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We investigate a stochastic differential equation driven by Poisson random measure and its application in a duopoly market for a
finite number of consumers with two unknown preferences. -e scopes of pricing for two monopolistic vendors are illustrated
when the prices of items are determined by the number of buyers in the market. -e quantity of buyers is proved to obey a
stochastic differential equation (SDE) driven by Poisson random measure which exists a unique solution. We derive the
Hamilton-Jacobi-Bellman (HJB) about vendors’ profits and provide a verification theorem about the problem. When all
consumers believe a vendor’s guidance about their preferences, the conditions that the other vendor’s profit is zero are obtained.
We give an example of this problem and acquire approximate solutions about the profits of the two vendors.

1. Introduction

Consider two vendors that provide different goods for
different types of consumers in a duopoly market. For in-
stance, in the pharmaceutical market, two vendors provide
different drugs for different patients with different diseases.
As the commodity price is proportional to the number of
consumers, pricing strategies are especially important for
vendors. We study this problem in a nondurable goods
duopoly market.

Consumers’ preferences or types take key roles in the
market and affect the pricing strategies determined by
vendors. Eeckhout andWeng [1] assume that there are N≥ 2
consumers who have the same type either H or L. Two
vendors provide two different kinds of goods for the two
types, respectively. In this article, we assume that consumers’
types are diverse. -is assumption is different from the
assumption that all consumers’ types are identical in [1]. In
general, there exist different types of consumers who need to
buy the same kind of goods in the market, just like people
with high and low fever who need antipyretics simulta-
neously. -us, it is reasonable to assume that all consumers’
preferences are different in the market. In this situation,
some consumers choose one vendor and others choose the

other vendor, i.e., all consumers do not choose the same
vendor at the first time.

Furthermore, we assume that the price of goods is a
function of the number of consumers instead of the con-
sumers’ posterior beliefs in [1] as the price of goods is af-
fected by the quantity of supply and demand. Since
technological content of nondurable goods is lower than that
of other goods in general, prices of nondurable goods
fluctuate more obviously with the number of consumers.
-erefore, the assumption that price of goods depends on
the number of consumers is logical.

Vendors need to know how many consumers choose
their own goods at each time t ∈ [0, +∞) in order to im-
plement pricing strategies. Whether a consumer changes his
decision is related to the judgment of his type and the prices
of two goods.We find ranges of commodity prices and prove
that the quantity of buyers who purchase one of the vendor’s
goods obeys a SDE and verifies existence and uniqueness of
its solutions, which is a main contribution in this article.

Generally speaking, consumers do not know their own
types whereas the vendors recognize. Under the setting of
asymmetric information, consumers who are informed of
their own types tend to buy commodity, which brings
benefits for vendors. Consumers need to make choices of the
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types based on the guidance given by the two vendors. In
certain cases, consumers are willing to follow the authori-
tative vendor’s guidance. We call this vendor as the type-
leader vendor and the other as the following vendor, which is
a new setting evolved from the Stackelberg leadership model
[2]. -e type-leader model contains only one type-leader
vendor. In the type-leader model, the vendor directly leads
to consumers’ preferences rather than the prices of goods. In
some markets, such as the pharmaceutical market, con-
sumers are more concerned about the efficacy of goods than
its price. -is makes it important for vendors to guide
consumers’ types. -us, the type-leader model is more
reasonable than the Stackelberg leadership model. Pricing
rules for goods are obtained in the type-leader model.
Moreover, we derive the conditions to ensure that the fol-
lowing vendor’s profit is zero.

-e main contributions of this paper are mentioned as
follows. Compared with the assumption in [1] where there
exists only one type of consumers, the situation that there
exist two different types of consumers in the market is
explored. Considering the impact of commodity prices, we
assume that the price of goods is decided by the number of
consumers. As a comparison, Eeckhout andWeng [1] define
that the price is a function of consumers’ posterior beliefs.
Observing that the effectiveness of goods is more important
than its price in our model, we use the type-leader model
instead of the Stackelberg leadership model to study ven-
dors’ optimal strategies. An example of this problem is given
and approximate solutions about the profit of the two
vendors are acquired.

Several literatures investigate multiarmed bandit prob-
lems. Robbins [3] describes the problem as a decision-maker
facing M slot machines (called arms), and the participator
has to choose one of the arms at each instantaneous time.
-e value of pulling an arm in discrete time is calculated by
Gittins and Jones [4] and Michael et al. [5]. Comparing the
value to the Gittins index of all other arms, Michael et al. [5]
present that the value pulling each arm itself does not de-
pend on the cutoff. -is problem is transformed into a
standard optimal stopping problem in [6, 7]. Bolton and
Harris [8] and Bergemann and Valimaki [9] show that
choosing the products from the same vendor is the optimal
strategy of consumers when there are K≥ 2 vendors who
offer different products and M consumers whose prefer-
ences are the same (but unknown) in the market. -e
necessary and sufficient conditions for the existence of only
two vendors in the market are obtained by Gao et al. [10].
Two-armed bandit problems in the continuous time with the
property of Le� vy processes are studied by Cohen and Solan
[11] (Lévy process is described in [12, 13]). Cohen and Solan
[11] conclude that the optimal strategy is a cutoff strategy
when the arms have two types. -e problem that multiple
arms can be chosen by the decision-maker is studied by
Kuksov et al. [14] and Doval [15]. It is discovered that the
decision-maker is indifferent to search an alternative arm
which does not have the highest reservation price. When a
Bayesian decision-maker makes a selection from multiple
arms with uncertain payoffs and an outside arm with known
payoff, maximizing his expected profit is studied in Ke et al.

[16]. For other optimal strategies and control approaches,
the reader is referred to [17, 18] and the references therein.

-e remainder of the paper is organized as follows. In
Section 2, we introduce a two-period example and show the
scopes of prices. In Section 3, the definition of the Poisson
integral is used to prove that the quantity of buyers obeys an
SDE and verifies the existence and uniqueness of the solutions
for the SDE in global space. In Section 4, based on the dynamic
programming principle, we derive HJB equations for the
vendors’ utility functions and give the verification theorem for
the type-leader model. Using solutions of HJB equations, we
obtain the optimal strategy for the type-leader vendor. In
Section 5, we give an example of this problem and acquire
approximate solutions about the profit of the two vendors.

2. A Two Period Example

-ere are two vendors who offer different nondurable goods,
indexed by j � 1, 2, and M consumers whose preferences are
high or low in the market, where M is positive integer.
However, consumers do not know their preferences. If the
type is high, a consumer gets expected value ζ1H from buying
goods 1 and ζ2H from buying goods 2. Otherwise, a con-
sumer gets expected value ζ1L from buying goods 1 and ζ2L

from buying goods 2. We assume that ζ1H > ζ2H and
ζ1L < ζ2L, where ζjH and ζjL belong to (0, +∞).

At any time, all market participants observe all previous
outcomes. Because of the influence caused by uncertain
external factors, the flow utility uji(t)(i ∈ H, L{ }) has a noisy
signal of the true value (for detailed discussion, refer to [1]).

duji(t) � ζjidt + σjd􏽥Bj(t), (1)

where 􏽥B1(t) and 􏽥B2(t) are independent Brownian motions.
In the market, besides the types of consumers, there are
many uncertain factors affecting the effectiveness of prod-
ucts to consumers. For example, there exist some subtle and
unavoidable differences in the quality of the goods and these
differences affect consumers’ utilities. -e noisy signal of the
true value is used to characterize the effects of these factors
on consumers’ utilities.

Assume that xt ∈ [0, 1] is the belief that the type is high if
consumers choose the first vendor and yt ∈ [0, 1] is the
belief that the type is high if consumers choose the other
vendor; that is to say, xt ≔ Pr(i � H | ut

1i) and
yt ≔ Pr(i � H | ut

2i), where ut
ji ≔ uji(τ)􏽮 􏽯

t

τ�0 is a realized
path. From [19], we have

dxt � xt 1 − xt( 􏼁s1
du1i(t) − ζ1Hdt − ζ1Ldt

σ1

≔ xt 1 − xt( 􏼁s1dB1(t),

dyt � yt 1 − yt( 􏼁s2
du2i(t) − ζ2Hdt − ζ2Ldt

σ2

≔ yt 1 − yt( 􏼁s2dB2(t),

(2)

where sj � (ζjH − ζjL)/σj, j � 1, 2, B1(t) and B2(t) are in-
dependent Brownian motions.
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If a consumer chooses the first vendor, his expected
utility is f1(xt) ≔ xtζ1H + (1 − xt)ζ1L. Letting a1 ≔ ζ1H −

ζ1L and b1 ≔ ζ1L, the utility is represented by

f1(x) � a1xt + b1. (3)

Similarly, if a consumer chooses the second vendor, his
expected utility is represented by

f2(x) � a2yt + b2, (4)

where a2 ≔ ζ2H − ζ2L and b2 ≔ ζ2L. -e definitions of aj and
bj imply a1 + b1 > a2 + b2, b1 < b2 and a1 > a2.

Let nt be the number of consumers who choose the first
vendor and M − nt be the number of consumers who choose
the second vendor, nt ∈ 0, 1, . . . , M{ }. P1(nt) is the price of
goods from the first vendor and P2(nt) is the price of goods
from the second one. Formally, the price of goods is a
measurable function Pj : 0, 1, . . . , M{ }⟶ R+ ∪ 0{ }. We
assume that the change of price has hysteresis(the product
price of the second vendor is a function with respect to nt

when M fixed).
As consumers’ beliefs change, the lower the beliefs they

have, the lower the profits they earn if they choose the first
vendor. For a consumer who chooses the first vendor, if his
belief is low enough at certain time, he gives up the vendor to
choose the second one. Denote αt ∈ [0, 1] as the belief, i.e., if
xt < αt, a consumer transforms his choice from the first to
the second vendor. Similarly, the consumer gives up buying
goods from the second vendor and chooses to buy goods
from the first vendor if yt > βt ∈ [0, 1].

For nondurable goods, if a consumer chooses the first
vendor at first time, the common belief for high type is xt at
time t. -e utility of the consumer is xtζ1H + (1 − xt)ζ1L −

P1(nt). If the consumer gives up the first vendor to choose
second one, the prices for the vendors do not change due to
the hysteresis of the change of price. -e utility of the
consumer is xtζ2H + (1 − xt)ζ2L − P2(nt). If the consumer
voluntarily gives up the first vendor to choose the second
vendor, it has

xtζ1H + 1 − xt( 􏼁ζ1L − P1 nt( 􏼁< xtζ2H + 1 − xt( 􏼁ζ2L − P2 nt( 􏼁.

(5)

Inequality (5) is rewritten as

xt <
b2 − b1 + P1 nt( 􏼁 − P2 nt( 􏼁

a1 − a2
. (6)

From the definition of αt, it has αt � ((b2 − b1 + P1(nt) −

P2(nt))/(a1 − a2)). In the same way, we obtain
βt � ((b2 − b1 + P1(nt) − P2(nt))/(a1 − a2)). After the above
discussion, αt and βt satisfy

αt � βt �
b2 − b1 + P1 nt( 􏼁 − P2 nt( 􏼁

a1 − a2
. (7)

Equation (7) shows that the common belief which makes
a consumer change his choice from the first vendor to the
second one is equal to that which makes the changes from
the second vendor to the first one. It is called cutoff in [1].
-e cutoff increases as P1(nt) increases and decreases as

P2(nt) increases. -e cutoff is linear with both P1(nt) and
P2(nt). In a market, as P1(nt) increases, the utility of the
consumer who chooses the first vendor is smaller. -e
consumers who have the same common belief tend to
choose the second vendor. -us, the cutoff cuts down. If
P2(nt) decreases, the relative price for the second vendor
increases. Similarly, the cutoff reduces. In the following, we
use αt to denote the cutoff. -e ranges of pricing for two
vendors obtained from equation (7) are shown in Propo-
sition 1.

Proposition 1. Suppose that P1(·) and P2(·) are the prices of
goods from the first and second vendors, respectively. �en
P1(·) and P2(·) satisfy

0≤P1 nt( 􏼁≤ a1 + b1( 􏼁 − a2 + b2( 􏼁 + P2 nt( 􏼁, (8)

0≤P2 nt( 􏼁≤ b2 − b1 + P1 nt( 􏼁, (9)

where one of the second signs of inequalities (8) or (9) is sign of
strict inequality.

Proof. P1(nt) and P2(nt) are greater than zero as the
vendors’ costs of goods are zero. In the following, we prove
P1(nt)≤ (a1 + b1) − (a2 + b2) + P1(nt) and P2(nt)≤ b2−

b1 + P2(nt).
If αt > 1, i.e., xt < αt, all consumers give up the first

vendor to choose the second one. For the first vendor, the
price of his goods satisfies αt ≤ 1. It has

b2 − b1 + P1 nt( 􏼁 − P2 nt( 􏼁

a1 − a2
≤ 1, (10)

i.e.,

P1 nt( 􏼁≤ a1 + b1( 􏼁 − a2 + b2( 􏼁 + P2 nt( 􏼁. (11)

In the same way, the second vendor makes the price of
goods satisfy αt ≥ 0. We have

P2 nt( 􏼁≤ b2 − b1 + P2 nt( 􏼁. (12)

Inequalities (8) and (9) are proved.
From inequalities (8) and (9), we obtain

P1 nt( 􏼁≤ a1 + b1( 􏼁 − a2 + b2( 􏼁 + P2 nt( 􏼁

≤ a1 + b1( 􏼁 − a2 + b2( 􏼁 + b2 − b1 + P1 nt( 􏼁

� a1 − a2 + P1 nt( 􏼁.

(13)

From inequality (13), we obtain a2 ≤ a1 which contra-
dicts the assumption a2 < a1.-us, one of the second signs of
inequalities in (8) and (9) is sign of strict inequality.

Proposition 1 shows the scopes of commodity prices
which are decided by two monopolistic vendors. We find
that the supremum of the price for a vendor increases as the
price for the other vendor increases. -e supremum of the
price for a vendor and the price for the other vendor are
linear dependence. In the duopoly market, an increase in the
price of goods means a decrease of benefit to the number of
consumers. Due to the substitution effect between goods, the
benefit to someone who chooses the other vendor increases.
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-e supremum of the price for the other vendor
aggrandizes. □

Corollary 1. P1(nt)< +∞ if and only if P2(nt)< +∞while
P1(nt) �∞ if and only if P2(nt) �∞.

Corollary 1 is easily proved from Proposition 1 and
reveals the commodity prices under periods of economic
prosperity and economic crisis. During periods of economic
prosperity, the commodity prices are bounded while the

prices are infinite on account of discontinued sale of goods
during the economic crisis. In next discussion, we ignore the
situation of economic crisis.

3. Duopoly Market

If there exists tΘ􏼈 􏼉0≤Θ≤d such that 0 � t0 < t1 < · · · < td � t, a
consumer chooses a vendor, denoted by j, t ∈ (t2k, t2k+1) and
chooses the other vendor, denoted by − j, t ∈ (t2k+1, t2k+2),
k � 0, 1, . . . , (d/2) − 1. Let

pt ≔ Pr i � H | u
t0 ,t1( )

ji , u
t1 ,t2( )

− j,i , . . . , u
t2k,t2k+1( )

ji , u
t2k+1 ,t2k+2( )

− j,i , . . . , u
td− 2 ,td− 1( )

ji , u
td− 1 ,t( )

− j,i􏼚 􏼛, (14)

where u
(π1 ,π2)
ji ≔ uji(τ)􏽮 􏽯

π2
τ�π1

. Using the arguments in [8, 9],
we know that pt satisfies

dpt �
��
nt

√
pt 1 − pt( 􏼁s1dW1(t)

+
������
M − nt

􏽰
pt 1 − pt( 􏼁s2dW2(t),

(15)

where W1(t) and W2(t) are independent Winner processes.
For any time l and small ε> 0, a consumer gives up the

second vendor and chooses the first vendor when

l ∈ s> 0 | ps � αs, αs− ε − ps− ε ∈ A2, αs+ε − ps+ε ∈ A1􏼈 􏼉

⊆ s> 0 | ps � αs,Δ αs − ps( 􏼁 ∈ A1􏼈 􏼉

⊆ s> 0 |Δ αs − ps( 􏼁 ∈ A1􏼈 􏼉,

(16)

where A1 ≔ x≤ 0{ }/ 0{ }, A2 ≔ x≥ 0{ }/ 0{ } and Δ(Xs) ≔ Xs −

Xs− with Xs− ≔ limt⟶s− Xt. Similarly, a consumer replaces

the goods of the first vendor with the goods of the second
vendor if

l ∈ s> 0 | ps � αs, αs− ε − ps− ε ∈ A1, αs+ε − ps+ε ∈ A2􏼈 􏼉

⊆ s> 0 | ps � αs,Δ αs − ps( 􏼁 ∈ A2􏼈 􏼉

⊆ s> 0 |Δ αs − ps( 􏼁 ∈ A2􏼈 􏼉.

(17)

We assume that the number of consumers who choose
one vendor to replace the other one is related to Δ(αl − pl),
pl and nl at time l. All of them reflect the relationship be-
tween αt and pt at t ∈ (l − ε, l + ε). Let Gj(Δ(αl − pl), pl, nl)

(∈ 0, 1, . . . , M{ }) be the number of consumers who give up
the other vendor to choose the vendor j, j � 1, 2. If nt is
known, the number of consumers who choose the first
vendor at (t + dt) is expressed by

nt+dt � nt

+ 􏽘
0≤u≤dt

G1 Δ αu − pu( 􏼁, pu, nu( 􏼁♯ 0≤ s≤ u | ps � αs, αs− ε − ps− ε ∈ A2, αs+ε − ps+ε ∈ A1􏼈 􏼉

− 􏽘
0≤u≤dt

G2 Δ αu − pu( 􏼁, pu, nu( 􏼁♯ 0≤ s≤ u | ps � αs, αs− ε − ps− ε ∈ A1, αs+ε − ps+ε ∈ A2􏼈 􏼉,

(18)

where ♯ represents the number of elements in a set. Let

ϖ1 Δ αu − pu( 􏼁, pu( 􏼁 �
♯ 0≤ s≤ u | ps � αs, αs− ε − ps− ε ∈ A2, αs+ε − ps+ε ∈ A1􏼈 􏼉

♯ 0≤ s≤ u |Δ αu − pu( 􏼁 ∈ A1􏼈 􏼉
,

ϖ2 Δ αu − pu( 􏼁, pu( 􏼁 �
♯ 0≤ s≤ u | ps � αs, αs− ε − ps− ε ∈ A1, αs+ε − ps+ε ∈ A2􏼈 􏼉

♯ 0≤ s≤ u |Δ αu − pu( 􏼁 ∈ A2􏼈 􏼉
.

(19)

If 0≤ s≤ u | ps � αs, αs− ε − ps− ε ∈A2, αs+ε − ps+ε ∈ A1􏼈 􏼉≠
ϕ, we require that c1(Δ(αu − pu), pu) equals to ϖ1(Δ(αu −

pu), pu) while c1(Δ(αu − pu), pu) ≔ 0 for another case.

Similarly, if 0≤ s≤ u | ps � αs, αs− ε − ps− ε ∈ A1, αs+ε − ps+ε􏼈

∈ A2} is not empty, let c2(Δ(αu − pu), pu) be equal to
ϖ2(Δ(αu − pu), pu) and zero otherwise. Defining
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g1 Δ αu − pu( 􏼁, pu, nu( 􏼁 � G1 Δ αu − pu( 􏼁, pu, nu( 􏼁c1

· Δ αu − pu( 􏼁, pu( 􏼁,
(20)

g2 Δ αu − pu( 􏼁, pu, nu( 􏼁 � G2 Δ αu − pu( 􏼁, pu, nu( 􏼁c2

· Δ αu − pu( 􏼁, pu( 􏼁,
(21)

we have

nt+dt � nt + 􏽘
0≤u≤dt

g1 Δ αu − pu( 􏼁, pu, nu( 􏼁♯ 0≤ s≤ u |Δ αu − pu( 􏼁 ∈ A1􏼈 􏼉

− 􏽘
0≤u≤dt

g2 Δ αu − pu( 􏼁, pu, nu( 􏼁♯ 0≤ s≤ u |Δ αu − pu( 􏼁 ∈ A2􏼈 􏼉,
(22)

where gj(Δ(αu − pu), pu, nu)≤Gj(Δ(αu − pu), pu, nu) due
to cj(·, ·) ∈ [0, 1], i.e., gj(Δ(αu − pu), pu, nu) is bounded.
Proposition 2 can be obtained by using the definition of
Poisson stochastic integral as dt⟶ 0 and s⟶ u.

Proposition 2. If (αt − pt) is a stochastic process which has
independent and stationary increments with ca

‘
dla

‘
g paths6

(paths are continuous on the right and have limits on the left
[20, 21]), then

dnt � 􏽚
A1

g1 h, pt− , nt−( 􏼁N(dt , dh)

− 􏽚
A2

g2 h, pt− , nt−( 􏼁N(dt , dh),

(23)

where g1(h, pt− , nt− ) and g2(h, pt− , nt− ) are defined in
Equations (20) and (21). Moreover, SDE (23) has a unique
solution.

Proof. As g1(·, ·, ·) and g2(·, ·, ·) are bounded, A1 and A2 are
bounded below, from [22], we obtain that nt is convergent in
L2 for any measurable random variable n0. Besides, g1(·, ·, ·)

and g2(·, ·, ·) can be verified to satisfy

(i) Lipschitz condition:t-ere exists K1 > 0, for any y1,
y2 ∈ 0, 1, . . . , M{ } and x ∈ [0, 1] such that

􏽚
A1

g1 h, x, y1( 􏼁 − g1 h, x, y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2](dh)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤K1 y1 − y2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

􏽚
A2

g2 h, x, y1( 􏼁 − g2 h, x, y2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2](dh)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤K1 y1 − y2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(24)

(ii) Growth condition: there exists K2 > 0, for any
y ∈ 0, 1, . . . , M{ } and x ∈ [0, 1], such that

2y􏽚
A1

g1(h, x, y)](dh) + 􏽚
A1

g1(h, x, y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|
2](dh)≤K2 1 +|y|

2
􏼐 􏼑,

2y􏽚
A1

g1(h, x, y)](dh) + 􏽚
A2

g2(h, x, y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|
2](dh)≤K2 1 +|y|

2
􏼐 􏼑.

(25)

Equation (23) is proved to exist a unique solution by
using the results in [23, 24].

Proposition 2 shows the existence and uniqueness of
global solutions for the SDE (23) which describes the
quantity of buyers who choose the first vendor in the du-
opoly market. It is presented as a pure jump process. gj(·, ·, ·)

is defined as the rate of change of the number of consumers
who give up the other vendor and choose the jth one. □

4. The Optimal Strategy for Vendors

As consumers do not know their types, they choose one of
two vendors referred by the prices of goods at initial time.
We assume that there are n consumers who choose the first
vendor, i.e., n0 � n. After that, vendors inform consumers’
types, denoted by p ≔ p0, to guide consumers to make
subsequent choices. Ignoring the interaction between the
two vendors, denoting Vj(·) as the jth vendor’s optimal
utility and r as risk-free interest rate, for the first vendor, we
have

V1(n) � max
p∈[0,1]

E 􏽚
+∞

0
e

− rt
ntP1 nt( 􏼁dt􏼢 􏼣

s.t dnt � 􏽚
A1

g1 h, pt− , nt−( 􏼁N(dt, dh)

− 􏽚
A2

g2 h, pt− , nt−( 􏼁N(dt, dh).

(26)

-e HJB equation is obtained as follows:

rV1(n) � nP1(n) + max
p∈[0,1]

􏽚
A1

V1 n + g1(h, p, n)( 􏼁 − V1(n)􏼂 􏼃](dh)􏼨

− 􏽚
A2

V1 n + g2(h, p, n)( 􏼁 − V1(n)􏼂 􏼃](dh)􏼩,

(27)

Mathematical Problems in Engineering 5



where ], the intensity measure of N, is the finite intensity
measure as A1 and A2 are bounded below. Suppose that
w(n) is a solution of equation (27), the verification result is
obtained as follows.

Proposition 3. If there exists an integrable function ϕ(·) such
that |w(·)|≤ ϕ(·).

(i) Suppose that

rw(n) − nP1(n) − max
p∈[0,1]

􏽚
A1

w n + g1(h, p, n)( 􏼁 − w(n)􏼂 􏼃](dh)􏼨

− 􏽚
A2

w n + g2(h, p, n)( 􏼁 − w(n)􏼂 􏼃](dh)􏼩≥ 0,

(28)

lim sup
T⟶+∞

e
− rT

E w nT( 􏼁􏼂 􏼃≥ 0. (29)

�en w(n)≥ v(n) if n ∈ 1, 2, . . . , M{ }.

(ii). Suppose that for all n ∈ 1, 2, . . . , M{ }, there exists a
p∗ such that

rw(n) − nP1(n) − 􏽚
A1

w n + g1 h, p
∗
, n􏼂 􏼃􏼂 􏼃 − w[n]􏼂 􏼃](dh)􏼨

− 􏽚
A2

w n + g2 h, p
∗
, n􏼂 􏼃􏼂 􏼃 − w[n]􏼂 􏼃](dh)􏼩 � 0,

(30)

the stochastic differential equation

dnt � 􏽚
A1

g1 h, p
∗
t− , nt−( 􏼁N(dt, dh)

− 􏽚
A2

g2 h, p
∗
t− , nt−( 􏼁N(dt, dh),

(31)

admits a unique solution and

lim inf
t⟶∞

e
− rT

E w nT( 􏼁􏼂 􏼃≤ 0, (32)

then

w(n) � v(n), n ∈ 1, 2, . . . , M{ }. (33)

Proof. -ree steps are divided to prove Proposition 3. □

Step 1. We prove E[􏽒
+∞
0 e− rtntP1(nt)dt]< +∞. From the

assumptions, it has

E 􏽚
+∞

0
e

− rt
ntP1 nt( 􏼁dt􏼢 􏼣≤ME 􏽚

+∞

0
e

− rt
P1 nt( 􏼁dt􏼢 􏼣.

(34)

Hence, from 􏽒
+∞
0 e− rtdt< +∞ and P1(nt) which is a

monotone bounded function, we derive

E 􏽚
+∞

0
e

− rt
P1 nt( 􏼁dt􏼢 􏼣< +∞. (35)

-us, E[􏽒
+∞
0 e− rtntP1(nt)dt]< +∞ as M< +∞.

Step 2. -e proof of (i) in Proposition 3. Let

τk ≔ inf t≥ 0 | 􏽚
A1

e
− rt

w nt− + g1 h, pt, nt( 􏼁( 􏼁􏼂􏼨

− w nt−( 􏼁􏼃](dh)≥ k

or􏽚
A2

e
− rt

w nt− + g1 h, pt, nt( 􏼁( 􏼁 − w nt−( 􏼁􏼂 􏼃](dh)≥ k􏼩.

(36)

Using It􏽢o’s lemma for e− r(T∧τk)w(nT∧τk
), where

T∧ τk ≔ min T, τk􏼈 􏼉, we obtain
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e
− r T∧τk( )w nT∧τk

􏼐 􏼑

� w(n) − 􏽚
T∧τk

0
re

− rs
w ns( 􏼁ds

+ 􏽚
T∧τk

0
􏽚

A1

e
− rs

w ns− + g1 h, ps, ns( 􏼁( 􏼁 − w ns−( 􏼁􏼂 􏼃N(ds, dh)

− 􏽚
T∧τk

0
􏽚

A2

e
− rs

w ns− + g2 h, ps, ns( 􏼁( 􏼁 − w ns−( 􏼁􏼂 􏼃N(ds, dh).

(37)

Introducing compensation Poisson random measure,
equation (37) is rewritten as

e
− r T∧τk( )w nT∧τk

􏼐 􏼑

� w(n) − 􏽚
T∧τk

0
re

− rs
w ns( 􏼁ds

+ 􏽚
T∧τk

0
􏽚

A1

e
− rs

w ns− + g1 h, ps, ns( 􏼁( 􏼁 − w ns−( 􏼁􏼂 􏼃 􏽥N(ds, dh)

− 􏽚
T∧τk

0
􏽚

A2

e
− rs

w ns− + g2 h, ps, ns( 􏼁( 􏼁 − w ns−( 􏼁􏼂 􏼃 􏽥N(ds, dh)

+ 􏽚
T∧τk

0
ds􏽚

A1

e
− rs

w ns− + g1 h, ps, ns( 􏼁( 􏼁 − w ns−( 􏼁􏼂 􏼃v(dh)

− 􏽚
T∧τk

0
􏽚

A2

e
− rs

w ns− + g2 h, ps, ns( 􏼁( 􏼁 − w ns−( 􏼁􏼂 􏼃v(dh),

(38)

where the compensation Poisson random measure
􏽥N(s, dh) ≔ N(s, dh) − s · ](dh) is a martingale. Taking ex-
pectation for both sides of equation (38) yields

E e
− r T∧τk( )w nT∧τk

􏼐 􏼑􏼔 􏼕

� w(n) − E 􏽚
T∧τk

0
re

− rs
w ns( 􏼁ds􏼢 􏼣

+ E 􏽚
T∧τk

0
ds􏽚

A1

e
− rs

w ns− + g1 h, ps, ns( 􏼁( 􏼁 − w ns−( 􏼁􏼂 􏼃](dh)􏼢 􏼣

− E 􏽚
T∧τk

0
􏽚

A2

e
− rs

w ns− + g2 h, ps, ns( 􏼁( 􏼁 − w ns−( 􏼁􏼂 􏼃](dh)􏼢 􏼣.

(39)

From inequality (28), we obtain

E e
− r T∧τk( )w nT∧τk

􏼐 􏼑􏼔 􏼕≤w(n) − E 􏽚
T∧τk

0
e

− rs
nsP1 ns( 􏼁􏼢 􏼣.

(40)

Letting k⟶ +∞, using the dominated convergence
theorem, inequality (40) becomes

E e
− rT

w nT( 􏼁􏽨 􏽩≤w(n) − E 􏽚
T

0
e

− rs
nsP1 ns( 􏼁ds􏼢 􏼣. (41)

As T⟶ +∞, in accordance with inequality (29), for
any p ∈ [0, 1], the inequality

w(n)≥E 􏽚
T

0
e

− rs
nsP1 ns( 􏼁ds􏼢 􏼣, (42)

Mathematical Problems in Engineering 7



is obtained. Hence,

w(n)≥ max
p∈[0,1]

E 􏽚
T

0
e

− rs
nsP1 ns( 􏼁ds􏼢 􏼣 � V(n). (43)

-e (i) in Proposition 3 is proved by Steps 1 and 2.

Step 3. -e proof of (ii) in Proposition 3. As p∗ is the
optimal choice for the vendor, we obtain

E e
− rT

w nT( 􏼁􏽨 􏽩 � w(n) − E 􏽚
T

0
e

− rs
nsP1 ns( 􏼁ds􏼢 􏼣, (44)

where

dnt � 􏽚
A1

g1 h, p
∗
t− , nt−( 􏼁N(dt, dh)

− 􏽚
A2

g2 h, p
∗
t− , nt−( 􏼁N(dt, dh),

(45)

has a unique solution. Letting T⟶ +∞, from inequality
(32), we have

w(n)≤E 􏽚
T

0
e

− rs
nsP1 ns( 􏼁ds􏼢 􏼣 � V(n). (46)

From inequalities (43) and (46), we have w(n) � V(n).
-e proof is completed.

Proposition 3 shows that the solution of HJB equation
(27) is V1(n).

Similarly, for the second vendor, it has

rV2(n) � (M − n)P2(n) + max
p∈[0,1]

􏽚
A1

V2 n + g1(h, p, n)( 􏼁 − V2(n)􏼂 􏼃](dh)􏼨

− 􏽚
A2

V2 n + g2(h, p, n)( 􏼁 − V2(n)􏼂 􏼃](dh)􏼩.

(47)

We assume that one of the two vendors is a type-leader
vendor. Without loss of generality, denote the first vendor as
the type-leader vendor. In this situation, we acquire

κV1(n) � nP1(n) + 􏽚
A1

V1 n + g1 h, p
∗
, n( 􏼁( 􏼁](dh)

− 􏽚
A2

V1 n + g2 h, p
∗
, n( 􏼁( 􏼁](dh).

(48)

For the second vendor, his payoff function satisfies

κV2(n) � (M − n)P2(n) + 􏽚
A1

V2 n + g1 h, p
∗
, n( 􏼁( 􏼁](dh)

− 􏽚
A2

V2 n + g2 h, p
∗
, n( 􏼁( 􏼁](dh),

(49)

where κ ≔ r − [􏽒
A1

v(dh) − 􏽒
A1

v(dh)]<∞.
As the second vendor considers that the first vendor

informs all consumers whose types are H and consumers
tend to buy goods from the first vendor, the second vendor’s
goods are not sold. From Corollary 2.1, if the vendor wants
more consumers to buy his goods, he prices his goods
P2(nt), based on the price P1(nt) of the first vendor, such
that P1(nt) � (a1 + b1) − (a2 + b2) + P2(nt)., i.e.,

P2 nt( 􏼁 � a2 + b2( 􏼁 − a1 + b1( 􏼁 + P1 nt( 􏼁. (50)

From equation (50), we find that P2(nt)< 0 if
P1(nt)< (a1 + b1) − (a2 + b2). -us, the price of the second
vendor’s goods is zero. For the type-leader vendor, the price
of their goods is

P1(n) � a1 + b1( 􏼁 − a2 + b2( 􏼁 − ε, (51)

where ε> 0 is an arbitrary small number. Denoted by Pε
1 as

(a1 + b1) − (a2 + b2) − ε, then Pε
1 < (a1 + b1) − (a2 + b2) + 0

and 0 � P2(nt)≤ a1 − a2 − ε satisfy pricing ranges for both
vendors in Proposition 1. Equations (48) and (49) are
equivalent to

κV1(n) � nP
ε
1 + 􏽚

A1

V1 n + g1 h, p
∗
, n( 􏼁( 􏼁](dh)

− 􏽚
A2

V1 n + g2 h, p
∗
, n( 􏼁( 􏼁](dh),

(52)

κV2(n) � 􏽚
A1

V2 n + g1 h, p
∗
, n( 􏼁( 􏼁](dh)

− 􏽚
A2

V2 n + g2 h, p
∗
, n( 􏼁( 􏼁](dh),

(53)

respectively. In this situation, the payoffs of the leader and
the following vendors are shown in Proposition 4.

Proposition 4. If there exist Pε
1, the rate of change gj(·, ·, ·), a

finite intensity measure ] and p∗ ∈ [0, 1] such that the
equation

κV1(n) � nP
ε
1 + 􏽚

A1

V1 n + g1 h, p
∗
, n( 􏼁( 􏼁](dh)

− 􏽚
A2

V1 n + g2 h, p
∗
, n( 􏼁( 􏼁](dh),

(54)

has solutions; then its solution is unique if and only if
V2(n) ≡ 0, i.e., the type-leader vendor makes the other
vendor’s profit be zero with pricing strategy.
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Proof. Firstly, we prove that if there exists Pε
1, the rate of

change gj(·, ·, ·), a finite intensity measure ] and p∗ ∈ [0, 1]

such that the equation

κV1(n) � nP
ε
1 + 􏽚

A1

V1 n + g1 h, p
∗
, n( 􏼁( 􏼁](dh)

− 􏽚
A2

V1 n + g2 h, p
∗
, n( 􏼁( 􏼁](dh),

(55)

has a unique solution, then V2(n) ≡ 0.
AsV1(n) andV2(n) are themaximum utilities of the first

and second vendor, we have V1(n)≥ 0 and V2(n)≥ 0. De-
note V(·) � V1(·) + V2(·), where V(·) represents the sum of
two vendors’ profits. It is straightforward to verify
V(n)≥V1(n) and V(n)≥V2(n). From equations (52) and
(53), we have

κV(n) � nP
ε
1 + 􏽚

A1

V1 n + g1 h, p
∗
, n( 􏼁( 􏼁](dh) − 􏽚

A2

V1 n + g2 h, p
∗
, n( 􏼁( 􏼁](dh)

+ 􏽚
A1

V2 n + g1 h, p
∗
, n( 􏼁( 􏼁](dh) − 􏽚

A2

V2 n + g2 h, p
∗
, n( 􏼁( 􏼁](dh)

� nP
ε
1 + 􏽚

A1

V1 n + g1 h, p
∗
, n( 􏼁( 􏼁 + V2 n + g1 h, p

∗
, n( 􏼁( 􏼁􏼂 􏼃](dh)

− 􏽚
A2

V1 n + g2 h, p
∗
, n( 􏼁( 􏼁 + V2 n + g2 h, p

∗
, n( 􏼁( 􏼁􏼂 􏼃](dh).

(56)

From the definition of V(·), we derive that

κV(n) � nP
ε
1 + 􏽚

A1

V n + g1 h, p
∗
, n( 􏼁( 􏼁](dh)

− 􏽚
A2

V n + g2 h, p
∗
, n( 􏼁( 􏼁](dh).

(57)

Comparing Eqs. (54) and (57) finds that V1(·) and V(·)

have the same structure. If there exists a unique solution to
equation (57), we have V(·) ≡ V1(·). -erefore, V2(·) ≡ 0.
-e necessity of Proposition 3 is proved.

Now, we prove the sufficiency. If V2(·) ≡ 0 and the
solution of equation (54) exists, then it is unique. Assume
that there exist two solutions v1 and v2, v1 ≡ v2, i.e., there
exists m ∈ 0, 1, . . . , M{ } such that v1(m)≠ v2(m). Without
loss of generality, we assume that v1(m)< v2(m). From
V(·)>V1(·), v2(m) � V(m) and v1(m) � V1(m) are ob-
tained. Moreover, V2(m) � V(m) − V1(m)≠ 0, contradic-
tory with V2 ≡ 0. -erefore, if the solution of equation (54)
exists, its solution is unique when V2(·) ≡ 0. -e sufficiency
of Proposition 3 is proved.

Proposition 4 shows the condition that the type-leader
vendor obtains surplus of all producers. In this case, the
following vendor is unprofitable and gradually withdraws
from the market. Eventually, the market will be monopo-
lized by the type-leader vendor. □

5. Example

For the convenience of explanation, we add two
assumptions.

Assumption 1. Let gj(h, p, n) ≔ ψj(h)ϕj(p, n) where ψj(·)

and ϕj(·, ·) are bounded and ϕj(·, ·) is twice continuously
differentiable for the first variable.

Let ξj ≔ 􏽒
Aj
](dh), ωj ≔ 􏽒

Aj
ψj(h)](dh) and ηj ≔ 􏽒

Aj
ψ2

j

(h)](dh). ξj, ωj and ηj are finite as A1 and A2 are bounded
below. -e first order condition for p from HJB equation
(27) is

􏽚
A1

V1′ n + ψ1(h)ϕ1(p, n)( 􏼁
zϕ1(p, n)

zp
ψ1(h)](dh)

− 􏽚
A2

V2′ n + ψ2(h)ϕ2(p, n)( 􏼁
zϕ2(p, n)

zp
ψ2(h)](dh) � 0.

(58)

As the exact analytic solution of HJB equation (27) is
difficult to be obtained, we consider the approximate so-
lution of equation (27). Let Vj(n + ψ1(h)ϕ1(p, n)) be ap-
proximately equal to Vj(n) + Vj

′(n)ψj(h)ϕj(p, n) + 1/2V′
′
j

(n)ψ2
j(h)ϕ2j(p, n) and Vj

′(n + ψ1(h)ϕ1(p, n)) be approxi-
mately equal to Vj

′(n) + V′
′
j(n)ψj(h)ϕj(p, n). Substituting

them into (58) yields

􏽥V1′(n) ω1
zϕ1(p, n)

zp
− ω2

zϕ2(p, n)

zp
􏼢 􏼣 + 􏽥V1″(n) η1ϕ1(p, n)

zϕ1(p, n)

zp
− η2ϕ2(p, n)

zϕ2(p, n)

zp
􏼢 􏼣 � 0, (59)
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where 􏽥Vj(·) is an approximate solution of Vj(·). For ac-
quiring the type-leader vendor’s optimal strategy, As-
sumption 2 is given.

Assumption 2. -ere exist ωj, ηj, p∗, ϕj(p, n) to satisfy
Assumption 1, for any p ∈ [0, 1], such that

􏽥V1′(n) ω1
z2ϕ1(p, n)

zp2 − ω2
z2ϕ2(p, n)

zp2􏼢 􏼣 + 􏽥V1″(n) η1ϕ1(p, n)
z2ϕ1(p, n)

zp2􏼢

+η1
zϕ1(p, n)

zp
􏼠 􏼡

2

− η2ϕ2(p, n)
zϕ2(p, n)

zp
− η2

zϕ2(p, n)

zp
􏼠 􏼡

2
⎤⎦< 0

zϕ1(p, n)

zp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌p�p∗
�

zϕ2(p, n)

zp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌p�p∗
� 0.

(60)

Assumption 2 implies that p∗ is a unique optimal
strategy for the type-leader vendor. Combining with pricing
strategy, HJB equation (27) can be approximately written by

q1
􏽥V
′′
1(n) + q2

􏽥V1′ (n) + q3
􏽥V1(n) + nPε

1 � 0, (61)

where q1 ≔ 1/2(η1ϕ
2
1(p∗, n) − η2ϕ

2
2(p∗, n)), q2 ≔ ω1ϕ1

(p∗, n) − ω2ϕ2(p∗, n), and q3 ≔ ξ1 − ξ2 − κ. Similarly,

q1
􏽥V
′′
2(n) + q2

􏽥V2′ (n) + q3
􏽥V2(n) � 0. (62)

In order to simplify the analytical solution of equations
(61) and (62), we assume that q1 and q2 are independent to n.
Denote CΥ as constants which do not depend on n

(Y � 1, 2, . . . , 11). Four cases are divided to solve equations
(61) and (62).

Case 1. Consider q1 ≠ 0 and q22 − 4q1q3 > 0. If q3 ≠ 0, Solving
equations (61) and (62) yields

􏽥V1(n) � −
nPε

1
q3

+
q2P

ε
1

q23
+ C1e

− q2+
������
q22− 4q1q3

√
( )/2q1( )n

+ C2e
− q2+

������
q22− 4q1q3

√
( )/2q1( )n

,

􏽥V2(n) � C1e
− q2+

������
q22− 4q1q3

√
( )/2q1( )n

+ C2e
− q2+

������
q22− 4q1q3

√
( )/2q1( )n

.

(63)

If q3 � 0, the solutions of 􏽥V1(n) and 􏽥V2(n) are

􏽥V1(n) � C3e
− q2/q1( )n

+ C4 −
nPϵ1
q2

􏽥V2(n) � C3e
− q2/q1( )n

+ C4,

(64)

respectively.

Case 2. Consider q1 ≠ 0 and q22 − 4q1q3 � 0. If q2 ≠ 0, solving
equations (61) and (62), we have

􏽥V1(n) � −
nPε

1
q3

+
q2P

ε
1

q23
+ C5 + nC6( 􏼁e

− q2/q1( )n
,

􏽥V2(n) � C5 + nC6( 􏼁e
− q2/q1( )n

.

(65)

If q2 � 0, 􏽥V1(n) and 􏽥V2(n) are verified to satisfy

􏽥V1(n) � −
n3Pε

1
6q1

+ C7n + C8,

􏽥V2(n) � C7n + C8.

(66)

Case 3. Consider q1 ≠ 0 and q22 − 4q1q3 < 0. In this case, we
solve equations (61) and (62) to obtain

􏽥V1(n) � −
nPε

1
q3

+
q2P

ε
1

q23
+ e

− q2/2q1( )n
C9 cos

���������

4q1q3 − q22

􏽱

2q1
n + C10 sin

���������

4q1q3 − q22

􏽱

2q1
n⎛⎜⎜⎝ ⎞⎟⎟⎠,

􏽥V2(n) � e
− q2/2q1( )n

C9 cos

���������

4q1q3 − q22

􏽱

2q1
n + C10 sin

���������

4q1q3 − q22

􏽱

2q1
n⎛⎜⎜⎝ ⎞⎟⎟⎠.

(67)
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Case 4. Consider q1 � 0. If q2 ≠ 0, Solving equations (61) and
(62) yields

􏽥V1(n) � C11e
− q3/q2( )n

−
Pε
1

q3
n −

q2

q3
􏼠 􏼡,

􏽥V2(n) � C11e
− q3/q2( )n

.

(68)

If q2 � 0, 􏽥V1(n) and 􏽥V2(n) satisfy

􏽥V1(n) � −
n

q3
P
ε
1, (69)

􏽥V2(n) ≡ 0. (70)

It is easy to verify that the solutions in the four cases
satisfy the verification theorem in Proposition 3. In par-
ticular, from equations (69) and (70), 􏽥V1(·) has a unique
solution and 􏽥V2(n) ≡ 0 in this situation, which satisfies the
conclusion in Proposition 4.

6. Conclusion

-is paper explores a stochastic differential equation
driven by Poisson random measure and its application in a
duopoly market which exists two different types of con-
sumers. We assume that prices of goods are decided by the
number of consumers. To study vendors’ optimal pricing
strategies, scopes of goods prices are obtained from the
cutoff. In addition, we prove that the quantity of buyers
obeys a SDE resorting to the definition of Poisson sto-
chastic measure and maximizing the vendor payoff. We
also verify that the SDE exists a unique solution. Given the
SDE, the corresponding HJB equation reflecting the profits
of vendor is derived by using the dynamic programming
principle.

In certain markets where the effectiveness of goods is
more important than its price, we introduce the type-
leader model. In the type-leader model, we find vendors’
price strategies and verify that the commodity prices are in
the price ranges in Proposition 1. -e conditions that the
type-leader vendor obtains surplus of all producers are
acquired by existence and uniqueness of solutions of HJB
equations. An example of this problem is given and ap-
proximate solutions for the profit of the two vendors are
obtained.
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