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*is paper studies the improved aggregation operator based on Dombi and its application in multiattribute decision making
(MADM). Firstly, the axiomatic definition of interval-valued hesitant fuzzy elements (IVHFEs) based on Dombi t-norm and t-
conorm is introduced. Secondly, we propose a series of IVHFE aggregation operators (IVHFDWA, IVHFDWG, IVHFDOWA,
IVHFDOWG, IVHFDHA, and IVHFDHG). In order to get the weight information of attributes, based on the basic idea of
traditional distance formula, a distance formula between IVHFEs is constructed, and the optimization model of attribute weight is
established. *en, a case study for selection of information security platform is given to demonstrate the merits of the developed
method. *e parameters of aggregation operator are analyzed in detail, and the critical value of parameters affecting decision
making is given. Finally, this method is compared with other methods, which proves the validity and applicability of this method.

1. Introduction

With the rapid development of information technology and
the popularization of global information technology, en-
terprise information has become the general trend of en-
terprise development. Only by accelerating the construction
process of information technology can enterprises be based
on the increasingly competitive market. In recent years, the
management and implementation of information security
has become the most concerned issue of enterprises due to
the gradual increase of business scale and the substantial
growth of market security products. In addition, data
centralization and business centralization are the trend of
enterprise informatization. Information system not only
brings great convenience to people but also faces the
challenge of information security. Information security risk
detection and assessment is the foundation of information
security system construction and has gradually become an
important means and tool in the field of security manage-
ment. But how to evaluate a reasonable information security
risk assessment is a very difficult thing.

In 1965, Zadeh proposed the fuzzy sets (FSs) [1], which
effectively depicted fuzzy uncertainty in decision making
and achieved great success in various fields. Subsequently,
Atanassov [2–4] proposed more general fuzzy sets, namely,
intuitionistic fuzzy sets (IFSs). In IFSs, membership degree,
nonmembership degree, and hesitation degree are defined,
and membership function is described by these. A series of
achievements have been made in dealing with fuzzy infor-
mation [5–8]. Atanassov and Gargov [9] put forward in-
terval-valued intuitionistic fuzzy sets (IVIFSs) [10]. It uses
interval numbers to express membership and nonmem-
bership, which is another extension of IFSs. In many
practical situations, decision makers (DMs) are usually
hesitant about the decision objects, and it is difficult to
determine the specific values (it is difficult to select the
appropriate value from several possible evaluation values as
the membership degree). In order to express that an element
belongs to a fuzzy concept, there are several possible
membership values. Torra andNarukawa [11] and Torra [12]
proposed hesitant fuzzy sets (HFSs), which allows mem-
bership degree to have some possible values. It can more
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objectively reflect people’s hesitation in decision making and
expand Zadeh’s classical FS theory from a new angle. Its
theory and application have developed rapidly [13–17]. Wan
[18, 19] proposed a hybrid fuzzy decision-making method
based on prospect theory and a new order relation of Py-
thagorean fuzzy numbers (PHNs), which was applied to
decision-making problems. However, in practical MADM
problems, it is difficult for DMS to accurately describe their
opinions with a clear number because of insufficient effective
information, but it can be determined in a certain interval.
Hence, Chen et al. [20] defined interval-valued fuzzy sets
(IVFSs), which is more suitable for solving practical group
decision-making problems [20–23]. As a common gener-
alization of HFSs and IVFSs, Chen [20, 24] proposed in-
terval-valued hesitant fuzzy sets (IVHFSs), which expressed
the possible membership values by multiple interval num-
bers. Wei et al. [25] deeply studied the properties and ap-
plications of IVHFSs. Based on the arithmetic aggregation
method [26–30], Xu [31] and Xu and Yager [32] proposed
some new aggregation operators of IFSs. Wei et al. [23]
proposed some aggregation operators of IVHFEs. Some of
their performances are studied in detail. Zhu et al. [33]
developed the Einstein Choquet ordered averaging operator
and ordered geometric operator of IVHFSs; Liu [34–38]
proposed some methods to solve the MADM problems
based on IVHFSs, IFSs, linguistic term set, and so on. In
addition, the method of multiattribute decision making has
been widely used in many fields [39–42]. Dombi [43]
proposed Dombi t-norm and t-conorm, which has a good
precedence of variability with the operation of parameters.
Jana et al. [44] applied this method in MADM problems and
achieved good application results. He [45] used Dombi
operation to define the aggregation operators and applied
these aggregation operators to aggregate hesitant fuzzy in-
formation for evaluating disasters. In practice, IVHFEs can
better reflect the actual information. Jana et al. [44] extended
the Dombi operator to the picture fuzzy set and proposed the
picture fuzzy Dombi aggregation operators. By using the
flexible property of Dombi operator, Akram et al. [46]
proposed a new aggregation operator, which solved the
problem of MCDM, and demonstrated the practicability of
the method with practical examples. It is a pity that these
extended Dombi operators will be invalid for some MADM
problems with IVHFE. So, it is necessary to extend Dombi
operators to handle MADM problems in IVHFE.

From the above analysis, we can see that IVHFE is a very
useful tool to deal with uncertainty. More and more poly-
merization methods are developed on the basis of IVHFSs.
On the one hand, it is an important task to introduce the
Dombi operator into IVHFEs and study the extended
Dombi t-norm and t-conorm operator. On the other hand,
with the development of more and more research methods
ofMADM, the weight problem is a very important topic.*e
weight value cannot be arbitrary and should be constructed
according to the decision matrix. In other words, it is more
reasonable to give the weight value according to the objective
data. However, there is no detailed discussion of weights in
IVHFSs. In addition, whether Euclidean distance formula
can be used in IVHFEs needs to be studied. *erefore, it is

necessary and meaningful to study some problems. For
example, what is the expression of aggregation operator
based on IVHFEs of extended Dombi t-norm and t-conorm
operator? How to define the distance formula between
IVHFEs? How to construct the calculation formula of the
weight value given by the decision matrix? Or how to build a
model to solve the weight value of experts according to the
objective data.

Based on the above discussion, the goals of the present
work is to investigate Dombi aggregation operators of
IVHFEs that allow DMs to have more choice in MADM
problems. *e main innovations are as follows:

(1) Dombi t-norm and t-conorm are extended to
IVHFS, and a new operational law of IVHFEs is
defined based on the novel extended Dombi t-norm
and t-conorm.

(2) *e general form of some aggregation operators is
given.

(3) *e new distance measure by considering the hes-
itation information is defined, and an optimization
model for solving the optimal attribute weight is
established.

In order to achieve the above goals, the paper is arranged
as follows. In Section 2, we review basic concepts, including
IVHFEs and Dombi t-norm and t-conorm. In Section 3, we
propose a new IVHFE operator, study some Dombi ag-
gregation operators of IVHFEs, and then discuss the rela-
tionship between these operators. In Section 4, we construct
a maximum deviation model to determine the weights of
attributes in IVHFE and take IVHFDHA operator as an
example to give the calculation steps of decision. In Section
5, we provide a numerical example based on hesitant fuzzy
information to show the feasibility of the proposed ap-
proach. To work on the premise of the same fuzzy infor-
mation, different decision approaches are compared and the
influence of parameters on decision-making results is an-
alyzed. *en, for the same example, we compare the method
of this paper with that of other literatures and analyze the
advantages of proposed approach. We summarize the whole
paper in Section 7.

2. Preliminaries

First of all, we give the basic concepts involved in this paper.
*ese basic concepts include IVHFSs, Dombi t-norm and t-
conorm, and so on. Chen [20, 24] first proposed the concept
of IVHFEs, and the definition is given as follows.

Definition 1. Let X be a reference set. An IVHFE on X is
defined as

E � 〈x, hE(x)〉
􏼌􏼌􏼌􏼌 x ∈ X􏽮 􏽯, (1)

where hE(x): X⟶ [0, 1] describes the membership de-
grees of elements in X to a set E.

In equation (1), hi � hE(xi) � ci | ci ∈ hE(xi)􏼈 􏼉 � [cL
i ,􏼈

cU
i ] | ci ∈ hE(xi)} is called the IVHFE, and
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cL
i � inf ci, cU

i � sup ci. *e complement of the IVHFE h

denotes hc � [1 − cU, 1 − cL]􏼈 | c ∈ h}.
In what follows, Σ denotes the set of IVHFEs if not

specific.

Remark 1. Suppose the number of elements in h is lα. *e
assumptions are given as follows.

(1) All the elements in each IVHFE
h � [cL

1 , cU
1 ], [cL

2 , cU
2 ], . . . , [cL

lα
, cU

lα
]􏽮 􏽯 are arranged in

decreasing order, and let [cL
i , cU

i ] be the i-th largest
interval number in h.

(2) If lα ≠ lβ, then l � max(lα, lβ). *e IVHFEs α and β
should have the same length. If there are fewer el-
ements in α than in β, an extension α should be
considered optimistically by repeating its maximum
element until it has the same length with β.

(3) In this paper, we assume that all the IVHFSs have the
same length l.

Definition 2 (see [47]). Let s � [sL, sU] and t � [tL, tU] be
two interval numbers; then,

(1) s � t⟺ sL � tL and sU � tU

(2) s + t � [sL + tL, sU + tU]

(3) ks � [ksL, ksU], k≽ 0

Definition 3 (see [47]). Let s � [sL, sU] and t � [tL, tU] be
two interval numbers and let Ls � sU − sL ≻ 0 and
Lt � tU − tL ≻ 0; then, the degree of possibility of s≽ t is
defined as

p(s≽ t) � max 1 − max
tU − sL

Ls + Lt

, 0􏼨 􏼩, 0􏼨 􏼩. (2)

Definition 4 (see [20]). For an IVHFE α, S(α) � 1/l􏽐l
j�1c

j is
called the score function of α. For two IVHFEs α1 and α2, if
S(α1)≥ S(α2), then α1 ≥ α2.

Definition 5 (see [48]). Let a, b ∈ [0, 1]; the Dombi t-norm
and t-conorm are defined as follows:

TD,λ(a, b) �
1

1 + ((1 − a)/a)λ +((1 − b)/b)λ􏼐 􏼑
1/λ,

T
∗
D,λ(a, b) � 1 −

1

1 + (a/(1 − a))λ +(b/(1 − b))λ􏼐 􏼑
1/λ,

(3)

where λ ∈ R and λ ∈ (0, +∞).
Based on the above basic concepts [49–51], we define

some new Dombi operations for IVHFEs.

Definition 6. For any given two IVHFEs
hi � [cL

i , cU
i ] | ci ∈ hE(xi)i � 1, 2􏼈 􏼉 and λ> 0, the Dombi

operation for IVHFEs is defined as follows:

(1) h1 ⊕ h2 � ∪[cL
1 ,cU

1 ]∈ h1, [cL
2 , cU

2 ] ∈h2 [1 − (1/1 + ((cL
1 /􏼈

(1 − cL
1))λ + (cL

2 /(1 − cL
2))λ)1/λ), 1 − (1/1 + ((cU

1 /(1
− cU

1 ))λ + (cU
2 /(1 − cU

2 ))λ)1/λ)]}

(2) h1 ⊗ h2 � ∪[cL
1 ,cU

1 ]∈h1 ,[cL
2 ,cU

2 ]∈h2
[1/1 + (((1 − cL

1)/cL
1)λ􏽮

+((1 − cL
2)/cL

2)λ)1/λ, 1/1 + (((1 − cU
1 )/cU

1 )λ + (1 − cU
2 /

cL
2)λ)1/λ]}

(3) δh �∪[cL,cU] [1 − (1/1+ (δ(cL/(1 − cL)))1/λ),1 − (1/􏽮

1+ (δ(cU/(1 − cU)))1/λ)]}

(4) hδ � ∪[cL,cU] [1/1 + (δ((1 − cL)/cL))1/λ, 1/1 + (δ((1􏽮

− cU)/cU))1/λ]}

In what follows, for convenience, let θL
i � (cL

i /(1 − cL
i ))λ,

θU
i � (cU

i /(1 − cU
i ))λ, ρL

i � ((1 − cL
i )/cL

i )λ, ρU
i � ((1 − cU

i )/
cU

i )λ, i � 1, . . . , n.

Theorem 1. Let h1, h2, and h3 be three IVHFEs; for all
δ ∈ R+, the following results hold:

(1) h1 ⊕ (h2 ⊕ h3) � (h1 ⊕ h2)⊕ h3

(2) h1 ⊗ (h2 ⊗ h3) � (h1 ⊗ h2)⊗ h3

(3) δ(h1 ⊗ h2) � δh1 ⊗ δh2

(4) (h1 ⊗ h2)
δ � hδ

1 ⊗ hδ
2

It is to verify the above operation laws hold according to
Definition 6. So, the proofs are omitted here.

3. Interval-Valued Hesitant Fuzzy Dombi
Aggregation Operators

In this section, we will study a series of Dombi aggregation
operators of IVHFEs, such as interval-valued hesitant fuzzy
Dombi weighted averaging (IVHFDWA), interval-valued
hesitant fuzzy Dombi ordered weighted averaging (IVHF-
DOWA), interval-valued hesitant fuzzy Dombi weighted
geometric (IVHFDWG), interval-valued hesitant fuzzy
Dombi ordered weighted geometric (IVHFDOWG), inter-
val-valued hesitant fuzzy Dombi hybrid averaging
(IVHFDHA), and interval-valued hesitant fuzzy Dombi
hybrid geometric (IVHFDHG) operators. We give the
definitions and theorems of various aggregation operators in
detail and prove some aggregation operators.

Definition 7. Let hj ∈ Σ � [cL
j , cU

j ] | cj ∈ hE(xj), j � 1, . . . ,􏽮

n}. An IVHFDWA operator is a function from Σn to Σ and
defined as follows:

IVHFDWA h1, h2, . . . , hn( 􏼁 � ⊕
n

j�1
wjhj􏼐 􏼑

� w1h1 ⊕w2h2 ⊕ , . . . , ⊕wnhn,

(4)

where wj is the weight of hj(j � 1, . . . , n), 0≺wj ≺ 1 and
􏽐

n
j�1wj � 1.

Theorem 2. Let hj ∈ Σ, (j � 1, . . . , n); then,
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IVHFDWA h1, . . . , hn( 􏼁 � ⊕
n

j�1
wjhj􏼐 􏼑

� ∪
cL
1 ,cU

1[ ]∈h1,..., cL
n ,cU

n[ ]∈hn

1 −
1

1 + 􏽐
n
j�1wjθ

L
j􏼐 􏼑

1/λ, 1 −
1

1 + 􏽐
n
j�1wjθ

U
j􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(5)

where wj is the weight of hj(j � 1, . . . , n), 0≺w≺ 1 and
􏽐

n
j�1wj � 1.

Proof. *is theorem will be proved by mathematical
induction.

(1) When n � 2,

w1h1 � ∪
cL
1 ,cU

1[ ]∈h1

1 −
1

1 + w1θ
L
1􏼐 􏼑

1/λ, 1 −
1

1 + w1θ
U
1􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

w2h2 � ∪
cL
2 ,cU

2[ ]∈h2

1 −
1

1 + w1θ
L
2􏼐 􏼑

1/λ, 1 −
1

1 + w2θ
U
2􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(6)

*en,

w1h1 ⊕w2h2 � ∪
cL
1 ,cU

1[ ]∈h1 , cL
2 ,cU

2[ ]∈h2

1 −
1

1 + 1 − 1/ 1 + w1θ
L
1􏼐 􏼑

1/λ
􏼒 􏼓􏼒 􏼓/1 − 1 + 1/1 + w1θ

L
1􏼐 􏼑

1/λ
􏼒 􏼓􏼒 􏼓

λ
+ 1 − 1/1 + w2θ

L
2􏼐 􏼑

1/λ
􏼒 􏼓/1 − 1 + 1/ 1 + w2θ

L
2􏼐 􏼑

1/λ
􏼒 􏼓􏼒 􏼓􏼒 􏼓

λ
􏼠 􏼡

1/λ,

1 −
1

1 + 1 − 1/ 1 + w1θ
U
1􏼐 􏼑

1/λ
􏼒 􏼓􏼒 􏼓/ 1 − 1 + 1/ 1 + w1θ

U
1􏼐 􏼑

1/λ
􏼒 􏼓􏼒 􏼓􏼒 􏼓􏼒 􏼓

λ
+ 1 − 1/1 + w2θ

U
2􏼐 􏼑

1/λ
􏼒 􏼓􏼒 􏼓/ 1 − 1 + 1/1 + w2θ

U
2􏼐 􏼑

1/λ
􏼒 􏼓􏼒 􏼓􏼒 􏼓

λ
􏼠 􏼡

1/λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� ∪
cL
1 ,cU

1[ ]∈h1 , cL
2 ,cU

2[ ]∈h2

1 −
1

1 + w1θ
L
1􏼐 􏼑

1/λ
+ w2θ

L
2􏼐 􏼑

1/λ
􏼒 􏼓

λ
􏼠 􏼡

1/λ, 1 −
1

1 + w1θ
U
1􏼐 􏼑

1/λ
+ w2θ

U
2􏼐 􏼑

1/λ
􏼒 􏼓

λ
􏼠 􏼡

1/λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� ∪
cL
1 ,cU

1[ ]∈h1 , cL
2 ,cU

2[ ]∈h2

1 −
1

1 + w1θ
L
1 + w2θ

L
2􏼐 􏼑

1/λ, 1 −
1

1 + w1θ
L
1 + w2θ

U
2􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(7)

Presume *eorem 2 holds for n � k, i.e.,

⊕
k

j�1
wjhj􏼐 􏼑 � ∪

cL
1 ,cU

1[ ]∈h1 ,..., cL
n ,cU

n[ ]∈hn

� 1 −
1

1 + 􏽐
k
j�1wjθ

L
j􏼐 􏼑

1/λ, 1 −
1

1 + 􏽐
k
j�1wjθ

U
j􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (8)

and when n � k + 1, we have
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⊕
k+1

j�1
wjhj􏼐 􏼑 � ⊕

k

j�1
wjhj􏼐 􏼑⊕ wk+1hk+1( 􏼁

� ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
k
,cU

k[ ]∈hk

1 −
1

1 + 􏽐
k
j�1wjθ

L
j􏼐 􏼑

1/λ, 1 −
1

1 + 􏽐
k
j�1wjθ

U
j􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⊕ ∪
cL

k+1 ,cU
k+1[ ]∈hk+1

1 −
1

1 + wk+1θ
L
k+1􏼐 􏼑

1/λ, 1 −
1

1 + wk+1θ
U
k+1􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
k+1 ,cU

k+1[ ]∈hk+1

1 −
1

1 + 􏽐
k+1
j�1wjθ

L
j􏼐 􏼑

1/λ, 1 −
1

1 + 􏽐
k+1
j�1wjθ

U
j􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(9)

So, *eorem 2 holds for all n; then,

IVHFDWA h1, . . . , hn( 􏼁 � ⊕
n

j�1
wjhj􏼐 􏼑 � ∪

cL
1 ,cU

1[ ]∈h1 ,..., cL
n ,cU

n[ ]∈hn

1 −
1

1 + 􏽐
n
j�1wjθ

L
j􏼐 􏼑

1/λ, 1 −
1

1 + 􏽐
n
j�1wjθ

U
j􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (10)

*e following theorem can be obtained. □

Theorem 3. Let hj ∈ Σ, (j � 1, . . . , n); if all hj(j � 1, . . . , n)

are equal, then IVHFDWA(h1, h2, . . . , hn) � h.

Proof. Assume that hj � h for all j � 1, . . . , n. *en, by
equation (5) and 􏽐

n
j�1wj � 1, we have

IVHFDWA h1, . . . , hn( 􏼁 � w1h1 ⊕ , . . . , ⊕wnhn

� ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
n ,cU

n[ ]∈hn

1 −
1

1 + 􏽐
n
j�1wjθ

L
j􏼐 􏼑

1/λ, 1 −
1

1 + 􏽐
n
j�1wjθ

U
j􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
n ,cU

n[ ]∈hn

1 −
1

1 + θL
j􏼐 􏼑

1/λ, 1 −
1

1 + θU
j􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� 1 −
1

1 + cL
j / 1 − cL

j􏼐 􏼑􏼐 􏼑
λ

􏼒 􏼓
1/λ, 1 −

1

1 + cU
j / 1 − cU

j􏼐 􏼑􏼐 􏼑
λ

􏼒 􏼓
1/λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

� c
L
j , c

U
j􏽨 􏽩􏽮 􏽯 � h.

(11)

□
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Example 1. Let h1 � [0.5, 0.6]{ }, h2 � [0.2, 0.3], [0.4, 0.5]{ },
h3 � [0.1, 0.2]{ }, and w � (0.25, 0.35, 0.4). When (λ � 1), we
have

IVHFDWA h1, h2, h3( 􏼁 � w1h1 ⊕w2h2 ⊕w3h3

� ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
3 ,cU

3[ ]∈h3

1 −
1

1 + 􏽐
3
j�1wjθ

L
j􏼐 􏼑

1/λ, 1 −
1

1 + 􏽐
3
j�1wjθ

U
j􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
3 ,cU

3[ ]∈h3

1 −
1

1 + 􏽐
3
j�1wjθ

L
j􏼐 􏼑

1/λ, 1 −
1

1 + 􏽐
3
j�1wjθ

U
j􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� [a, b], [c, d]{ }

� [0.2764, 0.3846], [0.3455, 0.4521]{ },

(12)

where

a � 1 −
1

1 +(0.25 ×(0.5/(1 − 0.5)) + 0.35 ×(0.2/(1 − 0.2)) + 0.4 ×(0.1/(1 − 0.1)))
,

b � 1 −
1

1 +(0.25 ×(0.6/(1 − 0.6)) + 0.35 ×(0.3/(1 − 0.3)) + 0.4 ×(0.2/(1 − 0.2)))
,

c � 1 −
1

1 +(0.25 ×(0.5/(1 − 0.5)) + 0.35 ×(0.4/(1 − 0.4)) + 0.4 ×(0.1/(1 − 0.1)))
,

d � 1 −
1

1 +(0.25 ×(0.6/(1 − 0.6)) + 0.35 ×(0.5/(1 − 0.5)) + 0.4 ×(0.2/(1 − 0.2)))
.

(13)

We have analyzed the parameter λ, and the results are
shown in Table 1.

Definition 8. Let hj ∈ Σ, (j � 1, . . . , n); an IVHFDWG op-
erator is defined as follows:

IVHFDWG h1, . . . , hn( 􏼁 � ⊗
n

j�1
h

wj

j􏼐 􏼑

� ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
n ,cU

n[ ]∈hn

1

1 + 􏽐
n
j�1wjρL

j􏼐 􏼑
1/λ,

1

1 + 􏽐
n
j�1wjρU

j􏼐 􏼑
1/λ

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(14)

where wj is the weight of hj(j � 1, . . . , n), 0≺wj ≺ 1, and
􏽐

n
j�1wj � 1.

Theorem 4. Let hj ∈ Σ, (j � 1, . . . , n); then,

IVHFDWG h1, . . . , hn( 􏼁 � ⊗
n

j�1
h

wj

j􏼐 􏼑

� ∪
cL
1 ,cU

1[ ]∈h1,..., cL
n ,cU

n[ ]∈hn

1

1 + 􏽐
n
j�1wjρL

j􏼐 􏼑
1/λ,

1

1 + 􏽐
n
j�1wjρU

j􏼐 􏼑
1/λ

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(15)

where wj is the weight of hj(j � 1, . . . , n), 0≺wj ≺ 1, and
􏽐

n
j�1wj � 1.

Proof. We can prove*eorem 4 by mathematical induction.
(1) Presume n � 2, since

h
w1
1 � ∪

cL
1 ,cU

1[ ]∈h1

1
1 + w1ρL

1( 􏼁
1/λ,

1

1 + w1ρU
1( 􏼁

1/λ
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭,

h
w2
2 � ∪

cL
2 ,cU

2[ ]∈h2

1
1 + w1ρL

2( 􏼁
1/λ,

1

1 + w2ρU
2( 􏼁

1/λ
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭.

(16)

*en,
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w1h1 ⊗w2h2 � ∪
cL
1 ,cU

1[ ]∈h1, cL
2 ,cU

2[ ]∈h2

1

1 + 1 − 1/1 + w1ρL
1( 􏼁

1/λ
􏼐 􏼑􏼐 􏼑/ 1/ 1 + w1ρL

1( 􏼁
1/λ

􏼐 􏼑􏼐 􏼑􏼐 􏼑
λ

+ 1 − 1/ 1 + w2ρL
2( 􏼁

1/λ
􏼐 􏼑􏼐 􏼑􏼐 􏼑/ 1/1 + w2ρL

2( 􏼁
1/λ

􏼐 􏼑􏼐 􏼑
λ

􏼒 􏼓
1/λ,

1

1 + 1 − 1/ 1 + w1ρU
1( 􏼁

1/λ
􏼒 􏼓􏼒 􏼓􏼒 􏼓/ 1/ 1 + w1ρU

1( 􏼁
1/λ

􏼒 􏼓􏼒 􏼓􏼒 􏼓
λ

+ 1 − 1/ 1 + w2ρU
2( 􏼁

1/λ
􏼒 􏼓􏼒 􏼓􏼒 􏼓/ 1/ 1 + w2ρU

2( 􏼁
1/λ

􏼒 􏼓􏼒 􏼓􏼒 􏼓
λ

􏼠 􏼡

1/λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� ∪
cL
1 ,cU

1[ ]∈h1, cL
2 ,cU

2[ ]∈h2

1

1 + w1ρL
1( 􏼁

1/λ
+ w2ρL

2( 􏼁
1/λ

􏼐 􏼑
λ

􏼒 􏼓
1/λ,

1

1 + w1ρU
1( 􏼁

1/λ
+ w2ρU

2( 􏼁
1/λ

􏼒 􏼓
λ

􏼠 􏼡

1/λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� ∪
cL
1 ,cU

1[ ]∈h1, cL
2 ,cU

2[ ]∈h2

1

1 + w1ρL
1 + w2ρL

2( 􏼁
1/λ,

1

1 + w1ρU
1 + w2ρU

2( 􏼁
1/λ

⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭.

(17)

Presume *eorem 5 holds for n � k, i.e.,

⊗
k

j�1
h

wj

j􏼐 􏼑 � ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
n ,cU

n[ ]∈hn

1

1 + 􏽐
k
j�1wjρL

j􏼐 􏼑
1/λ,

1

1 + 􏽐
k
j�1wjρU

j􏼐 􏼑
1/λ

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (18)

and when n � k + 1, we have

⊗
k+1

j�1
h

wj

j􏼐 􏼑 � ⊗
k

j�1
h

wj

j􏼐 􏼑⊗ h
wk+1
k+1􏼐 􏼑

� ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
k
,cU

k[ ]∈hk

1

1 + 􏽐
k
j�1wjρL

j􏼐 􏼑
1/λ,

1

1 + 􏽐
k
j�1wjρU

j􏼐 􏼑
1/λ

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⊗ ∪

cL
k+1,cU

k+1[ ]∈hk+1

1

1 + wk+1ρL
k+1􏼐 􏼑

1/λ,
1

1 + wk+1ρU
k+1􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
k+1 ,cU

k+1[ ]∈hk+1

1

1 + 􏽐
k+1
j�1wjρL

j􏼐 􏼑
1/λ,

1

1 + 􏽐
k+1
j�1wjρU

j􏼐 􏼑
1/λ

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(19)

*us, equation (16) holds for all n; then,

IVHFDWG h1, . . . , hn( 􏼁 � ⊗
n

j�1
h

wj

j􏼐 􏼑 � ∪
cL
1 ,cU

1[ ]∈h1 ,..., cL
n ,cU

n[ ]∈hn

1

1 + 􏽐
n
j�1wjρL

j􏼐 􏼑
1/λ,

1

1 + 􏽐
n
j�1wjρU

j􏼐 􏼑
1/λ

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (20)

□

Table 1: Aggregated results based on IVHFDWA operator.

λ IVHFDWA operator
0.5 [0.2377, 0.3509], [0.3093, 0.4230]{ }

5 [0.4312, 0.5322], [0.4394, 0.5404]{ }

10 [0.4654, 0.5663], [0.4660, 0.5669]{ }

50 [0.4931, 0.5933]{ }

100 [0.4965, 0.5967]{ }
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Example 2. Let IVHFEs h1 � [0.55, 0.65], [0.74, 0.86]{ }, h2 �

[0.27, 0.34], [0.46, 0.55], [0.64, 0.71]{ }, h3 � [0.15, 0.21],{

[0.34, 0.41]}, and w � (0.35, 0.25, 0.4). We have analyzed the
parameter λ, and the results are shown in Table 2.

Yager [52] proposed ordered weighted averaging
(OWA) operator. Similarly, we will propose ordered
weighted averaging operator in IVHFE.

Definition 9. Let hj ∈ Σ, (j � 1, . . . , n). *en, IVHFDOWA
and IVHFDOWG are defined.

IVHFDOWA h1, . . . , hn( 􏼁 � ⊕
n

j�1
wjhσ(j)􏼐 􏼑,

IVHFDOWG h1, . . . , hn( 􏼁 � ⊗
n

j�1
h

wj

σ(j)􏼒 􏼓,

(21)

where hσ(j) is the j-th largest of hj, wj is the weight of
hj(j � 1, . . . , n), 0≺wj ≺ 1, and 􏽐

n
j�1wj � 1.

Theorem 5. Let hj ∈ Σ, (j � 1, . . . , n); then,

IVHFDOWA h1, . . . , hn( 􏼁

� ∪
cL
σ(1)

,cU
σ(1)

􏽨 􏽩∈hσ(1) ,..., cL
σ(n)

,cU
σ(n)

􏽨 􏽩∈hσ(n)

1 −
1

1 + 􏽐
n
j�1wjθ

L
σ(j)􏼐 􏼑

1/λ, 1 −
1

1 + 􏽐
n
j�1wjθ

U
σ(j)􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(22)

IVHFDOWG h1, . . . , hn( 􏼁

� ∪
cL
σ(1)

,cU
σ(1)

􏽨 􏽩∈hσ(1) ,..., cL
σ(n)

,cU
σ(n)

􏽨 􏽩∈hσ(n)

1

1 + 􏽐
n
j�1wjρL

σ(j)􏼒 􏼓
1/λ,

1

1 + 􏽐
n
j�1wjρU

σ(j)􏼒 􏼓
1/λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,
(23)

where hσ(j) is the j-th largest of hj, 0≺wj ≺ 1, and
􏽐

n
j�1wj � 1.

In equations (22) and (23), θL
σ(j) � (cL

σ(j)/(1 − cL
σ(j)))

λ,
θU
σ(j) � (cU

σ(j)/(1 − cU
σ(j)))

λ, ρL
σ(j) � ((1 − cL

σ(j))/c
L
σ(j))

λ,
ρU
σ(j) � ((1 − cU

σ(j))/c
U
σ(j))

λ, j � 1, . . . , n.

Example 3. Let h1 � [0.1, 0.3], [0.4, 0.5]{ }, h2 � [0.3,{

0.4], [0.4, 0.6], [0.5, 0.7]}, h3 � [0.1, 0.2], [0.3, 0.41]{ }, and
w � (0.5, 0.35, 0.4). According to Definition 3 and Defini-
tion 4, we can get the sorting results of h1, h2, and h3. We
have

hσ(1) � h2,

hσ(2) � h1,

hσ(3) � h3.

(24)

According to equations (22) and (23), we analyze the
influence of parameter λ on IVHFDOWA and IVHFDOWG
operators. *e results are shown in Tables 3 and 4.

From the definition of IVHFDWA and IVHFDWG
operators, it can be seen that only considering the ordered
position of IVHFEs is too simple to reflect the hesitation
fuzzy information, especially the deep-seated relationship
between IVHFEs. In order to better aggregate IVHFEs,
inspired by Dombi aggregation operator, we construct a
mixed interval valued hesitant fuzzy Dombi aggregation
operator.

Definition 10. Let hj ∈ Σ, (j � 1, . . . , n). *e IVHFDHA
and IVHFDHG operators are defined as follows.

IVHFDHA h1, . . . , hn( 􏼁 � ⊕
n

j�1
wj

_hσ(j)􏼐 􏼑 � w1
_hσ(1) ⊕w2

_hσ(2) ⊕ , . . . , ⊕wn
_hσ(n), (25)

IVHFDHG h1, . . . , hn( 􏼁 � ⊗
n

j�1
€h

wj

σ(j)􏼐 􏼑 � €h
w1
σ(1) ⊗ €h

w2
σ(2) ⊗ , . . . , ⊗ €h

wn

σ(n). (26)

In equations (25) and (26), hσ(j) is the j-th largest of hj, wj

is the weight of hj(j � 1, . . . , n), 0≺wj ≺ 1, and 􏽐
n
j�1wj � 1.

_hσ(j) is the j-th largest of _hs � nϖshs, (s � 1, . . . , n), €hσ(j) is the
j-th largest of €hs � h

nϖs
s , (s � 1, . . . , n), ϖ � (ϖ1,ϖ2, . . . ,ϖn)

is the associated weight vector of the aggregated documents,
0≺ϖj ≺ 1, and 􏽐

n
j�1ϖj � 1.

Theorem 6. Let hj ∈ Σ and w � (w1, w2, . . . , wn); then,
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IVHFDHA h1, . . . , hn( 􏼁

� ∪
_cL
σ(1)

, _cU
σ(1)􏽨 􏽩∈ _hσ(1) ,..., _cL

σ(n)
, _cU

σ(n)􏽨 􏽩∈ _hσ(n)

1 −
1

1 + 􏽐
n
j�1wj

_θ
L

σ(j)􏼒 􏼓
1/λ, 1 −

1

1 + 􏽐
n
j�1wj

_θ
U

σ(j)􏼒 􏼓
1/λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,
(27)

IVHFDHG h1, . . . , hn( 􏼁

� ∪
€cL
σ(1)

,€cU
σ(1)􏽨 􏽩∈€hσ(1) ,..., €cL

σ(n)
,€cU

σ(n)􏽨 􏽩∈€hσ(n)

1

1 + 􏽐
n
j�1wj€ρ

L
σ(j)􏼐 􏼑

1/λ,
1

1 + 􏽐
n
j�1wj€ρ

U
σ(j)􏼐 􏼑

1/λ
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (28)

In equations (27) and (28), _θ
L

σ(j) � ( _cL
σ(j)/(1 − _cL

σ(j)))
λ,

_θ
U

σ(j) � ( _cU
σ(j)/(1 − _cU

σ(j)))
λ, €ρL

σ(j) � ((1 − €cL
σσ(j))/€c

L
σ(j))

λ,
€ρU
σ(j) � ((1 − €cU

σ(j))/€c
U
σ(j))

λ, j � 1, . . . , n.

Example 4. Let h1 � [0.1, 0.3], [0.4, 0.5]{ }, h2 � [0.3, 0.4],{

[0.4, 0.6], [0.5, 0.7]}, h3 � [0.1, 0.2], [0.3, 0.41]{ }, ϖ � (0.25,

0.4, 0.35) be the associated weight vector, and
w � (0.4, 0.35, 0.25) be the weight vector of these three
IVHFEs. We analyze the influence of parameter λ on

IVHFDHA and IVHFDHG operators.*e results are shown
in Tables 5 and 6, respectively.

4. Novel MADM Method with Unknown
Weight Information

4.1. MADM Problem. We propose a novel method to deal
with MADM problems. Let Y � Y1, Y2, . . . , Ym􏼈 􏼉 be a col-
lection of alternatives and C � C1, . . . , Cn􏼈 􏼉 be a set of

Table 2: Aggregated IVHFEs based on IVHFDWG operator.

λ IVHFDWG operator

0.5 [0.2617, 0.344], [0.2884, 0.3844], [0.2967, 0.3869], [0.3204, 0.4129], [0.3283, 0.4335], [0.3553, 0.4593], [0.3772, 0.4631], [0.4197,
0.5156], [0.4328, 0.5189], [0.4702, 0.5544], [0.4825, 0.5822], [0.5244, 0.6212]

5 [0.1744, 0.2412], [0.1745, 0.2412], [0.1749, 0.242], [0.3162, 0.3899], [0.3163, 0.39], [0.3794, 0.4528], [0.3799, 0.4531], [0.3816, 0.4546],
[0.3822, 0.4549]

10 [0.1621, 0.2256], [0.297, 0.37], [0.3608, 0.4323], [0.3609, 0.4323]
50 [0.1524, 0.2131], [0.2755, 0.3462], [0.3441, 0.4144]
100 [0.1512, 0.2115], [0.2727, 0.3431], [0.3421, 0.4122]

Table 3: *e influence of parameter λ on IVHFDOWA operator.

λ IVHFDOWA operator

0.5 [0.1461, 0.2862], [0.1710, 0.3509], [0.2000, 0.3625], [0.2272, 0.3660], [0.2534, 0.3968], [0.2535, 0.4230], [0.2798, 0.4262], [0.2832,
0.4368], [0.3093, 0.4648], [0.336, 0.4678], [0.3611, 0.4913], [0.3888, 0.5284]

5 [0.2453, 0.3425], [0.2822, 0.3822], [0.3357, 0.4522], [0.3429, 0.4585], [0.3543, 0.5322], [0.3593, 0.5335], [0.3758, 0.5404], [0.3791,
0.5416], [0.4311, 0.6388], [0.4322, 0.6389], [0.4394, 0.6397], [0.4404, 0.6398]

10 [0.2717, 0.3676], [0.2910, 0.3899], [0.3672, 0.4741], [0.3677, 0.4746], [0.3753, 0.5663], [0.3756, 0.5663], [0.3878, 0.5669], [0.3880,
0.5669], [0.4654, 0.6701], [0.4660, 0.6701]

50 [0.2942, 0.3934], [0.2982, 0.3979], [0.3934, 0.4948], [0.3950, 0.5933], [0.3976, 0.5933], [0.4931, 0.6941]
100 [0.2971, 0.3967], [0.3967, 0.4974], [0.3975, 0.5967], [0.3988, 0.5967], [0.4965, 0.6971]

Table 4: *e influence of parameter λ on IVHFDOWG operator.

λ IVHFDOWG operator

0.5 [0.1394, 0.2783], [0.1502, 0.3138], [0.1590, 0.3171], [0.1936, 0.3343], [0.2108, 0.3592], [0.2177, 0.3716], [0.2250, 0.3793], [0.2379,
0.4227], [0.2546, 0.4274], [0.3218, 0.4521], [0.3557, 0.4873], [0.3838, 0.5157]

5 [0.1080, 0.2293], [0.1177, 0.2307], [0.1278, 0.3482], [0.3107, 0.4118], [0.3330, 0.4401], [0.3363, 0.4407]
10 [0.1039, 0.2150], [0.1086, 0.2151], [0.1132, 0.3291], [0.3060, 0.4068], [0.3192, 0.4219], [0.3194, 0.4219]
50 [0.1008, 0.2029], [0.1017, 0.2029], [0.1025, 0.3059], [0.3012, 0.4014], [0.3039, 0.4044]
100 [0.1004, 0.2015], [0.1008, 0.2015], [0.1013, 0.3029], [0.3006, 0.4007], [0.3019, 0.4022]
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attributes whose weights are w1, w2, . . . , wn, respectively.
*e decision matrix is constructed H � (hij)m×n. In what
follows, we will build a new decision approach for the
MADM problems under interval-valued intuitionistic hes-
itant fuzzy information and the weight of attributes is
completely unknown or partly unknown.

4.2. Determination of Multiple Attribute Weights Based on
Maximum Deviation Method. *e determination of attri-
bute weight is a key issue in DM process. We define a more
reasonable distance formula and construct the maximum
deviation model [53] considering that the weight infor-
mation is partially known or completely unknown in
IVHFE. In different cases, the weights of attributes are
obtained by solving the model.

*e main idea of this method is as follows: from the
perspective of scheme ranking, if the deviation between the
evaluation values of all schemes under an attribute is large, it
shows that the attribute occupies an important position in
the scheme ranking, so the attribute should be given a larger
weight value. Similarly, if the deviation between the eval-
uation values of all schemes is small under a certain attribute,
the attribute should be given a smaller weight value.

However, in practice, decision makers usually have
different preferences for different distance measurements.
*erefore, the distancemeasure with preference information
between any two IVHFEs can be defined. For any two
IVHFEs, the generalized interval hesitation fuzzy distance
(IVHFD) can be defined as follows.

In real life, DMs have different preferences. DMs must
consider all information, including these preferences. How
to define the distance measurement formula with preference
information becomes particularly important. For any two
IVHFEs, the generalized IVHFD can be defined as follows.

Definition 11. For any given IVHFEs h1 � [(cL
1)x,􏼈

(cU
1 )x] | x � 1, 2, . . . , l} and h2 � [(cL

2)x, (cU
2 )x] | x �􏼈

1, 2, . . . , l}, the generalized interval hesitation fuzzy distance
of h1 and h2 can be defined as

d h1, h2( 􏼁 � (1 − p)
1
2l

􏽘

l

x�1
c

L
1􏼐 􏼑

x
− c

L
2􏼐 􏼑

x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
t

+ c
U
1􏼐 􏼑

x
− c

U
2􏼐 􏼑

x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
t

􏼒 􏼓
⎧⎨

⎩

⎫⎬

⎭

1/t

+p
1
2l

􏽘
l

x�1
1 − c

L
1􏼐 􏼑

x
− c

L
2􏼐 􏼑

x
􏼐 􏼑 − 1 − c

U
1􏼐 􏼑

x
− c

U
2􏼐 􏼑

x
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
t⎧⎨

⎩

⎫⎬

⎭

1/t

,

(29)

where t> 0 and 0≺p≺ 1, l is the number of interval
numbers, [(cL

1)x, (cU
1 )x] ∈ h1, and [(cL

2)x, (cU
2 )x] ∈ h2.

We can control parameters t and p to reflect the different
preferences of DMs in equation (29). When t � 2 and p � 0,
the IVHFD will reduce to Euclidean distance.

Let h1 and h2 be two IVHFEs. It is easy to verify that the
generalized IVHFD d satisfies the following properties:

(1) d(h1, h2)≽ 0
(2) d(h1, h2) � d(h2, h1)

(3) d(h1, h2) � 0⟺ h1 � h2

Case 1. Weight information of attributes is completely
unknown.

Now, the IVHFD is used to measure the deviation be-
tween attributes Cj of the scheme and all other schemes Yi.

Dij(w) � 􏽘
m

k�1
wjd hij, hkj􏼐 􏼑, i � 1, . . . , m, j � 1, . . . , n,

(30)

where hij and hkj are two interval hesitant fuzzy numbers
and [(cL

ij)x, (cU
ij)x] and [(cL

kj)x, (cU
kj)x] are interval numbers

of h1 and h2.
Total deviation between all schemes and other schemes

under attributes cj:

Table 5: Aggregated IVHFEs based on IVHFDHA operator.

λ IVHFDHA operator

0.5 [0.1931, 0.3257], [0.2432, 0.4425], [0.2476, 0.3771], [0.2751, 0.3817], [0.2978, 0.4869], [0.3002, 0.5178], [0.3249, 0.4907], [0.3291,
0.4301], [0.3534, 0.5562], [0.3771, 0.5313], [0.3794, 0.5595], [0.4287, 0.5942]

5 [0.2702, 0.3682], [0.2877, 0.3876], [0.3461, 0.4442], [0.3500, 0.4491], [0.3653, 0.5644], [0.3681, 0.5648], [0.3858, 0.5677], [0.3876,
0.5682], [0.4634, 0.6683], [0.4638, 0.6684], [0.4668, 0.6686], [0.4672, 0.6687]

10 [0.2848, 0.3827], [0.2938, 0.3930], [0.3689, 0.4674], [0.3692, 0.4678], [0.3825, 0.5823], [0.3929, 0.5825], [0.4817, 0.6844], [0.4819,
0.6844]

50 [0.2969, 0.3965], [0.2988, 0.3986], [0.3936, 0.4933], [0.3965, 0.5965], [0.3986, 0.5965], [0.4963, 0.6969]
100 [0.2985, 0.3982], [0.2994, 0.3993], [0.3968, 0.4967], [0.3982, 0.5982], [0.3993, 0.5982], [0.4982, 0.6985]

Table 6: Aggregated IVHFEs based on IVHFDHG operator.

λ IVHFDHG operator

0.5 [0.1269, 0.2816], [0.1358, 0.3190], [0.143, 0.3355], [0.1622, 0.3338], [0.1749, 0.3803], [0.1853, 0.4008], [0.2369, 0.3539], [0.2584,
0.4038], [0.2761, 0.4259], [0.324, 0.4236], [0.3565, 0.4850], [0.3832, 0.5119]

5 [0.1065, 0.2449], [0.1065, 0.2452], [0.1146, 0.2494], [0.1289, 0.3274], [0.129, 0.3305], [0.3203, 0.4221], [0.3491, 0.4581], [0.3538, 0.4589]
10 [0.1032, 0.2238], [0.1071, 0.2240], [0.1137, 0.3159], [0.1137, 0.3161], [0.3117, 0.4132], [0.3301, 0.4341]
50 [0.1006, 0.2046], [0.1014, 0.2046], [0.1026, 0.3032], [0.3024, 0.4027], [0.3061, 0.4069]
100 [0.1003, 0.2023], [0.1007, 0.2023], [0.1013, 0.3016], [0.3012, 0.4013], [0.3030, 0.4034]
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Dj(w) � 􏽘
m

i�1
Dij(w) � 􏽘

m

i�1
􏽘

m

k�1
wjd hij, hkj􏼐 􏼑, j � 1, . . . , n.

(31)

Based on the above discussion, we take the maximum
total deviation between each scheme and other schemes as
the objective function to establish an optimization model. In
other words,

Max D(w) � 􏽐
n

j�1
􏽐
m

i�1
􏽐
m

k�1
wjd hij, hkj􏼐 􏼑

s.t. 􏽐
n

j�1
wj􏼐 􏼑

2
� 1, wj ≥ 0, j � 1, . . . , n.

(32)

We can use the Lagrange multiplier method to solve the
above mathematical model:

wj �
􏽐

m
i�1􏽐

m
k�1d hij, hkj􏼐 􏼑

������������������������

􏽐
n
j�1 􏽐

m
i�1􏽐

m
k�1wjd hij, hkj􏼐 􏼑􏼐 􏼑

2
􏽱 . (33)

At the same time, the standardized attribute weight
values can be obtained as follows:

w
∗
j �

wj

􏽐
n
j�1wj

, j � 1, . . . , n. (34)

Case 2. Weight information of attributes is partly known.
If the attribute weight is not completely unknown but

partly known and if Δ represents part of the known attribute
weight information, the attribute weight value can be ob-
tained by solving the following optimization model:

Max D(w) � 􏽐
n

j�1
􏽐
m

i�1
􏽐
m

k�1
wjd hij, hkj􏼐 􏼑

s.t. w ∈△.

(35)

4.3. Novel MADMMethod Based on the Proposed Operators.
*en, the details of the novel method are described based on
IVHFDHA operator as follows:

Step 1: standardized decision matrix.
In the real decision-making process, the interval-valued
hesitation fuzzy number provided by the decision
maker is disordered, and the number of interval
numbers may be different (some decision makers do
not give a decision). First of all, we rank all elements in
interval-valued hesitation fuzzy number in an in-
creasing way. *en, we repeatedly add the largest el-
ement of interval-valued hesitation fuzzy number with
relatively few element numbers until the number of
interval numbers is the same.
Step 2: calculate the score function value and get the
new decision matrix H � (hiσ(j))m×n. Based on Defi-
nition 4 and equations (25) and (27), for any alter-
natives, _hij � nϖjhij (j � 1, . . . , n) can be calculated,
and then we can get _hiσ(j) as the j-th largest of _hij.

Step 3: calculate the weight value of an attribute by
model (34) or (35).
Step 4: aggregate IVHFEs based on IVHFDHA oper-
ator by equation (27).
Step 5: calculate the score function S(Yi) by Definition 4.
Step 6: rank the overall IVHFEs Yi(i � 1, . . . , m) by
equation (2).
Step 7: select the best alternative based on value of
Yi(i � 1, . . . , m).

5. Case Study

*e rapid development of Internet information technology
brings convenience to our life but also causes a series of in-
formation security problems. Information security risk as-
sessment is a very important decision-making mechanism and
evaluation method in the process of establishing national in-
formation security system, and it is also an important part of
information system risk management. In order to select a
relatively secure information platform that is in linewith its own
development, a company evaluates five alternative information
platforms Y � Y1, Y2, . . . , Y5􏼈 􏼉. According to the overall
evaluation plan of information evaluation, the company’s
management considers three aspects of risk (C): application
security risk (C1), platform security risk (C2), and other se-
curity risks (C3), to evaluate the information security platform.
However, it is difficult for the evaluation experts to give a certain
evaluation value. *erefore, using the advantages of interval-
valued hesitation fuzzy set, the interval-valued hesitation fuzzy
decision matrix (IVHFDM) is given H � (hij)5×3 (see Table 7),
and the information security platform is evaluated according to
themethod in this paper, and themost appropriate information
security platform is selected at last.

We use the IVHFDWA, IVHFDWG, IVHFDOWA,
IVHFDOWG, IVHFDHA, and IVHFDHG operators with
λ � 1,ϖ � (0.45, 0.23, 0.32) to fuse all the evaluation in-
formation; the evaluation information can be obtained
(Table 8) as follows.

It can be concluded from Table 8 that under the same
parameters, different methods give decision results: Y2 is the
best one and Y3 is the worst one.

In order to better analyze the influence of parameters on
decision results, IVHFDWA is taken as an example to an-
alyze the influence of different parameters on decision re-
sults, and some data are given (Table 9) as follows.

It can be concluded from Table 8 that Y2 is the best one
and Y3 is the worst one under different parameters. *is
shows that the parameters have little influence on the de-
cision results. Further, more detailed results can be obtained
as follows: when λ ∈ (0, 0.74), the sorting result is
Y2 ≻Y4 ≻Y5 ≻Y1 ≻Y3; when λ ∈ (0.75, 1.76), the sorting
result is Y2 ≻Y4 ≻Y1 ≻Y5 ≻Y3; and when λ ∈ (1.77, +∞),
the sorting result is Y2 ≻Y1 ≻Y4 ≻Y5 ≻Y3.

Other methods can give the analysis data table similar to
Table 8. Here, the results of the change of decision results
caused by the change of parameters are directly given. *e
detailed analysis results are as follows:
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(1) IVHFDWG operator is used to fuse all evaluation
information. *e results of parameter analysis are as
follows. When λ ∈ (0, 0.64), the sorting result is
Y2 ≻Y4 ≻Y5 ≻Y1 ≻Y3; when λ ∈ (0.65, 7.85), the
sorting result is Y2 ≻Y5 ≻Y4 ≻Y1 ≻Y3; and when
λ ∈ (7.86, +∞), the sorting result is Y5 ≻Y2 ≻
Y4 ≻Y1 ≻Y3.

(2) IVHFDOWA operator is used to fuse all evaluation
information. *e results of parameter analysis are as
follows. When λ ∈ (0, 0.31), the sorting result is
Y2 ≻Y4 ≻Y5 ≻Y1 ≻Y3; when λ ∈ (0.32, 0.93), the
sorting result is Y2 ≻Y4 ≻Y1 ≻Y5 ≻Y3; and when
λ ∈ (0.94, +∞), the sorting result is Y2 ≻Y1 ≻
Y4 ≻Y5 ≻Y3.

(3) IVHFDOWG operator is used to fuse all evaluation
information. *e results of parameter analysis are as
follows. When λ ∈ (0, 0.1), the sorting result is
Y2 ≻Y4 ≻Y5 ≻Y1 ≻Y3; when λ ∈ (0.11, 1.09), the
sorting result is Y2 ≻Y5 ≻Y4 ≻Y1 ≻Y3; and when
λ ∈ (1.09, +∞), the sorting result is Y5 ≻Y2 ≻Y4 ≻
Y1 ≻Y3.

(4) IVHFDHA operator is used to fuse all evaluation
information. *e results of parameter analysis are as
follows. When λ ∈ (0, 0.39), the sorting result is
Y2 ≻Y1 ≻Y4 ≻Y5 ≻Y3; when λ ∈ (0.4, 6.96), the
sorting result is Y2 ≻Y4 ≻Y1 ≻Y5 ≻Y3; and when
λ ∈ (6.97, +∞), the sorting result is Y2 ≻Y1 ≻
Y4 ≻Y5 ≻Y3.

(5) IVHFDHG operator is used to fuse all evaluation
information. *e results of parameter analysis are as
follows. When λ ∈ (0, 0.24), the sorting result is
Y4 ≻Y2 ≻Y5 ≻Y3 ≻Y1; when λ ∈ (0.25, 0.94), the
sorting result is Y2 ≻Y4 ≻Y5 ≻Y3 ≻Y1; when
λ ∈ (0.95, 1.9), the sorting result is Y2 ≻Y5 ≻
Y4 ≻Y1 ≻Y3; and when λ ∈ (1.91, +∞), the sorting
result is Y5 ≻Y2 ≻Y4 ≻Y1 ≻Y3.

6. Contrast Experiment

Example 5. *ere are four alternativesXi, (i � 1, . . . , 4), and
five attributes Ci, (i � 1, . . . , 5), to be evaluated by two DMs.
*e decision matrix in [54] is adopted (Table 10). Let λ � 1
and ϖ � (0.4, 0.35, 0.25) in IVHFDHA and IVHFDHG. *e
experimental results are listed in Table 11.

*rough the above examples, we can conclude that our
method has some advantages compared with the methods
and conclusions proposed by Liu et al. [54], Li and Peng [51],
and Hu and Peng [55].

(1) *e IVHFDHA proposed in this paper produces
different decision results. *e reason is that different
parameters (associated weight) are selected accord-
ing to the risk attitude of decision makers, which
reflects the flexibility of the method.

(2) Compared with the methods of Liu et al. [54], Li and
Peng [51], and Hu and Peng [55], IVHFDWA,

Table 7: Interval-valued hesitant fuzzy decision matrix.

C1 C2 C3

Y1 [0.35, 0.45], [0.48, 0.58], [0.6, 0.75]{ } [0.75, 0.85]{ } [0.15, 0.25], [0.28, 0.38]{ }

Y2 [0.6, 0.78], [0.75, 0.95]{ } [0.35, 0.46], [0.43, 0.65]{ } [0.75, 0.85]{ }

Y3 [0.16, 0.23], [0.21, 0.45]{ } [0.46, 0.61], [0.68, 0.7], [0.7, 0.9]{ } [0.5, 0.6]{ }

Y4 [0.6, 0.8], [0.7, 0.9]{ } [0.5, 0.7], [0.6, 0.8]{ } [0.3, 0.5]{ }

Y5 [0.6, 0.8]{ } [0.4, 0.6], [0.5, 0.7]{ } [0.3, 0.5], [0.4, 0.6], [0.5, 0.7]{ }

Table 8: *e score functions obtained by different operators and the ranking order (λ � 1).

Method S(Y1) S(Y2) S(Y3) S(Y4) S(Y5) Rank

IVHFDWA [0.5675, 0.7050] [0.6684, 0.8450] [0.4720, 0.6244] [0.5516, 0.7804] [0.5116, 0.7240] Y2Y4Y1Y5Y3
IVHFDWG [0.3562, 0.4832] [0.5726, 0.7373] [0.3065, 0.4661] [0.4529, 0.6705] [0.4714, 0.6779] Y2Y5Y4Y1Y3
IVHFDOWA [0.6068, 0.7403] [0.6545, 0.8125] [0.5039, 0.6523] [0.5544, 0.7888] [0.5116, 0.7240] Y2Y1Y4Y5Y3
IVHFDOWG [0.3685, 0.4980] [0.5034, 0.6568] [0.3337, 0.4938] [0.4169, 0.6211] [0.4714, 0.6779] Y2Y5Y4Y1Y3
IVHFDHA [0.4293, 0.5637] [0.5243, 0.7390] [0.3812, 0.5442] [0.4577, 0.7259] [0.3654, 0.5866] Y2Y4Y1Y5Y3
IVHFDHG [0.4376, 0.5665] [0.6338, 0.7667] [0.3903, 0.5629] [0.5680, 0.7442] [0.5660, 0.7522] Y2Y5Y4Y1Y3

Table 9: *e score functions obtained by IVHFDWA operators and the ranking order.

IVHFDWA S(Y1) S(Y2) S(Y3) S(Y4) S(Y5) Rank

λ � 0.5 [0.5173, 0.6552] [0.6507, 0.8293] [0.4345, 0.5892] [0.5312, 0.7600] [0.5019, 0.7131] Y2Y4Y5Y1Y3
λ � 5 [0.7001, 0.8152] [0.7223, 0.8814] [0.5763, 0.7020] [0.6156, 0.8303] [0.5589, 0.7701] Y2Y1Y4Y5Y3
λ � 10 [0.7254, 0.8331] [0.7361, 0.8903] [0.6001, 0.7180] [0.6321, 0.8402] [0.5777, 0.7847] Y2Y1Y4Y5Y3
λ � 20 [0.7379, 0.8417] [0.7431, 0.8952] [0.6130, 0.7268] [0.6411, 0.8452] [0.5887, 0.7924] Y2Y1Y4Y5Y3
λ � 50 [0.7452, 0.8467] [0.7473, 0.8981] [0.6212, 0.7323] [0.6464, 0.8481] [0.5955, 0.7970] Y2Y1Y4Y5Y3
λ � 100 [0.7476, 0.8484] [0.7486, 0.8991] [0.6239, 0.7344] [0.6482, 0.8490] [0.5978, 0.7985] Y2Y1Y4Y5Y3
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IVHFDOWA, IVHFDOWG, and IVHFDHG all
produce the same order, but the operator form we
put forward is simple. In this kind of method, the
weight factor is derived from the optimization model
constructed by the decision matrix, which is more
objective.

(3) Using this example, we find that the attribute value
X4 is greater than X1, that is, X4 is better than X1. All
the methods we put forward reflect this, so our
method is better than Hu and Peng [55].

*e other advantages of this paper are also obvious.
We define the generalized distance formula between
IVHFEs and show that Euclidean distance formula is a
special form of the formula we give. Our distance for-
mula can be applied to different FSs with a little mod-
ification. In addition, based on the decision matrix, we
build an optimization model to solve the weight value of
attributes, which is more objective than other methods
[51, 54, 55]. Experts from different backgrounds may give
different decision matrices, and our attribute weight
values can be adjusted according to different decision
matrices. Moreover, these adjustments are based on the
distance formula of IVHFEs defined by us. Moreover, in
the application of the example, we have carried on the
detailed sensitivity analysis and given the special value of
the parameter (the critical point of the parameter value
which causes the decision-making change). Because this
paper uses probability formula to define the
comparison between interval-valued elements, it cannot
give the visualization of data, which is the deficiency of
this paper.

7. Conclusions

*e objective of the current work is to establish a new
MADM method under interval-valued hesitation fuzzy

environment. First of all, extended Dombi t-norm and t-
norm are applied to IVHFSs. A series of interval-valued
hesitant fuzzy aggregation operators are proposed, such as
IVHFDWA, IVHFDWG, IVHFDOWA, IVHFDOWG,
IVHFDHA, and IVHFDHG, and the sensitivity of the pa-
rameters is analyzed. Secondly, considering the uncertainty,
we construct the general form of the distance formula be-
tween IVHFEs and point out that Euclidean formula is a
special form of the formula we put forward. *irdly, the
optimization model for determining the optimal weight of
attributes is established by using the maximum deviation
method, which overcomes the subjective randomness and
makes the weight value more objective. Fourthly, the
evaluation method proposed in this paper solves a com-
pany’s choice of information security platform. In addition,
in the sensitivity analysis of aggregation operators, because
the comparison of IVHFEs is based on probability formula,
it is impossible to visualize the aggregation results or pa-
rameters. In the later research process, we can define another
distance formula between IVHFEs, which can solve the
visualization problem of results or parameter analysis.
*erefore, in the future research, we can consider the ag-
gregation operator under interval-valued hesitation fuzzy
environment based on probability.
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