

,en, for any continuous function φ satisfying
|φ(x)|≤ c(1 + |x|),

Mathematical Problems in Engineering 3



lim
n⟶∞

􏽢E φ
Sn�
n

√􏼠 􏼡􏼠 􏼡 � 􏽢E(φ(ξ)), (19)

where ξ ∼ N(0, [σ2, σ2]) under 􏽢E.

In particular, if σ � σ, then Lemma 3 becomes a classical
central limit theorem.

Remark 1. For any x> 0, by 􏽢E(xX1)
2 � x2σ2,

􏽢ε(xX1)
2 � x2σ2, and xξ ∼ N(0, [x2σ2, x2σ2]) under 􏽢E, (19)

becomes

lim
n⟶∞

􏽢E φ
xSn�

n
√􏼠 􏼡􏼠 􏼡 � 􏽢E(φ(xξ)). (20)

Lemma 4 (Lemma 3 in Chen and Hu [32]). Suppose that
ξ ∼ N(0, [σ2, σ2]) under 􏽢E. Let P be a probability measure
and φ be a bounded continuous function on R. If Bt􏼈 􏼉t≥0 is a
Brownian motion under P, then

􏽢E(φ(ξ)) � sup
θ∈Θ

EP φ 􏽚
1

0
θsdBs􏼠 􏼡􏼢 􏼣, (21)

where
Θ � θ; θt isFt − adapted process such that σ ≤ θt ≤ σ􏼈 􏼉,

Ft � σ Bs; 0≤ s≤ t􏼈 􏼉∨N,N is the collection of P − null subsets.

(22)

From Peng [8], if ξ ∼ N(0, [σ2, σ2]) under 􏽢E, then for
each convex function φ,

􏽢E(φ(ξ)) �
1
���
2π

√ 􏽚
∞

−∞
φ(σx)e− x2/2dx, (23)

but if φ is a concave function, the above σ must be replaced
by σ. If σ � σ � σ, thenN(0, [σ2, σ2]) � N(0, σ2) which is a
classical normal distribution.

In particular, notice that φ(x) � |x|p, p≥ 1, is a convex
function; taking φ(x) � |x|p, p≥ 1, in (23), we get

􏽢E |ξ|
p

( 􏼁 �
2σp

���
2π

√ 􏽚
∞

0
x

pe− x2/2dx<∞. (24)

(24) implies that

CV |ξ|
p

( 􏼁 � 􏽚
∞

0
V |ξ|

p > x( 􏼁dx≤ 1

+ 􏽚
∞

1

􏽢E |ξ|2p􏼐 􏼑

x2 dx<∞, for any p≥
1
2
.

(25)

Definition 4. A sublinear expectation 􏽢E is called to be
continuous if it satisfies

Continuity from below: 􏽢E(Xn)↑􏽢E(X) if 0≤Xn↑X,
where Xn, X ∈H
Continuity from above: 􏽢E(Xn)↓􏽢E(X) if 0≤Xn↓X,
where Xn, X ∈H

Lemma 5. Suppose that the conditions of Lemma 3 hold and
􏽢E is continuous, set Δn(x) ≔ V((|Sn|/

�
n

√
)≥ x) − V(|ξ|≥x),

here and later, ξ ∼ N(0, [σ2, σ2]) under 􏽢E; then,

Δn ≔ sup
x≥0
Δn(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⟶ 0, as n⟶∞. (26)

Remark 2. Lemma 5 is a powerful tool for studying the
uniform convergence of the central limit theorem under
sublinear expectations, which plays a key role in proving the
theorems in this paper.

Proof of Lemma 5. If σ � σ, then Lemma 3 is a classical
central limit theorem. In the classical probability, (26) fol-
lows from the central limit theorem and an important fact
that P(|ξ|≥x) is a continuous function of x. +erefore, we
only need to prove the situation σ < σ.

Obviously, Δn(0) � 1 − 1 � 0; thus, Δn � supx>0|Δn(x)|.
For 0< μ< 1, let φ(x) be a Lipschitz even function and

nondecreasing for x≥ 0 such that 0≤φ(x)≤ 1, for all x and
φ(x) � 0 if |x|≤ μ and φ(x) � 1 if |x|> 1. +en,

I(|x|≥ 1)≤φ(x)≤ I(|x|≥ μ). (27)

+is combines equation (7), for x> 0,

Δn(x)≤ Ê φ
Sn�
n

√
x

􏼠 􏼡􏼢 􏼣 − Ê φ
μξ
x

􏼠 􏼡􏼢 􏼣

� Ê φ
Sn�
n

√
x

􏼠 􏼡􏼢 􏼣 − Ê φ
ξ
x

􏼠 􏼡􏼢 􏼣 + Ê φ
ξ
x

􏼠 􏼡􏼢 􏼣 − Ê φ
μξ
x

􏼠 􏼡􏼢 􏼣

≔ Δn1(x) + Δ2(x)≤ sup
x>0
Δn1(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + sup

x>0
Δ2(x),

(28)

where Δn1(x) � 􏽢E[φ(Sn/
�
n

√
x)] − 􏽢E[φ(ξ/x)] and

Δ2(x) � 􏽢E[φ(ξ/x)] − 􏽢E[φ(μξ/x)]≥ 0.
On the other hand,

Δn(x)≥ Ê φ
μSn�
n

√
x

􏼠 􏼡􏼢 􏼣 − Ê φ
ξ
x

􏼠 􏼡􏼢 􏼣

� Ê φ
μSn�
n

√
x

􏼠 􏼡􏼢 􏼣 − Ê φ
μξ
x

􏼠 􏼡􏼢 􏼣 + Ê φ
μξ
x

􏼠 􏼡􏼢 􏼣 − Ê φ
ξ
x

􏼠 􏼡􏼢 􏼣

� Δn1
x

μ
􏼠 􏼡 − Δ2(x)≥ − sup

x>0
Δn1(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − sup

x>0
Δ2(x).

(29)

+us,

Δn � sup
x>0
Δn(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ sup

x>0
Δn1(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + sup

x>0
Δ2(x). (30)

+erefore, in order to prove that (26), it suffices to show
that

lim
n⟶∞

sup
x>0
Δn1(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0, (31)

lim
μ⟶1−

sup
x>0
Δ2(x) � 0. (32)
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Write Fn(x) � Ê(φ(Sn/
�
n

√
x)) and F(x) �

Ê(φ(ξ/x)) x> 0
1 x � 0

􏼨 .

Obviously, 0≤Fn(x) andF(x)≤ 1; Fn(x) and F(x) are
nonincreasing functions on [0, +∞). +us, for any x0 > 0,
the limit limx⟶x0

F(x) exists. Actually, taking xn↑x0 and
xn
′↓x0, by continuity of 􏽢E, we have

lim
x⟶x−

0

F(x) � lim
xn↑x0

Ê φ
ξ

xn

􏼠 􏼡􏼠 􏼡 � Ê φ
ξ

x0
􏼠 􏼡􏼠 􏼡 � F x0( 􏼁 from 0≤φ

ξ
xn

􏼠 􏼡↓φ
ξ

x0
􏼠 􏼡,

lim
x⟶x+

0

F(x) � lim
xn
′↓x0

Ê φ
ξ
xn
′􏼠 􏼡􏼠 􏼡 � Ê φ

ξ
x0

􏼠 􏼡􏼠 􏼡 � F x0( 􏼁 from 0≤φ
ξ
xn
′􏼠 􏼡↑φ

ξ
x0

􏼠 􏼡,

lim
x⟶0+

F(x) � lim
n⟶∞

Ê(φ(nξ)) � 1 � F(0) from 0≤φ(nξ)↑1.

(33)

Hence, F(x) is continuous for 0≤x<∞. As well as
limx⟶∞F(x) � limn⟶∞

􏽢E(φ(ξ/n)) � 0 from 0≤φ(ξ/n)↓0.
+erefore, let ϵ be an arbitrary positive number; there

exist points 0<x1 < x2, . . . , xm <∞ satisfying the conditions

1 − F x1( 􏼁<
ε
2
,

F xk( 􏼁 − F xk+1( 􏼁<
ε
2
, k � 1, . . . , m − 1,

F xm( 􏼁<
ε
2
.

(34)

Furthermore, by (19) and Remark 1, there exists a
number n0 such that for n> n0 and we have

Fn xk( 􏼁 − F xk( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
ε
2
, k � 1, . . . , m. (35)

If xk ≤x< xk+1(k � 1, . . . , m − 1), then for n> n0, we get
Fn(x) − F(x)≤Fn xk( 􏼁 − F xk( 􏼁 + F xk( 􏼁 − F xk+1( 􏼁< ε,

Fn(x) − F(x)≥Fn xk+1( 􏼁 − F xk+1( 􏼁 + F xk+1( 􏼁 − F xk( 􏼁> −ε.
(36)

If 0<x< x1, then for n> n0,
Fn(x) − F(x)≤ 1 − F x1( 􏼁< ε,

Fn(x) − F(x)≥Fn x1( 􏼁 − 1 � Fn x1( 􏼁 − F x1( 􏼁 + F x1( 􏼁 − 1> −ε.

(37)

If x≥ xm, then for n> n0,

Fn(x) − F(x)≤Fn xm( 􏼁 � Fn xm( 􏼁 − F xm( 􏼁 + F xm( 􏼁< ε,

Fn(x) − F(x)≥ 0 − F xm( 􏼁> −ε.
(38)

+us, |Fn(x) − F(x)|< ε for all x and n> n0. +at is, (31)
holds.

Next, we prove that (32).
Because F is continuous on [0,∞), F is uniformly

continuous on [0, 2]. +erefore, for any ϵ > 0, there is δ > 0
(can be assumed δ < 2), such that ∀x1, x2 ∈ [0, 2]; if
|x1 − x2|< δ, then

F x1( 􏼁 − F x2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< ε. (39)

Let max(1/2, 1 − δ/2, σ /σ)< μ< 1, for any x ∈ (0, 1]; we
have 0<x/μ≤ 2x≤ 2 and |x/μ − x|< δ. Hence,

Δ2(x) � 􏽢E φ
ξ
x

􏼠 􏼡􏼠 􏼡 − 􏽢E φ
μξ
x

􏼠 􏼡􏼠 􏼡 � F(x) − F
x

μ
􏼠 􏼡< ε.

(40)

+ereby,
sup
0<x≤1
Δ2(x)≤ ε. (41)

For x> 1, let Θ � θ; θt isFt􏼈 −adapted process such that
σ /x≤ θt ≤ σ/x} and Θμ � θ; θt is􏼈 Ft− adapted process such
that thatσ /x≤ θt ≤ μσ/x}; combining any a> 0, ξ/a ∼ N(0,

[σ2/ a2, σ2/a2]) under 􏽢E. By Lemma 4,

Δ2(x) � Ê φ
ξ
x

􏼠 􏼡􏼠 􏼡 − Ê φ
μξ
x

􏼠 􏼡􏼠 􏼡

≤ sup
θ∈Θ

EP φ 􏽚
1

0
θsdBs􏼠 􏼡􏼠 􏼡 − sup

θ∈Θμ
EP φ 􏽚

1

0
θsdBs􏼠 􏼡􏼠 􏼡

≤ sup
θ∈Θ

EP φ 􏽚
1

0
θsdBs􏼠 􏼡􏼠 􏼡 − sup

θ∈Θ
EP φ 􏽚

1

0
θs∧

μσ
x

􏼒 􏼓dBs􏼠 􏼡􏼠 􏼡

≤ sup
θ∈Θ

EP φ 􏽚
1

0
θsdBs􏼠 􏼡 − φ 􏽚

1

0
θs∧

μσ
x

􏼒 􏼓dBs􏼠 􏼡􏼠 􏼡

≤ cφ sup
θ∈Θ

EP 􏽚
1

0
θsdBs − 􏽚

1

0
θs∧

μσ
x

􏼒 􏼓dBs􏼠 􏼡

≤ cφ sup
θ∈Θ

������������������������

EP 􏽚
1

0
θs − θs∧

μσ
x

􏼒 􏼓􏼒 􏼓dBs􏼠 􏼡

2

􏽶
􏽴

� cφ sup
θ∈Θ

��������������������

􏽚
1

0
EP θs − θs∧

μσ
x

􏼒 􏼓􏼒 􏼓
2
ds

􏽳

≤ cφ
σ(1 − μ)

x
,

(42)

where cφ is the Lipschitz constant of φ.
+erefore,
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sup
x>1
Δ2(x)≤ cφσ(1 − μ)⟶ 0, μ⟶ 1−

. (43)

+e combination of (41) and (32) is established. +is
completes the proof of Lemma 5. □

3. Main Results and Proofs

Our results are stated as follows.

Theorem 1. Let X, Xn; n≥ 1􏼈 􏼉 be a sequence of independent
and identically distributed random variables in (Ω,H, 􏽢E).
We assume that 􏽢E is continuous and

Ê(X) � Ê(−X) � 0,

lim
c⟶∞

Ê X
2
1 − c􏼐 􏼑

+
� 0,

Ê X
2

􏼐 􏼑 � σ2 <∞,

ε̂ X
2

􏼐 􏼑 � σ2,

CV X
2

􏼐 􏼑<∞.

(44)

,en,

lim
ε⟶0

ε2 􏽘

∞

n�1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑 � CV ξ2􏼐 􏼑, (45)

here and later, ξ ∼ N(0, [σ2, σ2]) under 􏽢E.

Theorem 2. Under the conditions of,eorem 1, for 0≤p< 2,

lim
ε⟶0

ε2− p
􏽘

∞

n�1

1
np

CV Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
I Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑􏼐 �

2
2 − p

CV ξ2􏼐 􏼑. (46)

For p � 2, we have the following theorem.

Theorem 3. Let X, Xn; n≥ 1􏼈 􏼉 be a sequence of independent
and identically distributed random variables in (Ω,H, 􏽢E).
We assume that 􏽢E is continuous and

Ê(X) � Ê(−X) � 0,

lim
c⟶∞

Ê X
2
1 − c􏼐 􏼑

+
� 0,

Ê X
2

􏼐 􏼑 � σ2 <∞,

ε̂ X
2

􏼐 􏼑 � σ 2,

CV X
2ln|X|􏼐 􏼑<∞.

(47)

,en,

lim
ε⟶0

1
ln ε− 1 􏽘

∞

n�1

1
n2CV Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
I Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑􏼐 � 2CV ξ2􏼐 􏼑. (48)

Remark 3. +eorems 1–3 extend the corresponding results
obtained by Liu and Lin [20] from the probability space to
sublinear expectation space.

Proof of ,eorem 1. Note that

ε2 􏽘

∞

n�1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑 � ε2 􏽘

∞

n�1
V(|ξ|≥ ε

�
n

√
) + ε2 􏽘

∞

n�1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑 − V(|ξ|≥ ε

�
n

√
)􏽨 􏽩 ≔ I1(ε) + I2(ε). (49)

Hence, in order to establish (45), it suffices to prove that

lim
ε⟶0

I1(ε) � CV ξ2􏼐 􏼑, (50)

lim
ε⟶0

I2(ε) � 0. (51)

Obviously, (50) follows from

lim
ε⟶0

I1(ε) � lim
ε⟶0

ε2 􏽚
∞

1
V(|ξ|≥ ε

��
x

√
)dx � lim

ε⟶0
􏽚
∞

ε2
V |ξ|

2 ≥y􏼐 􏼑dy

� 􏽚
∞

0
V |ξ|

2 ≥y􏼐 􏼑dy � CV ξ2􏼐 􏼑.

(52)

Without loss of generality, here and later, we assume that
􏽢EX2 � 1. Let M> 12,

I2(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε2 􏽘
n≤ Mε− 2[ ]

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑 − V(|ξ|≥ ε

�
n

√
)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ε2 􏽘
n>Mε− 2[ ]

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑 + ε2 􏽘

n>Mε− 2[ ]

V(|ξ|≥ ε
�
n

√
) ≔ I21(ε) + I22(ε) + I23(ε).

(53)
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Let △n � supx≥0|V(|Sn|≥
�
n

√
x) − V(|ξ|≥x)|, from (26),

△n⟶ 0 as n⟶∞. So, by Toeplitz’s lemma, if
xn⟶ x, ωi ≥ 0, and 􏽐

n
i�1 ωi⟶∞, then

(􏽐
n
i�1 ωixi/􏽐

n
i�1 ωi)⟶ x,

lim
ε⟶0

I21(ε)≤M,

lim
ε⟶0

􏽐n≤ Mε−2[ ]△n

Mε−2 � 0.

(54)

Taking φ as the proof process of Lemma 5, by (7), (27)
and identically distributed of X, Xi, for any x> 0,

V Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑≤ 􏽢E φ

Xi

x
􏼒 􏼓􏼔 􏼕 � 􏽢E φ

X

x
􏼒 􏼓􏼔 􏼕≤V(|X|≥ μx).

(55)

Hence, for n>Mε− 2 > 12ε− 2, taking x � εn and
y � εn/12 in Lemma 1 (i),

V Sn ≥ εn( 􏼁≤ 􏽘
n

i�1
V Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥

εn
12

􏼒 􏼓 + exp −
ε2n2

2 ε2n2/12 + n( )
1 +

2
3
ln 1 +

ε2n
12

􏼠 􏼡􏼨 􏼩􏼠 􏼡≤ nV |X|≥
μεn
12

􏼒 􏼓􏼒 􏼓 +
c

ε4n2, (56)

from (ε2n2/2(ε2n2/ 12 + n)) 1 + (2/3)ln(1 + (ε2n/􏼈

12))}≥ 2 ln(1 + (ε2n/12)).
Since −X, −Xi􏼈 􏼉 also satisfies the conditions of +eorem

1, we replace the X, Xi􏼈 􏼉 with the −X, −Xi􏼈 􏼉 in the upper
form:

V −Sn ≥ εn( 􏼁≪ nV |X|≥
μεn
12

􏼒 􏼓 +
1

ε4n2. (57)

+erefore,

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑≤V Sn ≥ εn( 􏼁 + V −Sn ≥ εn( 􏼁≪ nV |X|≥

μεn
12

􏼒 􏼓

+
1

ε4n2.

(58)

More generally, for any x> 0 and n>Mε− 2, we have

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ (ε + x)n􏼐 􏼑≪ nV |X|≥

μ(ε + x)n

12
􏼠 􏼡 +

1
(ε + x)4n2

.

(59)

+is implies from Markov’s inequality and (24) that

I22(ε) + I23(ε)≪ ε
2

􏽘
n> Mε− 2[ ]

nV |X|≥
μεn
12

􏼒 􏼓 +
1

ε4n2
+

􏽢E|ξ|4

ε4n2
)≪ ε2 􏽚

∞

ε− 2
xV(|X|≥ cεx)dx + M

− 1
(let cεx � y) ∼ c 􏽚

∞

cε− 1
yV(|X|≥y)dy + M

− 1
.􏼠

(60)

Let ε⟶ 0 first; then, let M⟶∞; we get

lim
ε⟶0

I22(ε) + I23(ε)( 􏼁 � 0, (61)

from (44) and (15).
From this, combining with (53) and (54), (51) is

established. +is completes the proof of +eorem 1. □

Proof of ,eorem 2. Since
CV(|Sn|pI(|Sn|≥ εn)) � V(|Sn|≥ εn) when p � 0, so by
+eorem 1, we only discuss the case 0<p< 2. Note that

ε2− p
􏽘

∞

n�1

1
np

CV Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
I Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑􏼐 􏼑 � ε2 􏽘

∞

n�1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑 + ε2− p

􏽘

∞

n�1

1
np

􏽚
∞

εn
px

p− 1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ x􏼐 􏼑dx. (62)

Hence, from +eorem 1, in order to establish (46), it
suffices to prove that

lim
ε⟶0

ε2− p
􏽘

∞

n�1

1
np

􏽚
∞

εn
px

p− 1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑dx �

p

2 − p
CV ξ2􏼐 􏼑.

(63)

Mathematical Problems in Engineering 7



Let M≥ 12. Note that

ε2− p
􏽘

∞

n�1

1
np

􏽚
∞

εn
px

p− 1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑dx

� ε2− p
􏽘

∞

n�1

1
np

􏽚
∞

εn
px

p− 1
V |ξ|≥

x
�
n

√􏼠 􏼡dx

+ ε2− p
􏽘

n≤ Mε−2[ ]

1
np

􏽚
∞

εn
px

p− 1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑 − V |ξ|≥

x
�
n

√􏼠 􏼡􏼠 􏼡dx

+ ε2− p
􏽘

n>Mε−2[ ]

1
np

􏽚
∞

εn
px

p− 1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ x􏼐 􏼑 − V |ξ|≥

x
�
n

√􏼠 􏼡􏼠 􏼡dx

≔ J1(ε) + J2(ε) + J3(ε).

(64)

Hence, in order to establish (63), it suffices to prove that

lim
ε⟶0

J1(ε) �
p

2 − p
CV ξ2􏼐 􏼑, (65)

lim
ε⟶0

J2(ε) � 0, (66)

lim
M⟶∞

lim sup
ε⟶0

J3(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0. (67)

We first prove (65); let y ≔ x/
�
n

√
, then

lim
ε⟶0

J1(ε) � lim
ε⟶0

ε2− p
􏽘
∞

n�1

1
np/2 􏽚

∞

ε
�
n

√ py
p− 1

V(|ξ|≥y)dy

� lim
ε⟶0

ε2− p
􏽚
∞

1

1
tp/2dt 􏽚

∞

ε
�
t

√ py
p− 1

V(|ξ|≥y)dy

� lim
ε⟶0

ε2− p
􏽚
∞

ε
py

p− 1
V(|ξ|≥y)dy 􏽚

y2/ε2

1

1
tp/2dt

� lim
ε⟶0

2p

2 − p
ε2− p

􏽚
∞

ε
y

p− 1
V(|ξ|≥y)

y2

ε2
􏼠 􏼡

− p/2+1

− 1⎛⎝ ⎞⎠dy

�
2p

2 − p
􏽚
∞

0
yV(|ξ|≥y)dy

− lim
ε⟶0

2p

2 − p
ε2− p

􏽚
∞

ε
y

p− 1
V(|ξ|≥y)dy

�
p

2 − p
CV ξ2􏼐 􏼑,

(68)

from (25).
Now, we prove (66). Let bn � (

�
n

√
△1/(2p)

n )− 1. +en,

J2(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε2− p
􏽘

n≤ Mε−2[ ]

1
np

􏽚
∞

εn
px

p− 1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑 − V |ξ|≥

x
�
n

√􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dx

≤ ε2− p
􏽘

n≤ Mε−2[ ]

􏽚
∞

0
p(y + ε)p− 1

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ (y + ε)n􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

− V(|ξ|≥ (y + ε)
�
n

√
)
􏼌􏼌􏼌􏼌dy

≤ ε2− p
􏽘

n≤ Mε−2[ ]

􏽚
bn

0
p(y + ε)p− 1△ndy

+ ε2− p
􏽘

n≤ Mε−2[ ]

􏽚
∞

bn

p(y + ε)p− 1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ (y + ε)n􏼐 􏼑􏼐

+ V(|ξ|≥ (y + ε)
�
n

√
)􏼁dy

≔ ε2− p
􏽘

n≤ Mε−2[ ]

1
np/2 J21(ε) + J22(ε)( 􏼁,

(69)

where

J21(ε) � n
p/2

􏽚
bn

0
p(y + ε)p− 1△ndy,

J22(ε) � n
p/2

􏽚
∞

bn

p(y + ε)p− 1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ (y + ε)n􏼐 􏼑 + V(|ξ|􏼐

≥ y + ε)
�
n

√
)( 􏼁dy.

(70)

Since n≤Mε− 2 implies ε
�
n

√
≤

��
M

√
, one can easily obtain

that

J21(ε)≤Δnn
p/2 1

�
n

√
△1/(2p)

n

+ ε􏼠 􏼡

p

≤ Δ1/2p
n +

��
M

√
Δ1/pn􏼐 􏼑

p

≪Δ1/2n ⟶ 0 as n⟶∞.

(71)
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By Lemma 1 (ii), Markov’s inequality, and (24), we get

J22(ε)≤ cn
p/2

􏽚
∞

bn

(y + ε)p− 1 n􏽢EX2

(y + ε)2n2
+

􏽢Eξ2

(y + ε)2n
)dy≪ n

p/2− 1
􏽚
∞

bn

1
(y + ε)3− p

dy � cn
p/2− 1 1

�
n

√
△1/2p

n

+ ε􏼠 􏼡

p− 2

≪Δ1/p−1/2
n ⟶ 0 as n⟶∞.⎛⎝

(72)

From (69)–(72) and
􏽐n≤[Mε−2](1/np/2) � O(εp− 2)⟶∞, ε⟶ 0, using Toe-
plitz’s lemma, we get

J2(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε2− p
􏽘

n≤ Mε−2[ ]

J21(ε) + J22(ε)
np/2

≪
􏽐n≤ Mε−2[ ] △1/2n +△1/p−1/2

n /np/2( 􏼁

􏽐n≤ Mε−2[ ] 1/np/2( )
⟶ 0, ε⟶ 0.

(73)

+at is, (66) is established.
Finally, we prove (67):

J3(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε2− p
􏽘

n>Mε−2[ ]

1
np

􏽚
∞

εn
px

p− 1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑 + V |ξ|≥

x
�
n

√􏼠 􏼡􏼠 􏼡dx lety �
x

n − ε
􏼒 􏼓

≤ ε2− p
􏽘

n>Mε−2[ ]

􏽚
∞

0
p(y + ε)p− 1

V Sn|≥ (y + ε)n
􏼌􏼌􏼌􏼌􏼐 􏼑 + V(|ξ|≥ (y + ε)

�
n

√
)􏼐 􏼑dy.

(74)

By (59), Markov’s inequality, and (24),

J3(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≪ ε2− p
􏽘

n>Mε−2[ ]

􏽚
∞

0
(y + ε)p− 1

nV(|X|≥ c(y + ε)n) +
1

(y + ε)4n2
+

Ê|ξ|4

(y + ε)4n2
􏼠 􏼡dy

≪ ε2− p
􏽚
∞

Mε−2
xV(|X|≥ c(y + ε)x)dx 􏽚

∞

0
(y + ε)p− 1

dy + ε2− p
􏽘

n>Mε−2[ ]

1
n2 􏽚
∞

0
(y + ε)p− 5dy

≪ ε2− p
􏽚
∞

0
(y + ε)p− 1

dy 􏽚
∞

cMε−2(y+ε)

t

(y + ε)2
V(|X|≥ t)dt + M

− 1
(let c(y + ε)x � t)

≪ ε2− p
􏽚
∞

0
(y + ε)p− 3dy 􏽚

∞

cε−1
tV(|X|≥ t)dt + M

− 1

� 􏽚
∞

cε−1
tV(|X|≥ t)dt + M

− 1
.

(75)

Let ε⟶ 0 first, then let M⟶∞, we get (67) from
(44) and (15). +is completes the proof of +eorem 2. □

Proof of ,eorem 3. Note that

􏽘

∞

n�1

1
n2CV S

2
nI Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑􏼐 􏼑 � ε2 􏽘

∞

n�1
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εn􏼐 􏼑 + 􏽘

∞

n�1

1
n2 􏽚
∞

εn
2xV Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑dx. (76)

Mathematical Problems in Engineering 9



Hence, by +eorem 1, in order to establish (48), it
suffices to prove that

lim
ε⟶0

1
ln ε− 1 􏽘

∞

n�1

1
n2 􏽚
∞

εn
2xV Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑dx � 2CV ξ2􏼐 􏼑. (77)

However,
1

ln ε− 1 􏽘

∞

n�1

1
n2 􏽚
∞

εn
2xV Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑dx

�
1

ln ε− 1 􏽘

∞

n�1

1
n2 􏽚
∞

εn
2xV |ξ|≥

x
�
n

√􏼠 􏼡dx

+
1

ln ε− 1 􏽘
n≤Mε−2

1
n2 􏽚
∞

εn
2x V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑 − V |ξ|≥

x
�
n

√􏼠 􏼡􏼠 􏼡dx

+
1

ln ε− 1 􏽘
n>Mε−2

1
n2 􏽚
∞

εn
2x V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑 − V |ξ|≥

x
�
n

√􏼠 􏼡􏼠 􏼡dx

≔ K1(ε) + K2(ε) + K3(ε).

(78)

Hence, in order to establish (77), it suffices to prove that

lim
ε⟶0

K1(ε) � 2CV ξ2􏼐 􏼑, (79)

lim
ε⟶0

K2(ε) � 0, (80)

lim
M⟶∞

lim sup
ε⟶0

K3(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0. (81)

We first prove (79). Because limy⟶0+ y|lny| � 0, there is
c1 > 0, such that y|lny|≤ c1 for any y ∈ (0, 1]. +erefore,
combining with Markov’s inequality and (24),

􏽚
∞

ε
y lnyV(|ξ|≥y)dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽚

1

0
y|lny|dy + 􏽚

∞

1
y lny

􏽢E|ξ|3

y3 dy≤ c1 + 􏽢E|ξ|
3

􏽚
∞

1

lny

y2 dy � c<∞. (82)

+us, (79) follows

lim
ε⟶0

K1(ε) � lim
ε⟶0

1
ln ε− 1 􏽘

∞

n�1

1
n

􏽚
∞

ε
�
n

√ 2yV(|ξ|≥y)dy lety �
x
�
n

√􏼠 􏼡

� lim
ε⟶0

1
ln ε− 1 􏽚

∞

1

1
t
dt 􏽚
∞

ε
�
t

√ 2yV(|ξ|≥y)dy(let u � ε
�
t

√
)

� lim
ε⟶0

1
ln ε− 1 􏽚

∞

ε

2 du

u
􏽚
∞

u
2yV(|ξ|≥y)dy

� lim
ε⟶0

1
ln ε− 1 􏽚

∞

ε
4yV(|ξ|≥y)dy 􏽚

y

ε

1
u
du

� lim
ε⟶0

1
ln ε− 1 􏽚

∞

ε
4y lnyV(|ξ|≥y)dy

+ 􏽚
∞

0
4yV(|ξ|≥y)dy

� 2CV ξ2􏼐 􏼑.

(83)
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Now, we prove (80). Let dn � (
�
n

√
△1/4n )− 1. +en,

K2(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1

ln ε− 1 􏽘
n≤ Mε−2[ ]

1
n2 􏽚
∞

εn
2x V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ x􏼐 􏼑 − V |ξ|≥

x
�
n

√􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dx (let(y + ε)n � x)

�
1

ln ε− 1 􏽘
n≤ Mε−2[ ]

􏽚
∞

0
2(y + ε) V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ (y + ε)n􏼐 􏼑 − V(|ξ|≥ (y + ε)

�
n

√
)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dy

≤
1

ln ε− 1 􏽘
n≤ Mε−2[ ]

􏽚
dn

0
2(y + ε)△ndy

+
1

ln ε− 1 􏽘
n≤ Mε−2[ ]

􏽚
∞

dn

2(y + ε) V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ (y + ε)n􏼐 􏼑 + V(|ξ|≥ (y + ε)

�
n

√
)􏼐 􏼑dy

≔
1

ln ε− 1 􏽘
n≤ Mε− 2[ ]

1
n

K21(ε) + K22(ε)( 􏼁,

(84)

where

K21(ε) � n 􏽚
dn

0
2(y + ε)△ndy,

K22(ε) � n 􏽚
∞

dn

2(y + ε) V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ (y + ε)n􏼐 􏼑 + V(|ξ|≥ (y + ε)

�
n

√
)􏼐 􏼑dy.

(85)

Since n≤Mε− 2 implies ϵ
�
n

√
≤

��
M

√
, one can easily obtain

that

K21(ε)≤Δnn
1

�
n

√
△1/4n

+ ε􏼠 􏼡

2

≤ Δ1/4n +
��
M

√
Δ1/2n􏼐 􏼑

2
≪Δ1/2n ⟶ 0 as n⟶∞. (86)

By (59), Markov’s inequality, (24), and cn(dn + ε)≥ c
�
n

√
,

we get

K22(ε)≤ cn 􏽚
∞

dn

2(y + ε) nV(|X|≥ cn(y + ε)) +
1

n2(y + ε)4
+

􏽢E|ξ|4

n2(y + ε)4
􏼠 􏼡dy

� c 􏽚
∞

cn dn+ε( )
tV(|X|≥ t)dt + c 􏽚

∞

dn

1
n(y + ε)3

dy (let cn(y + ε) � t)

≪ 􏽚
∞

c
�
n

√ tV(|X|≥ t)dt +
1
n

1
�
n

√
△1/4n

+ ε􏼠 􏼡

− 2

⟶ 0 as n⟶∞.

(87)
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From (84)–(87) and
􏽐n≤[Mε−2]1/n � O(ln ε− 1)⟶∞, ε⟶ 0, using Toeplitz’s
lemma, (80) follows

K2(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1

ln ε− 1 􏽘
n≤ Mε− 2[ ]

△1/2n + K22(ε)
n
≪

􏽐n≤ Mε−2[ ] △1/2n + K22(ε)/n( 􏼁

􏽐n≤ Mε−2[ ](1/n)
⟶ 0, as ε⟶ 0. (88)

Finally, we prove (81) as follows:

K3(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1

ln ε− 1 􏽘
n>Mε−2[ ]

1
n2 􏽚
∞

εn
2x V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏼐 􏼑 + V |ξ|≥

x
�
n

√􏼠 􏼡􏼠 􏼡dx lety �
x

n − ε
􏼒 􏼓

�
1

ln ε− 1 􏽘
n> Mε− 2[ ]

􏽚
∞

0
2(y + ε) V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ (y + ε)n􏼐 􏼑 + V(|ξ|≥ (y + ε)

�
n

√
)􏼐 􏼑dy.

(89)

By (59), Markov’s inequality, and (24),

K3(ε)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≪
1

ln ε− 1 􏽘
n>Mε−2[ ]

􏽚
∞

0
(y + ε) nV(|X|≥ c(y + ε)n) +

1
(y + ε)4n2

+
􏽢E|ξ|4

(y + ε)4n2
􏼠 􏼡dy

∼
1

ln ε− 1 􏽚
∞

Mε− 2
􏽚
∞

0
(y + ε)xV(|X|≥ c(y + ε)x)dy dx +

c

ln ε− 1 􏽘
n>Mε−2[ ]

1
n2 􏽚
∞

0
(y + ε)− 3dy

∼
1

ln ε− 1 􏽚
∞

0
(y + ε) 􏽚

∞

cMε− 2(y+ε)

t

(y + ε)2
V(|X|≥ t))dt dy +

2cM− 1

ln ε−1

≪
1

ln ε− 1 􏽚
∞

cε− 1
tV(|X|≥ t)dt 􏽚

ε2t/(cM)−ε

0

1
y + ε

dy + M
− 1

�
1

ln ε− 1 􏽚
∞

cε− 1
tV(|X|≥ t) ln

ε2

cM
+ ln t + ln ε− 1

􏼠 􏼡dt + M
− 1

≤
1

ln ε− 1 􏽚
∞

cε− 1
t lnV(|X|≥ t)dt + 􏽚

∞

cε− 1
tV(|X|≥ t)dt + M

− 1
.

(90)

Let ε⟶ 0 first and then let M⟶∞; we get (81) from
(47) and (16). +is completes the proof of +eorem 3. □
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