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)e data mining and calculation of time series in critical application is still worth studying. Currently, in the field of hydrological
time series, most of the detection of outliers focus on improving the specificity. To efficiently detect outliers in massive hydrologic
sensor data, an anomaly detection method for hydrological time series based on Flink is proposed. Firstly, the sliding window and
the ARIMA model are used to forecast data stream. )en, the confidence interval is calculated for the prediction result, and the
results outside the interval range are judged as alternative anomaly data. Finally, based on the historical batch data, the K-
Means++ algorithm is used to cluster the batch data. )e state transition probability is calculated, and the anomaly data are
evaluated in quality. Taking the hydrological sensor data obtained from the Chu River as experimental data, experiments on the
detection time and outlier detection performance are carried out, respectively. )e results show that when calculating the tens of
millions of data, the time costed by two slaves is less than that by one slave, and the maximum reduction is 17.43%.)e sensitivity
of the evaluation is increased from 72.91% to 92.98%. In terms of delay, the average delay of different slaves is roughly the same,
which is maintained within 20ms. It shows that, under big data platform, the proposed algorithm can effectively improve the
computational efficiency of hydrologic time series detection for tens of millions of data and has a significant improvement
in sensitivity.

1. Introduction

Hydrological data are divided into various types of hydro-
logical time series according to their physical quantities. At
present, many experts believe that hydrological time series is
generally composed of determined and random compo-
nents. )e definite component has certain physical concept,
and the random component is produced by the irregular
oscillation and the stochastic influence [1]. Hydrological
time series mainly shows the complex characteristics of
randomness, fuzziness, nonlinearity, nonstationary, and
multitime scale change [2].

In practice, as the world gets more instrumented and
connected, we are witnessing a flood of digital data gen-
erated from diversified hardware (e.g., sensors) or software
in the format of big data. With the development of infor-
matization, the hydrologic stations accumulate a great deal
of important data which contains many outliers. For hy-
drological time series, it can be judged as an anomaly with a

large difference from the general law [3]. Outliers often
contain important information, and it is greatly significant
for subsequent analysis decisions by accurately finding the
hidden value behind the data. At present, for hydrological
time series, traditional methods are only applicable to small
datasets, not to the current big data environment. Moreover,
the accuracy only reaches the level of 99% in specificity [4],
and the sensitivity still has room for improvement. With the
increase in the amount of data, how to calculate efficiently
has become a problem that cannot be ignored. )e anomaly
detection and calculation of time series in critical application
is still worth studying. )is paper presents an anomaly
detection method for hydrological time series based on
Flink. Firstly, the sliding window and the ARIMAmodel are
used to forecast data stream on the Flink platform.)en, the
confidence interval is calculated for the prediction result,
and the results outside the interval range are judged as
temporary anomaly data. Finally, based on the historical
batch data, the K-Means++ algorithm is used to cluster the
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batch data, the state transition probability is calculated, and
the anomaly data are evaluated in quality. )is method can
effectively improve the computational efficiency and gives a
reliable confidence degree to enhance the overall sensitivity.
)e outliers are detected quickly and accurately in massive
hydrological time series.

)e following contents are organized as follows: Section
2 discusses the research work related to this paper; Section 3
introduces the methodology of hydrologic time series
anomaly detection in detail; in Section 4, we continue to use
the real hydrological sensor data as experimental data to
verify the effectiveness of the proposed method. Finally, the
summary and prospect are given.

2. Related Work

2.1. Anomaly Detection. Outliers [5] are data that deviate
most of the data in the dataset, which is not suspected of
being a random error, but arises from a completely different
mechanism. )e following are some of the main methods of
anomaly detection.

Niu [6] proposes a short-term electricity price hybrid
forecasting model based on wavelet transform and ARIMA,
which can detect the mutation point. )e model can indeed
detect the situation of abrupt change point, but it is in-
sufficient for the nonlinear part or the data with too long
time series. Gil [7] presents an anomaly detection based on
vector machine and principal element analysis. Firstly, the
principal element analysis method is used to reduce the
latitude, and then, the SVM is used to model and examine
the anomaly data. But if there are more kinds of outliers, the
detection accuracy is not good. Sun [3] proposes a hydro-
logical time series anomaly value detection based on
ARIMA-SVR, which uses ARIMA to predict the linear parts,
and SVM predicts the nonlinear part. It adds the predicted
result and evaluates the value not in the confidence interval
as the anomaly value. )is kind of algorithm has a good
effect on small-scale datasets, but it is not able to deal with
massive data or multivariate data. It is also difficult to de-
termine the threshold value.

)e method based on distance detection is to set some
distance function to calculate the distance of the data point.
When the distance between one point and the other point is
too large, it is regarded as the anomaly point. Vy and Anh [8]
present an anomaly detection algorithm with variable length
in time series. Firstly, it segments a time series and then
calculates the anomaly factors of each mode. After that, the
distance between them is calculated. At last, the anomaly is
judged by the distance of the abnormal factors. )e ad-
vantage of this method is that it is easy to use; the time
complexity is relatively small, but it is not sensitive to local
anomaly points.

Ali et al. [9] propose the concept of local outlier factor
(LOF) to compute the dataset density. )e possibility that
the object is an outlier is positively correlated with the LOF.
However, the mix of different densities will result in the
detection error. Although some related improvement
schemes are proposed, the overall time complexity is
higher.

)e clustering algorithm [10] divides the points in the
time series into several clusters, and these points which do
not belong to any cluster will be regarded as the anomaly, but
the time series has a trend characteristic and cannot be
classified as cluster analysis simply. )erefore, the clustering
algorithm is too dependent on cluster quality, which leads to
low accuracy and efficiency.

Hypothesis testing is a method for discovering anomaly
samples. )e dataset obeys a known distribution or prob-
ability model. If a point in the dataset is inconsistent with its
distribution, the anomaly is judged. Twitter opens source the
traffic anomaly detection algorithm S-H-ESD in 2015 [11],
and the algorithm is to use STL to decompose the sequence
and investigate the residuals. Assuming this is in accordance
with the normal distribution, the outlier can be extracted
using generalized ESD. However, if the feature distribution
is unknown, the priori hypothesis does not necessarily effect.
)en, the error detection rate of this method is high, and it
cannot adapt to the multivariate time series well.

Yu [4] proposes the hydrological time series anomaly
detection based on sliding window prediction, but the
computational complexity is high. Yang et al. [12] use the
knowledge granularity method to find the abnormal data in
time series, reduce the time cost of the detection process, and
improve the detection efficiency. Liu andWang [13] propose
an anomaly factor detection method based on the extremum
difference, the slope, and the mean value. Good results are
obtained.

In recent years, the accuracy of model prediction is also
the goal of many researchers, and Zeng et al. [14] propose
fuzzy forecasting based on linear combinations of inde-
pendent variables, subtractive clustering algorithm, and
artificial bee colony algorithm to predict time series. )e
proposed method gets higher forecasting accuracy rates than
the existing methods for forecasting the Taiwan Stock Ex-
change Capitalization Weighted Stock Index (TAIEX), the
enrolment of the University of Alabama, and the daily
percentage of CO2. In addition, Zeng et al. [15] still propose
interval-valued intuitionistic fuzzy multiple attribute deci-
sion-making based on nonlinear programming methodol-
ogy and TOPSIS method. )e method can overcome the
drawbacks of the MADM methods. It offers us a very useful
way to deal with MADM problems in IVIF environments.
Although these two methods have extremely high accuracy,
the computational efficiency in the big data is still a problem
worth studying.

2.2. Flink. Apache Flink is a framework and distributed
processing engine for stateful computation of unbounded
and bounded data flows. Flink is designed to run in all
common clustered environments, performing calculations at
memory speed and any size. )e Flink centralized swarm
mode deployment on yarn is undergone through the con-
struction of four centralized swarms in Figure 1.

Internally, Apache Flink represents job definitions using
directed acyclic graphs (DAGs) [16]. )e nodes of the graph
are either sources, sinks, or operators. Source nodes read in
or generate the input data, while sink nodes produce the
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output. )e inner vertices are operators which execute ar-
bitrary user-defined functions (UDFs) that consume input
from incident nodes and provide input for adjacent nodes.
)e DAGs generated from the user’s job definitions are then
transformed into the more concrete execution graphs, which
contain the necessary information for running the job on a
cluster. Data partitioning enables the data-parallel execution
of the subtasks. During the transformation, the UDFs are
split up into multiple parallel subtasks. Each subtask exe-
cutes the same UDF. However, each process processes a
different part of the input data. )is setup makes clear where
overheads might emerge. Firstly, the task scheduling as well
as the deployment of the tasks on the respective machines
introduce overhead. Moreover, the nodes must communi-
cate with each other in order to distribute the workload. )e
communication between different nodes demand for seri-
alization and transport buffering, which adds to the
overhead.

On top of the possibility to define a job by using a DAG, a
layer of second-order functions is implemented in order to
simplify the development for the user [17]. Apache Flink
provides APIs for implementing batch as well as stream
processing. )e exposed functions for dataset and data
stream transformations are like functions known from
functional programming (e.g., map, reduce, and filter).
Additionally, the DataSet API provides transformations
known from relational databases like joins and grouping.
)e DataStream API provides additional operators which
are useful in the streaming context. )ese operators include
the definition of windows and window-based aggregations.

3. The Proposed Methodology

3.1. Anomaly Detection Based on Sliding Window

3.1.1. ,e Definition of Slide Window. To define the sliding
neighbor window Li of the hydrological time series X to be
detected point Xi. To reduce the complexity of the

algorithm, the first L point of the point is used as the input
parameter of the predictive model. )is algorithm selects the
left neighbor window of the prediction node as the algorithm
input, and the unilateral definition is as follows:

Lxi � xi−L, xi−L+1, . . . , xi−1􏼈 􏼉. (1)

3.1.2. Anomaly Detection. )e core is to establish the
ARIMA model [16] and predict the value of the observation
point by sliding window input and then get a series of
predicted values. ARIMA is a time series prediction model
with autoregressive (AR) and moving average (MA). It is
very flexible. )e model becomes MA(q) when AR equals 0,
while when MA� 0, ARIMA becomes AR(p) and specifi-
cally is described as

y(t) � v + φ1y(t − 1) + · · · + φpy(t − p) + ε(t), (n≤m).

(2)

In (2), ε(t) is the error. If ε(t) is autocorrelation, then
MA (q) can be represented as

ε(t) � a(t) + Θ1a(t − 1) + · · · + Θ1a(t − p). (3)

In (3), ΘJ(j � 1, 2, . . . , q) is the parameters estimated;
a(t) is the white noise.

According to the above, ARIMA(p, q) is

y(t) � v +φ1y(t −1) + · · · +φpy(t − p) + ε(t) + v +φ1y(t −1)

+ · · · +φpy(t − p) + a(t) +Θ1a(t −1) + · · · +Θpa(t − q).

(4)

If the order n is relatively large, then AR(n) can be
approximately equivalent to ARIMA(p, q); then,

y(t) � v + 􏽘

n

i�1
φiy(t − i) + an(t). (5)

In equation (5), an(t) is the error term of order n. )e
estimate of an(t) can be achieved as follows:

􏽢an(t) � yt + 􏽘
n

i�1
􏽢φiy(t − i) − v. (6)

In equation (6), 􏽢φi can be achieved by least square es-
timation. Making use of 􏽢an(t), ARIMA(p, q) can be
established:

y(t) � v,φ1, . . . ,φq: Θ1, . . . ,Θq􏽨 􏽩

1

y(t − 1)

. . .

􏽢an(t − 1)

. . .

􏽢an(t − q)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ a(t).

(7)

ARIMA parameters n, p, and q are determined by AIC
criterion:
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Figure 1: Flink architecture.
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AIC � ln 􏽘
a

(p, q)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
2
S
Pnum. (8)

In (8), S is the number of samples, and 􏽐a(p, q) is the
determinant of Σa, which is the covariance matrix of 􏽢a(t).

First, unit root test is conducted for the time series . If it
is a nonstationary sequence, it needs to be transformed into a
stationary sequence by difference. Based on the AIC crite-
rion, we need to determine the autoregressive order p and
themoving average order q and find the p and q combination
with the minimum AIC value. )e ARIMA model is for
nonstationary time series. It is applicable to hydrological
time series. )is paper takes the confidence interval of 95%.
)e confidence interval calculated by the ARIMA model is
compared with the original sequence, and the value not in
the confidence interval is judged as outliers.

3.2. Anomaly Value Verification. After the exception values
are identified by sliding window and ARIMAmodel, we also
need to identify the confidence of the anomaly to determine
whether the point is indeed an anomaly and reduce the error
and the amount of work.

3.2.1. K-Mean++ Model. K-Mean is one of the clustering
algorithms.)e principle of the K-Means++ algorithm is given
the value of K, K represents the number of categories to divide
the data into and then according to the similarity between the
data to divide the data intoK classes.)emethod of measuring
the similarity of data is usually measured by the distance be-
tween data points, such as European distance, Hamming
distance, and Manhattan distance.

It is a common practice to use the Euclidean distance to
measure the similarity between the data. For example, for
two points on the two-dimensional plane A(x1, y1) and
B(x2, y2), the Euclidean distance between the two is

��������������������

x1 − x2( 􏼁
2

+ y1 − y2( 􏼁
2
.

􏽱
(9)

Generally, a cluster is described by the centre of all points
in the cluster, which is also called centroid. )e way of
computing the centre of mass is to calculate the mean of all
data points in a cluster. )e advantage of K-Means++ lies in
the choice of the centre of mass. )e K-Means++ model is
optimized for the centroid uncertainty in the K-Means al-
gorithm and chose the centroid K in the following strategy:
hypothesis has selected the initial clustering centre n

(0< n<K). When the clustering centre is in the selection of
n + 1, the farther the distance from the current n clustering
centre point will be a higher probability of being selected as
the clustering centre n + 1. However, the selection of the first
cluster centre (n� 1) also adopts the random method.

Specifically, K-Means takes the entire time series
x1, x2, . . .􏼈 􏼉 as input and sequence T � T1, T2, . . .􏼈 􏼉 as an
output; the points on the time series are converted to various
cluster points, and T1, T2, . . .􏼈 􏼉 indicates which centre this
time point is in, which classify the time series in different
states.

After providing the K-means++ model with the previous
outliers and the value of their previous moment as input, the
distance between each sample and the centre of the cluster is
computed, and then the cluster centre is assigned to each
sample.

3.2.2. State Transition Probability Matrix. Markov processes
in which time and state are discrete are called Markov
chains, and it is assumed that

Xn � X(n), n � 1, 2, . . . . (10)

It can be viewed as the result of successive observations
of discrete Markov processes on the time set:

T1 � 0, 1, 2, . . .{ }. (11)

)e state space of the chain can be described that

I1 � a1, a2, a3, . . .􏼈 􏼉. (12)

In the state of chain, Markov property is usually
expressed by conditional distribution law. )at is, satisfy

∀n ∈Z,r ∈Z,0≤t1<t2< · · · <tr<m; tj, m,n + m ∈T1.

(13)

P Xm+n �aj

􏼌􏼌􏼌􏼌􏼌Xt1 � ai1,Xt2 � ai2, . . . ,Xtr � air,Xm � ai􏼚 􏼛

� P Xm+n �aj

􏼌􏼌􏼌􏼌􏼌Xm � ai􏼚 􏼛, ai ∈ I.

(14)

We sign equation (14) as follows:

Pij(m, m + n), (15)

and describe the conditional probability as

P m, m + n{ } � P Xm+n � aj

􏼌􏼌􏼌􏼌􏼌 Xm � ai􏼚 􏼛, ai ∈ I. (16)

It means the transition probability of Markov chain from
m + n to aj under the condition that m is in the state ai at
time m. Since the chain starts from any state ai at time m to
another state m + n, it must move to one of the states in
a1, a2, . . . , so

􏽘

∞

j�1
Pij(m, m + n) � 1, i � 1, 2, . . . . (17)

)ematrix composed of transition probabilities is called
the transition probability matrix of Markov chain:

P(m, m + n) � Pij(m, m + n)􏼐 􏼑, (18)

and the above formula (18) knows that the sum of the el-
ements in each row of this matrix is equal to 1. When the
transition probability is only related to Pij(m, m + n), i, j,
and time interval n, it is denoted as Pij or

P(m, m + n) � Pij(n). (19)
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)e transition probability is said to be stable. It is also
homogeneous or time-homogeneous. In the case of ho-
mogeneous Markov chain, the transition probability is

Pij(n) � P Xm+n � aj

􏼌􏼌􏼌􏼌􏼌 Xm � ai􏼚 􏼛. (20)

Equation (20) is called the n-step transition probability
of Markov chains, and when n � 1, it is the one-step
transition probability, which is particularly important. )e
matrix consisting of the one-step transition probability is
called the one-step transition probability matrix:

P �

p1,1 p1,1 . . . p1,1 . . .

p1,1 p1,1 . . . p1,1 . . .

M M O M O

p1,1 p1,1 . . . p1,1 . . .

M M O M O

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

pi,j � pr(j | i).

(21)

)e following is the realization method of one-step
transition probability matrix:

Step 1. Calculate the probability of each state:

P Xm � ai􏼈 􏼉. (22)

Step 2. Calculate the probability of state ai at momentm
and state aj at moment m + 1:

P Xm+n � aj, Xm � ai􏽮 􏽯. (23)

Step 3. Compute transition probability:

Pij � Pij(1) � P Xm+1 � aj

􏼌􏼌􏼌􏼌􏼌 Xm � ai􏼚 􏼛

�
P Xm+n � aj, Xm � ai􏽮 􏽯

P Xm � a􏼈 􏼉i

.

(24)

Means model training is completed, the state sequence
T1, T2, . . .􏼈 􏼉 can be obtained, and a state transition matrix
can be obtained by calculation. To facilitate the calculation,
it is necessary to convert the matrix to a data frame. )ere
are three columns: the first column represents the state i,
the second column represents the state j, and the third
column represents the probability that the state i transfers
to state j. Suppose a time series xi, xi+1􏼈 􏼉 is transformed by
K-Means++ model and it becomes the state sequence
Ti, Tj􏽮 􏽯, xi + 1 appears after xi, which in other words is
equivalent to a transfer from state Ti to Tj, and the transfer
probability is

pij �
the number of Ti toTj

the number of Ti to other state
. (25)

3.2.3. Outliers Check. In this paper, the probability of a
transition is compared with the probability of the state of the
previous moment being transferred to the next most
probable state as an evaluation criterion. If xi is to be
inspected anomaly, the value of the previous moment is xi−1,
and the state of Ti and Ti−1, Ti−1 is the most likely to be
transferred to Tm; thus, we define an anomaly value
probability:

pi � 1 −
the possibility thatTi−1 toTi

the possibility thatTi−1 toTm

. (26)

From the above, it is known that the probability of state
Ti toTm is a constant, the smaller the probability of state Ti−1
transferring to Ti, the greater the pi, the greater the prob-
ability of xi being abnormal value.

In the reality of hydrological data anomaly judgement
standard, the data more than 2 cm are judged as outliers.
Using the clustering algorithm may appear abnormal values
and the moment before its values in the same condition and
lead to false negatives. So after the judgement, outliers with a
probability of 0 but a difference of more than 2 cm should
also be judged as outliers.

3.3. ,e Anomaly Detection Method. )e hydrological time
series anomaly detection algorithm based on Flink is
combined with two processes: the anomaly detection and
result verification. First, the ARIMA model of time series
x1, x2, . . . , xn􏼈 􏼉 is established by the idea of predictive de-
tection by sliding window, and the predicted confidence
interval is obtained, which is compared with the original
data to identify the outliers. After the anomaly value is
detected, the original data are clustered by K-Means++ al-
gorithm, and the state transition matrix is computed after
clustering. At last, the abnormal value is evaluated by the
state transition and finally determined.

)e specific steps of the algorithm are provided in Al-
gorithm 1.

)e flow chart is shown below.
Figure 2 shows the overall flow of the algorithm. Initial

abnormal detection is carried out on the input data stream
through the sliding window in conjunction with ARIMA
model.

Figure 3 shows the anomaly verification mechanism of
specific process, and batch the historical data collected
before. )e first is to delete duplicates, dimension reduction,
and sorting operation on batch data. After that, the data are
clustered by the K-Means++ model. )en, original time
series are converted into a Markov chain by using the
clustering results. Finally, one step transfer matrix and the
transition probability can be calculated. )rough the prin-
ciple of maximum and minimum, the hydrological sequence
whose anomaly probability is higher than the threshold
value is judged as the true outlier.

4. Results and Discussion

4.1. Experimental Environment and Dataset. )e runtime
environment is deployed in a cluster using four PCs, and the
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hardware environment is as follows: CPU is Intel (R) Xeon
(R) CPU E5645@2.40GHz dual-core 24 CPU; memory is
Kingston DDR3 1333MHz 8G and 500GB SSD flash
memory. Operating system tools are Ubuntu 16.04 64-bit
and Linux 3.11.0 kernel.)e relevant software versions are as
follows: Java 1.8 and Flink 1.5.2.

)e experimental data are from the monitoring data
from 2015 to 2017 for more than 70 hydrological sta-
tions located on Chu river, with a data size of 18910864
rows.

4.2. Forecast Testing. Since it is difficult to describe the flow
data directly in the form of a graph, Figure 4 shows the
change in water level in a whole certain period of time.
Because of the time format of this experiment, the horizontal
mark overlaps and the observation effect is poor. So, the
number of days is used as the horizontal axis. )en, we
introduce a time-continuous data stream for anomaly
detection.

From Figure 4, there are indeed data in the data that
deviates significantly from its neighbors’ node, which is the

Input: hydrological time series X, reliability P, sliding window size L, historical batch data H.
Output: the outliers in hydrological time series.
Step 1: clean the sequence H, including descending dimension, deleting duplicate value, sifting, and sorting
Step 2: using the value of L as the initial starting position of the sliding window of X, the value of the xL+1 is predicted, and as the
window slides, the predicted value gradually forms a new time series xL+1, xL+2, . . .􏼈 􏼉

Step 3: the 95% confidence interval of the new time series is calculated and compared with X, the time point which is not in the
confidence interval is obtained and get the exception point set e1, e2, . . .􏼈 􏼉

Step 4: taking historical data H as input and training and establishing K-Means++ model, obtain the discrete state sequence
T1, T2, . . .􏼈 􏼉

Step 5: compute the state transition matrix of the discrete state sequence
Step 6: the K-Mean++ model that is obtained in Step 4 is used for the exception point set of Step 3 and the value of its previous
moment to obtain the state of anomaly and its previous moment
Step 7: estimate the value of the exception and its previous moment in Step 6 by state transition data frame and then output the
confidence score
Step 8: repeat the above steps until no new data are entered

ALGORITHM 1: Hydrological time series anomaly detection algorithm.

Begin

Input time series 
stream

Anomaly detection

Abnormal? Anomaly value 
verification 

Output anomaly 
value of time series 

End

No

Yes

Figure 2: )e whole process of anomaly detection algorithm.
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anomaly we are trying to detect. )e test results are given in
Figure 5:

Figure 5 shows the measured values, predictive values,
and confidence intervals with a confidence level of 95% in
the case of a sliding window with a length of 6 and an
anomaly detected on a given dataset when the reliability is
95%. From Figure 5, most of the points are very close to the
normal value, but there are some points outside the interval,
so they are judged as the suspect anomaly point.

4.3. Batch Data Clean. Before the anomaly detection, the
data obtained should be cleaned and the data before cleaning
are as follows.

We can see from Table 1, there are many problems in
the original data, such as duplication, sort confusion,

date format not conforming to data mining requirement,
and existence of unrelated series. To solve the above
problems, we have cleaned the initial 18910864 rows
hydrological data based on Flink and compared with the
cleaning time in traditional single mode, and the results
are as follows.

As shown in Figure 6, when 15 stations are selected,
the running speed of double node is slower than that of
single node. However, with the increase in data size, the
result calculated by double node has a small fluctuation,
while the time of single node is significantly increased.
Some Flink data after speed cleaning are shown in
Table 2.

Table 2 retains important data, eliminates invalid data
and duplicate data, and unifies the data format. )ese data
play a key role in the later abnormal check.

Begin

Ignore outliers

One-step transition matrix

End

Clustering

Max-min judgment

�e transition probability 
is below the threshold

Output outliers

No

Yes

Input historical hydrological
batch data

Descending dimension, deleting
duplicate value, si�ing, and

sorting

Figure 3: Abnormal check mechanism flow chart.

Mathematical Problems in Engineering 7



4.4. Anomaly Verification Model Runtime. )is experiment
aims at the problem of that if predicting time series based
on sliding window, high delay, and long running calcu-
lation time will appear. Flink is adopted for calculation, and
the time of using Flink to execute the algorithm under
different computing resources is compared. )e results are
as follows.

As can be seen from Figure 7, with the data of 15 and 35
hydrological stations selected, the running speed of the
double node is not ideal, but when the data size rises to the
level of tens of millions, the advantages of the double node

can be reflected with the advantages of time growth speed
and calculation time. It can be seen that, under the larger
dataset, the double-node operation speed is faster, with a
decrease in 17.43% in the fastest case. )e relevant exper-
imental results for the delay will be combined with the al-
gorithm effectiveness experiment in the last part of the
experiment.

4.5. Outliers Assessment. After anomaly detection, it is
necessary to evaluate the detected outliers and use the state
transition matrix to calculate the probability of its true
anomaly value. )e display section in the form of a data
frame is as follows.

From Table 3, t0 represents the state before the transfer
and t1 represents the state after the transfer. By classifying
the initial hydrological time series, selecting the state of the
anomaly value and their previous moments and looking in
Table 3 to get the probability of the real anomaly value, some
of the results are as follows.
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Figure 4: )e part of initial hydrologic time series.

1 11 21 31 41 51 61 71 81

W
at

er
 le

ve
l, 

m

Data number

18.20

18.40

18.60

18.80

19.00

19.20

19.40

Observations
Lo.95
Hi.95

Figure 5: )e part of exception detection results.

Table 1: Data before cleaning.

Station ID Time )e water level Source
12910520 27/4/2016 19:45:00 36.780 Null
12910520 27/4/2016 19:45:00 36.780 Null
12910560 27/4/2016 19:45:00 29.600 Null
12910580 27/4/2016 19:40:00 33.010 Null
60403200 27/4/2016 19:35:00 5.940 Nj34
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Table 4 shows that the value detected by the experi-
ment in Forecast Testing section is really the probability of
abnormal value, it can be seen that the probability of real
abnormal value for some detected value is 0, so we will
remove these values whose probability of real abnormal
value is less than 50% from the detected values.

4.6. Effectiveness and Accuracy. After anomaly detection, it
is necessary to evaluate the detected outliers and use the
state transition matrix to calculate the probability of its
true anomaly value. In order to verify the validity and
accuracy of this mechanism, this paper divides the ex-
perimental results into 4 categories. )e first category is TP
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Figure 6: Comparison of running time in Flink in different slaves.

Table 2: Data after cleaning.

Station ID Time )e water level
12910280 2016-01-29 14:15:00 22.3
12910280 2016-01-29 14:20:00 22.3
12910280 2016-01-29 14:25:00 22.3
12910280 2016-01-29 14:30:00 22.3
12910280 2016-01-29 14:35:00 22.3
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Figure 7: Comparison of Flink running time in different slaves.
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(true positive), and the actual abnormal is judged to be
abnormal; the second category is FN (false negative), and
the actual abnormal is judged to be normal; the third
category is FP (false positive), and the actual normal is
judged to be abnormal; the last Category is TN (true

negative), and the actual normal is judged to be normal. TP
and TN are ideal situations where FN and FP are not
desired. )is paper defines sensitivity, sensitivity � TP
/(TP + FP), and specificity, specificity � TN/(TN + FN). In
this paper, the ARIMA model based on sliding window,

Table 3: State transition data frame.

t 0 t 1 Probability
1 1 0.988283538
1 10 0.000000000
1 11 0.000000000
1 12 0.001054482
1 2 0.000000000

Table 4: Anomaly evaluation.

Station ID Time )e water level Pre_rz Pro_ex
12910520 27/4/2016 19:45:00 36.780 22.31 98.270
12910520 27/4/2016 19:45:00 36.780 22.32 0.0000
12910560 27/4/2016 19:45:00 29.600 22.32 99.364
12910580 27/4/2016 19:40:00 33.010 22.32 99.364
60403200 27/4/2016 19:35:00 5.940 22.32 99.364

Table 5: Comparison of the sensitivity and specificity on the ARIMA model based on sliding window, MARS, and the algorithm in this
paper.

Window size Node number
Proposed algorithm MARS ARIMA based on slide window

Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%)

10
1 node 82.16 80.98 87.44 82.55 81.57 54.55
2 nodes 82.63 81.43 87.69 83.12 82.61 57.57
3 nodes 82.41 80.84 87.57 82.51 81.44 55.82

30
1 node 94.74 90.81 94.99 87.84 93.12 67.28
2 nodes 94.77 90.67 94.56 87.77 94.34 68.16
3 nodes 93.98 90.98 94.73 87.98 93.45 68.45

50
1 node 99.46 92.40 97.65 90.41 99.13 72.06
2 nodes 99.32 92.02 98.04 90.33 99.20 72.51
3 nodes 99.61 92.98 98.11 90.63 99.29 72.91
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Figure 8: Effects of window size on specificity, sensitivity, and latency.
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MARS, and the algorithm in this paper are compared with
the same hydrological time series, and the results are as
follows (Table 5).

Table 5 shows the optimal results of the three models for
comparison. )e results show that the traditional window
method is not significantly different from the method
proposed in this paper in terms of specificity, maintaining
high accuracy. In terms of sensitivity, as a nonlinear pre-
diction model, MARS performs better in the case of a small
sample, reaching a maximum of 83.12%. However, with the
increase in the size of window, the increase is not as good as
the algorithm proposed in this paper because the algorithm
in this paper includes a historical verification mechanism,
which uses historical data to verify real-time data. With the
increase in window size, the algorithm proposed in this
paper has a significant improvement compared with the
traditional algorithm, with the sensitivity increasing from
72.91% to 92.98%. Comparing with the MARS model, the
improvement is up to 2.75%.

As can be seen from Figure 8, with the increase in the
number of windows, the specificity and sensitivity increased
rapidly when the window size is about 30. During the
window size from 10 to 30, the specificity increased by
29.47%, reaching 99.47%, the sensitivity increased by
42.08%, reaching 92.44%, and the delay increased by 93.32%,
reaching 19.92ms. However, when the window size is larger
than 30, the specificity and sensitivity did not change much,
but the delay rate increased to 57.21ms and increased by
187.2%. )erefore, it is an ideal choice to set the window
length to about 30, which can make the average delay less
than 20ms.

5. Conclusions

In the era of big data, traditional detection algorithms cannot
meet the current needs. Based on the characteristics of the
sliding window and the defects of traditional sliding window
inspection, such as high time complexity and high error
detection rate disadvantages, this paper puts forward a kind
of hydrological time series anomaly detection method based
on Flink. By using Flink calculation, this method reduces the
computing time and combines two processes. After cleaning
the data, the sliding window and the ARIMAmodel are used
to forecast on the Flink platform. )en, the confidence
interval is calculated for the predicted result and evaluated it
as an anomaly value outside the interval range. Based on the
detection result, the K-means algorithm is used to cluster the
original data and the state transition probability is
calculated.

Taking the data of hydrologic sensor obtained from the
Chu River as an example of experimental data, experiments
on the detection time and validity of outliers are carried out,
respectively. )e result shows that the million data using 2
slaves cost more time than 1 slave in the calculation time, but
when the tens data are calculated, 2 slaves are better than 1
slave, and the maximum is reduced by 17.43%. )e sensi-
tivity of the evaluation is increased from 72.91% to 92.98%.
In terms of delay, the average delay of different slaves is
roughly the same, which is maintained within 20ms. It

shows that Flink can effectively improve the calculation
efficiency by adding nodes when the method is used to detect
tens of millions of hydrologic data. At the same time, the
sensitivity of the method is significantly improved compared
with the traditional method.

However, there is still room for further improvement in
the detection accuracy of the algorithm proposed in this
paper. )e follow-up work will focus on more accurate
identification of which are outliers and which are normal
fluctuations caused by natural factors.
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