
Research Article
Simultaneous Optimization of the Liner Shipping Route and Ship
Schedule Designs with Time Windows

Xi Jiang ,1 Haijun Mao ,1 and Hao Zhang 1,2

1School of Transportation, Southeast University, Nanjing 211189, China
2School of Traffic Engineering, Huaiyin Institute of Technology, Huai’an 223003, China

Correspondence should be addressed to Haijun Mao; maohaijun@seu.edu.cn

Received 4 June 2020; Revised 4 December 2020; Accepted 10 December 2020; Published 22 December 2020

Academic Editor: Mauro Gaggero

Copyright © 2020 Xi Jiang et al.(is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(is paper proposes to address the problem of the simultaneous optimization of the liner shipping route and ship schedule designs
by incorporating port time windows. Amathematical programmingmodel was developed tominimize the carrier’s total operating
cost by simultaneously optimizing the port call sequence, ship arrival time per port of call, and sailing speed per shipping leg under
port time window constraints. In view of its structure, the nonlinear nonconvex optimization model is further transformed into a
mixed-integer linear programming model that can be efficiently solved by extant solvers to provide a global optimal solution. (e
results of the numerical experiments performed using a real-world case study indicated that the proposed model performs
significantly better than the models that handle the design problems separately. (e results also showed that different time
windows will affect the optimal port call sequence. Moreover, port time windows, bunker price, and port efficiency all affect the
total operating cost of the designed shipping route.

1. Introduction

Container lines transport containers following fixed se-
quences of port calls with a regular service frequency [1, 2]. A
port, the core of the shipping logistics chain, needs to service
a large number of ships on different routes according to
predetermined schedules. In recent years, with the fast
growth of container trade, ports are becoming more and
more congested. In April 2017, Shanghai port, the world’s
largest container port, was not immune from port con-
gestion, which surprised the industry. Meanwhile, slow port
expansion projects in some nondeveloped countries and
regions have exacerbated this phenomenon. (is shows that
the daily service capacity of a port is limited, and, therefore,
it cannot guarantee that a ship can be serviced as soon as it
arrives at the port. As a result, the availability of ports, i.e.,
port time windows, is the first factor to be considered when
designing a ship schedule [3].

However, in practice, it is not feasible to design a ship
schedule under port time windows constraints for a given
route without considering the optimization of the port

rotation. We take the S2 service route operated by SITC
Container Lines as an example to illustrate. (e route,
consisting of four ports, provides services following the port
call sequence of Taicang-Shanghai-Osaka-Kobe-Taicang.
Without the constraints of time windows, only one con-
tainer ship is needed to maintain weekly service frequency
on the route. Now, we assume that the time windows of each
port call are as follows: Taicang (Tuesday), Shanghai
(Monday), Osaka (Friday), and Kobe ((ursday). As shown
in Figure 1(a), owing to the constraints of time windows, a
ship needs to wait in the anchorage for nearly 6 days before
arriving at Shanghai as well as at Kobe following the original
port call sequence on the route. (It takes only a few hours for
a ship from Taicang to Shanghai as well as from Osaka to
Kobe.)(erefore, it would take 3 weeks for a ship to perform
a round-trip journey, which means that three ships need to
be deployed on the route. As a result, the weekly operating
cost of the route will increase significantly. In addition, the
longer transit time leads to delay in delivery, which also
results in loss of sales, goodwill, and service satisfaction to
the carrier. However, if we change the port call sequence to
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Shanghai-Taicang-Kobe-Osaka-Shanghai, as shown in
Figure 1(b), it only takes 1week for a ship to perform a
round-trip journey. From the above comparison, it is easy to
see that the adjusted port call sequence can greatly reduce
the operating cost compared with the original one, subject to
the constraints of time windows. (e reason why we can
make such an adjustment is the operational flexibility of the
route. Taicang and Shanghai are both ports in China. For the
carriers operating foreign trade, there is no cargo flow
carried by the ships between the two adjacent O-D port pairs
in the same country except for special reasons (empty
container repositioning, transshipment operations due to
skipping port calls, etc.). Moreover, the distance between the
two ports is very short. In fact, such similar port pairs or
groups are fairly common, such as the Kansai port group,
which includes the Osaka and Kobe ports; the Kanto port
group, which includes the Tokyo, Yokohama, and Kawasaki
ports; the Manila north and south ports; and the Laem
Chabang and Bangkok ports.

Hence, liner shipping route design and ship schedule
design with time windows should be carried out at the same
time rather than one after another. Otherwise, the designed
shipping route and schedule will not be feasible in reality.
(is study provides a decision support system for container
lines to improve their services and reduce their operating
costs.

1.1. Literature Review. (is study is related to two research
topics: liner shipping network design and ship scheduling.
(e former has been a hot topic in the field of liner shipping
research over recent decades. (e work of Rana and Vickson
[4] was the early contribution in this field.(ey formulated a
mathematical model to determine the port rotation, the
number of trips each ship makes in a planning horizon, and
the amount of transported cargo for multiple ships by
employing a Lagrangian relaxation method with the ob-
jective of maximizing the total profit. Shintani et al. [5]
proposed a two-stage programming model to design a single
shipping route by explicitly considering empty container
repositioning. A genetic algorithm-based heuristic was
employed to solve the problem. (e work by Agarwal and
Ergun [6] was the first academic study to consider the weekly
frequency constraint in the design of liner transport service
networks composed of two or more routes. However, the
sailing speed in their model was predetermined, not variable.
Álvarez [7] jointly optimized the optimal routing and fleet
deployment by using a combined tabu search and a column
generation-based heuristic method. Wang and Meng [8]
proposed a novel aspect in the liner shipping network design
problem by reversing the port rotation direction. (ey
demonstrated that the operating cost of a container liner
shipping network could be significantly reduced by reversing
the port rotation direction of liner service routes. Song and
Dong [9] proposed a shipping route design problem that
considers ship deployment and empty container reposi-
tioning with the objective of minimizing the total cost. A
three-stage solution method was proposed to deal with the
problem. However, they failed to consider the speed

variation in each leg. Wang and Meng [10] considered the
delivery deadlines in the liner shipping network design
problem.(e problem was proved to be NP-hard and solved
by a column generation-based heuristic method. Karsten
et al. [11] examined the liner shipping network design
problem that considers the coordination between vessels and
cargo transit time restrictions. Wang et al. [12] designed a
single intercontinental service by simultaneously optimizing
the sailing speed, the port rotation of selected ports in a given
set of ports, and the shipping demand for each type. A
mixed-integer linear programming model was developed
and solved by using exact algorithms. Wang et al. [13]
proposed a port call adjustment problem to determine the
new additional port calls to be inserted and the existing port
calls to be removed for the routes in a shipping network. A
two-phase solution method was proposed using two heu-
ristic methods.

A considerable number of papers on vessel scheduling
have been published in the past. Meng andWang [14] jointly
determined the sailing speed, service frequency, and fleet
deployment for an operating strategy problem. An exact
ε-optimal algorithm was proposed to solve the problem.
Wang and Meng [15] investigated the optimal sailing speed
on each shipping leg and the optimal fleet size in a liner
shipping network. (ey reformulated the bunker con-
sumption function from historical operating data, which was
applied to a real-world case study. Wang et al. [16] simul-
taneously optimized the schedules of shipping routes and
cargo allocation with the objective of reducing the de-
murrage cost. Cheaitou and Cariou [17] tried to optimize the
sailing speed under a semielastic demand. (eir results
showed that the slow steaming strategy may not be optimal.
Hvattum et al. [18] developed an exact algorithm to optimize
the sailing speed for a fixed sequence of port calls with hard
time windows. (ey proved that the optimal speeds can be
obtained in quadratic time. Wang et al. [19] studied the liner
ship schedule design problem with hard time windows.
Wang et al. [3] studied the same problem with consideration
of the availability of each berth with the objective of min-
imizing the bunker cost, operating cost, and inventory cost
for a single shipping route. Alharbi et al. [20] examined the
ship schedule design problem with time windows for a liner
shipping network. In their model, the vessel could utilize a
premium berth with high penalty when violating the berth
time window. Aydin et al. [21] focused on the sailing speed
optimization problem with time windows on a single voyage
that considers the waiting cost of early arrivals. Dulebenets
[22] investigated the vessel scheduling problem with a
heterogeneous fleet for a single shipping route. Zhen et al.
[23] proposed an integrated planning model to simulta-
neously determine the fleet size, ship schedule, sailing speed,
and cargo allocation for a given shipping network. Kim et al.
[24] designed a simple single route by considering the
variable sailing speed on each leg and the fleet size to
maximize a carrier’s profit. Koza et al. [25] proposed a
mixed-integer programming model for the integrated liner
shipping network design and scheduling problem that in-
corporates the transshipment times, together with a solution
method based on column generation. Jiang et al. [26]
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developed a mixed-integer linear programming model for
the near-sea liner shipping schedule design problem con-
sidering big customers’ time preferences.

From the abovementioned literature, we can see that the
two key and interrelated problems, namely, liner shipping
route and ship schedule, are usually treated separately by
most existing studies. Although a few articles combined the
two, they did not consider the port time window constraints
and the variable sailing speed per shipping leg. (is study
tries to fill the gap. As mentioned in Section 1 of this study, it
is highly desirable to simultaneously optimize port call se-
quence and ship schedule subject to the constraints of time
windows.

1.2. Objectives and Contributions. (is study focuses on
jointly optimizing the port rotation, sailing speed on each
leg, and ship arrival time at each port of call for a given set of
ports with time windows while minimizing the sum of the
vessel operating cost, fuel cost, and waiting cost. (is
problem has practical significance because it can help
container lines improve service levels and reduce total op-
erating costs.

(e contribution of this study is threefold. First, it si-
multaneously determines the optimal port rotation, the
optimal sailing speed per shipping leg, and the optimal
arrival time per port of call under port time window con-
straints. Second, a tailored mixed-integer programming
model was developed that considers the special structure of
the problem. Finally, some useful management insights
obtained from case studies can provide support for container
lines.

2. Problem Description and
Mathematical Formulation

We consider a group of ports, denoted by a set I. (e set I

has N number of physical ports indexed by i and j. (e
voyage from port i to port j is called the shipping leg (i, j).
We define the set of all shipping legs as A � (i, j)|i, j ∈ I .
Since the shipping route is a closed circle, we can arbitrarily
choose one port as the first port of call. In this study, we
choose physical port 1 as the first port of call. (e details on
problem description and key constraints are provided in the
following sections.

2.1. Port Rotation. (e port rotation of a shipping route
forms a loop in practice. We use the binary variables
xij ∈ 0, 1{ } to indicate whether the shipping leg (i, j) is used.
In this study, we assume that each physical port can be
visited only once during a round-trip journey; then, the
constraint j∈I,j≠ixij � j∈I,j≠ixji � 1 should hold for each
port i.

2.2. Bunker Consumption. A ship’s unit bunker consump-
tion largely depends on its sailing speed. We denote by the
variable vij the sailing speed of a ship on leg (i, j), and we
define fij(vij) as the bunker consumption in tons per
nautical mile at the sailing speed vij on leg (i, j). Based on the
results of existing studies [15, 27], the fuel consumption is a
power function of the sailing speed: fij(vij) � aij(vij)

bij ,
where aij and bij are two coefficients estimated from the
practical data. Let β be the unit bunker price (in US dollars
per ton), and let Lij be the length of shipping leg (i, j); then,
the weekly fuel cost of the designed shipping route can be
calculated by βi∈Ij∈IxijLijaij(vij)

bij .

2.3. Port Time Windows. Since the service provided by the
ports has time windows, we set Ωi to represent the time
windows at port i. We define the time 00 : 00 of a certain
Sunday as time 0. Let ta

i be the ship arrival time at port i, and
letΩi⊆[0, 168] be the time windows at port i in the first cycle.
For example, Ωi � [24, 48]⋃  [96, 168] means that port i is
available on Monday, (ursday, Friday, and Saturday, and a
ship can call the port for service in these periods. Otherwise,
the ship must wait in the anchorage until the time windows
open again. Owing to the characteristics of weekly service
frequency of liner shipping, ships call port i at the same time
in different weeks. Hence, an arrival time is feasible if and
only if (ta

i mod168) ∈ Ωi. For example, a ship can call port i

for service at ta
i � 298 because (298mod168 � 130) ∈ Ωi.

It should be noted that, as a ship has a minimum sailing
speed, it needs to wait in the anchorage when arriving at the
port outside the time windows. On the one hand, it is well
known that, when a ship is waiting in the anchorage, al-
though its main engine is not running, its auxiliary engine
still does. (us, there is still fuel consumption on the ship.
On the other hand, the inventory cost of containers also rises
with the increase in waiting time. Hence, the weekly waiting
cost of the designed route can be calculated by i∈Ij∈It

w
ijcw

j ,
where the variable tw

ij is the waiting time for the ship in the

Kobe, the Thursday
after the next Thursday

Osaka, next FridayShanghai, next Monday

Taicang, Tuesday

(a)

Kobe, Thursday

Osaka, FridayShanghai, Monday

Taicang, Tuesday

(b)

Figure 1: S2 service provided by SITC. (a) Original sequence. (b) Adjusted sequence.
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anchorage at port j after using shipping leg (i, j), and cw
j is

the fixed waiting cost per hour in the anchorage at port j.

2.4. Fixed Operating Cost. A fleet of homogeneous ships is
deployed on the designed shipping route to achieve a weekly
service frequency for each port of call. Let the integer
variable m represent the number of ships deployed on the
route. (us, the weekly operating cost of the designed route
can be calculated by Copm, where Cop is the fixed weekly
operating cost in US dollars per week per ship.

2.5. Mathematical Model. (e problem of the simultaneous
optimization of the liner shipping route and ship schedule
designs with time windows aims to determine the optimal
port call sequence, the optimal sailing of each shipping leg,
and the optimal ship arrival time that satisfies the time
window constraints at each port to minimize the total cost
including the vessel operating cost, fuel cost, and waiting
cost. Before presenting the model, we list the variables and
parameters below.

Decision variables:

xij: binary variables indicating whether shipping leg
(i, j) is used on the designed shipping route
ηi: auxiliary variables for subtour elimination
constraints
vij: sailing speed of a container ship on leg (i, j)

Tij: sailing time of a container ship on leg (i, j)

tw
ij: waiting time for the ship to be in the anchorage at
port j after using leg (i, j)

m: integer variable representing the number of ships
deployed on the designed shipping route
ta
i : ship arrival time at port i

t
a

1: the time when the ship returns to the first port of
call after visiting all ports of call of a round-trip
journey
t

a

i : ship arrival time at port i in the first cycle
fijh: numbers of containers of container shipping
demand h ∈ H on leg (i, j)

Sets:

I: set of all ports
A: set of all shipping legs
H: set of all container shipping demands
Ζ+: set of nonnegative integers

Parameters:

N: number of ports on the designed shipping route
Lij: length of shipping leg (i, j)

Vmin
ij : minimum sailing speed of a container ship on

leg (i, j)

Vmax
ij : maximum sailing speed of a container ship on

leg (i, j)

Ωi: port time windows at port i

cw
j : fixed waiting cost per hour in the anchorage at port j

t
p
i : fixed dwell time at port i

Cop: fixed weekly operating cost of one container ship
mmax: maximum number of ships deployed on the
designed shipping route
Dh: volume of container shipping demand h

oh and dh: port of loading and port of discharging for
container shipping demand h

M1, M2, andM3: very large numbers
β: unit bunker price
ai: a coefficient estimated from the practical data
bi: a coefficient estimated from the practical data
Cap: capacity of one container ship

(us, the problem of the simultaneous optimization of
the liner shipping route and ship schedule designs with time
windows can be formulated as follows:

[M1]minC
op

m + β
i∈I


j∈I

xijLijaij vij 
bij

+ 
i∈I


j∈I

t
w
ijc

w
j ,

(1)

subject to


j∈I,j≠ i

xij � 
j∈I,j≠ i

xji � 1, ∀i ∈ I, (2)

ηi − ηj + Nxij ≤N − 1, ∀i, j ∈ I, i, j≠ 1, i≠ j, (3)

0≤Tij ≤M1xij, ∀i, j ∈ I, (4)

Lij

vij

− M1 1 − xij ≤Tij ≤
Lij

vij

, ∀i, j ∈ I, (5)

V
min
ij ≤ vij ≤V

max
ij , ∀i, j ∈ I, (6)

t
a

i � t
a
i mod168, i ∈ I, (7)

t
a

i ∈ Ωi, i ∈ I, (8)

t
a
i + t

p
i + Tij + t

w
ij − t

a
j ≤M2 1 − xij , ∀i ∈ I, j ∈ I\ 1{ },

(9)

t
a
i + t

p
i + Tij + t

w
ij − t

a
j ≥ − M2 1 − xij , ∀i ∈ I, j ∈ I\ 1{ },

(10)

t
a
i + t

p
i + Ti1 + t

w
i1 − t

a

1 ≤M2 1 − xi1( , ∀i ∈ I, (11)

t
a
i + t

p
i + Ti1 + t

w
i1 − t

a

1 ≥ − M2 1 − xi1( , ∀i ∈ I, (12)

0≤ t
w
ij ≤M3xij, ∀i, j ∈ I, (13)

0≤ t
w
i1 ≤M3xi1, ∀i ∈ I, (14)

t
a

1 ≤ t
a
1 + 168m, (15)
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m ∈ 1, 2, 3, . . . . . . , m
max

 , (16)


j∈I

fjih − 
j∈I

fijh �
0, ∀i≠ oh, dh,

Dh, ∀i � dh,
∀h ∈ H, (17)


j∈I

fijh � Dh, ∀i ∈ oh,∀h ∈ H, (18)


h∈H

fijh ≤Cap · xij, ∀(i, j) ∈ A. (19)

(e objective function (1) minimizes the total weekly
operating cost, which amounts to the sum of the vessel
operating cost, fuel cost, and waiting cost. Constraint (2)
ensures that each port can be visited only once. Constraint
(3) is the Miller–Tucker–Zemlin (MTZ) subtour elimination
constraints. Constraints (4) and (5) jointly guarantee that if
leg (i, j) is used, Tij � (Lij/vij) or Tij � 0 otherwise. Con-
straint (6) defines the lower and upper bounds of the sailing
speed on each shipping leg. Constraints (7) and (8) jointly
impose the port time window restrictions at each port.
Constraints (9) and (10) establish the relationship between
the port call arrival times: if leg (i, j) is used, the ship arrival
time at port j is equal to the sum of the ship arrival time at
port i, the fixed dwell time at port i, the sailing time on
shipping leg (i, j), and the waiting time in the anchorage at
port j. Constraints (11) and (12) define the time when the
ship returns to the first port of call after a round-trip journey.
Constraints (13) and (14) indicate that if leg (i, j) is not used,
the waiting time for the ship in the anchorage at port j

should be 0. Constraint (15) enforces a weekly service fre-
quency on the designed shipping route. Constraint (16)
indicates that the number of ships deployed on the shipping
route is a positive integer. Constraints (17) and (18) indicate
that all container shipping demands should be satisfied while
ensuring the container flow balance. Constraint (19) indi-
cates that the total number of containers loaded on each
shipping leg should not exceed the capacity of one container
ship.

3. Approximate MILP Model

To take advantage of state-of-the-art MILP solvers such as
CPLEX to solve the developed model [M1], we need to deal
with three difficulties: (i) the bunker consumption, which
contains two variables and power functions in the objective
function, is nonlinear; (ii) constraint (5) contains the re-
ciprocal of the sailing speed; and (iii) both the “mod” op-
eration and the set Ωi lead to a nonconvex domain. (ese
three difficulties make the proposed model challenging to
solve using the MILP solvers. Next, we deal with these
difficulties and transform the model [M1] into an approx-
imate mixed-integer linear programming model.

3.1. Linearization of the Bunker Consumptions. First, we
define a new variable uij to be the reciprocal of the sailing
speed vij

uij �
1

vij

, ∀i, j ∈ I. (20)

(en, constraints (5) and (6) can be transformed into
linear constraints associated with the variable uij:

Lijuij − M1 1 − xij ≤Tij ≤ Lijuij, ∀i, j ∈ I, (21)

U
min
ij �

1
V

max
ij

≤ uij ≤
1

V
min
ij

� U
max
ij , ∀i, j ∈ I. (22)

We introduce an auxiliary variable Bij to replace the
nonlinear combinational items xij and vij in the objective
function. We define Bij � xijLijaij(uij)

− bij . Hence, we have
Bij � Lijaij(uij)

− bij if xij � 1, i.e., leg (i, j) is used; otherwise,
Bij � 0. By introducing a very large number M4, we can
replace the above if-then complementary conditions
equivalently with the big-M reformulations of the following
constraints:

0≤Bij ≤M4xij, ∀i, j ∈ I, (23)

Lijaij uij 
− bij

− M4 1 − xij ≤Bij ≤ Lijaij uij 
− bij

, ∀i, j ∈ I.

(24)

By introducing the auxiliary variables gij, we define
gij � aij(uij)

− bij . Objective function (1) can be transformed
by constructing its epigraph form as follows:

minC
op

m + β
i∈I


j∈I

Bij + 
i∈I


j∈I

t
w
ijc

w
j , (25)

subject to

gij ≥ aij uij 
− bij

, ∀i, j ∈ I, (26)

and to constraints (23) and (24).
We define hij(uij) � aij(uij)

− bij . Because −bij ≤ − 2< 0
and aij > 0, hij(uij) is convex in uij ∈ [Umin

ij andUmax
ij ]. We

divide the interval [Umin
ij andUmax

ij ] into M equal segments:

U
min
ij � u

1
ij < u

2
ij < · · · < u

M
ij � U

max
ij , (27)

where M is a given integer number. As long as M is large
enough, the error of the approximate model can be con-
trolled within an acceptable range. We use um

ij to represent
any value of the M equal segments. From the property of the
first-order condition of the convex function, we can obtain

hij uij ≥ hij u
m
ij  + hij
′ u

m
ij  uij − u

m
ij , m � 1, 2, . . . , M, ∀i, j ∈ I,

(28)

where hij′(um
ij ) represents the tangent line of hij(uij) at the

point um
ij . (us, the function hij(uij) � aij(uij)

− bij can be
converted into the following piecewise function:

hij uij  � max
m�1,...,M

hij u
m
ij  + hij
′ u

m
ij  uij − u

m
ij  , ∀i, j ∈ I.

(29)

By combining constraints (26) and (29), we can obtain
M separate inequalities
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gij ≥ hij u
m
ij  + hij
′ u

m
ij  uij − u

m
ij  , m � 1, . . . , M, ∀i, j ∈ I.

(30)

3.2. Transformation of the Time Windows. Since the set Ωi

may be a discrete domain, by transforming the hard time
windows into soft time windows, we can obtain piecewise
functions that can eliminate the discrete domain and can be
linearized. For example, we assume that the time windows at
port i are Tuesday and(ursday. By introducing a very large
number M5, we can express the penalty function pi(t

a

i ) at
port i as follows:

pi
t

a

i(  �

M5, 0≤ta

i < 48,

0, 48≤ta

i < 72,

M5, 72≤ta

i < 96,

0, 96≤ta

i < 120,

M5, 120≤ta

i < 168.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

(e penalty cost is high enough to limit a ship to call the
port only within the time windows. For example, as shown in
Figure 2, ships can only call port i on Tuesdays and
(ursdays.

Next, we linearize the penalty function pi(t
a

i ). Since
pi(t

a

i ) has ni turning points, let bik be the turning points and
let Ki: � 1, 2, . . . , ni  be the set of all turning points at port
i. For example, as shown in Figure 2, there are 10 turning
points:
bi,1 � 0, bi,2 � 48, bi,3 � 48, bi,4 � 72, bi,5 � 72, bi,6 � 96, bi,7 �

96, bi,8 � 120, bi,9 � 120, and bi,10 � 168. By introducing the
continuous auxiliary variables wik and the binary auxiliary
variables zik, we can transform the piecewise function into
the following linear constraints:

Pi � 
k∈Ki

wikpi bik( , ∀i ∈ I,
(32)

t
a

i � 
k∈Ki

wikbik, ∀i ∈ I,
(33)

wi1 ≤ zi1, ∀i ∈ I, (34)

wik ≤ zi,k−1 + zik, k � 2, . . . , ni − 1,∀i ∈ I, (35)

wi,ni
≤ zi,ni−1, ∀i ∈ I, (36)


k∈Ki

wik � 1, ∀i ∈ I,
(37)



ni−1

k�1
zik � 1, ∀i ∈ I, (38)

wik ≥ 0, k � 1, . . . , ni,∀i ∈ I, (39)

zik ∈ 0, 1{ }, k � 1, . . . , ni − 1,∀i ∈ I, (40)

where wik can realize the function linearization and zik can
limit the value range of wik to limit the interval of t

a

i .
(us, the total penalty costs of time windows at all ports

are as follows:


i∈I

Pi � 
i∈I


k∈Ki

wikpi bik( .
(41)

By introducing the auxiliary variables θi ∈ Ζ+, we have

t
a

i � t
a
i − 168θi, ∀i ∈ I, (42)

0≤ta

i ≤ 168, ∀i ∈ I, (43)

θi ∈ Ζ
+
, ∀i ∈ I. (44)

It is noticeable that constraints (42)–(44) are equivalent
to constraint (7).

Hence, an approximated mixed-integer linear optimi-
zation model [M2] can be obtained, and it can be solved
efficiently by using state-of-the-art solvers, subject to con-
straints (2)–(4), (9)–(19), (21)–(24), (30), and (32)–(44).

[M2]minC
op

m + β
i∈I


j∈I

Bij + 
i∈I


j∈I

t
w
ijc

w
j + 

i∈I


k∈Ki

wikpi bik( .

(45)

4. Case Study

(is section presents the results of the numerical experiments
we conducted on the PBT1 service operated by SITC Con-
tainer Lines to assess the applicability of the proposed models
and algorithms. We first tested the validity of the solution
approach to determine how it can significantly reduce the
total cost. (en, we conducted a sensitivity analysis to test
some key input parameters in the solution approach.

4.1.ParameterSettings. (ePBT1 service includes nine ports
of call, and its port rotation is Qinhuangdao (QHD)⟶
Xingang (TXG)⟶Dalian (DAL)⟶Nagoya (NAG)⟶

Tuesdays and �ursdays

Pe
na

lty
 co

st

M5

0

0 24 48 72 96 120 144 168
Time (h)

Figure 2: Penalty functional image of soft time windows on
Tuesdays and (ursdays.
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Yokkaichi (YCI)⟶ Shimizu (SZU)⟶Tokyo (TOK)⟶
Yokohama (YOK)⟶Kawasaki (KAW)⟶Qinhuangdao
(QHD). We assumed that 2000-TEU ships were deployed on
the designed route, i.e., cap � 2, 000. (e operating cost
Cop � US, the maximum speed Vmax

ij � 25knots, the mini-
mum speed Vmin

ij � 5knots, the bunker price β � US, the
maximum number of ships deployed mmax � 5, and the fixed
waiting cost in the anchorage at each port cw

j �US$100/h.
For ease of calculation, we take the tightest upper bounds;
then, the very large numbers (M1, M2, M3, and M4) can be
set as max(Lij)/Vmin

ij , 168mmax, 168, and
max(Lij) · aij(Vmax

ij )bij , respectively. To avoid violating the
time window constraints, the very large number M5 was set
to 300,000. (e number of segments for the interval
[Umin

ij andUmax
ij ] was M � 200. (e bunker consumption

function of each leg was set to 0.001(v)2. (e port-to-port
distance, the dwell time at each port, and the time windows
are shown in Tables 1–3, respectively. CPLEX 12.8.0, pro-
grammed by the MATLAB toolbox YALMIP running on a
2.5GHz Intel Core Duo laptop with 16GB of RAM, is called
to solve the MILP model. (e MILP model inputting the
above parameters has 3,473 continuous variables, 207 in-
tegers (198 binary) variables, and 21,466 constraints, and the
optimal solution with 0 gap among objective bounds can be
found in about 1 hour.

4.2. Comparison with the Original Port Rotation. In this
section, we present the results of the validation of the
proposed model and the solution approach. (e results
obtained using the parameters in Section 4.1 are shown in
Tables 4 and 5. It is noticeable that the arrival times do not
violate port time window constraints. (e solution ap-
proach is feasible and optimal. We further compared our
model [M2] with the model of [3], which optimized sailing
speeds without optimizing port rotation, as shown in Ta-
ble 6. We can see that it takes nearly 400 h for a container
ship to wait in the anchorage in a round-trip journey using
the model in [3]. Hence, five container ships need to be
deployed on the route to meet the weekly service frequency,
while only two container ships need to be deployed fol-
lowing the proposed model [M2]. (e total cost is also
reduced by 45% compared with that in [3]. (erefore, the
proposed model and the solution approach can greatly
reduce the total cost.

4.3. Effects of Port TimeWindows. In this section, we discuss
the impact of port time windows on the solution. First, we
examine the effect of relaxing the time windows on the
results. We set the time windows to three scenarios, where
scenario 1 is the setting in section 4.1. As shown in Table 7, in
scenario 2, we give an extra day for the time window of each
port while keeping the time windows of scenario 1; we did
the same in scenario 3 on the basis of scenario 2. (e results
are shown in Table 8. It is noticeable that the total cost
decreases and that the port rotation is different. (is is
because, with the relaxation of the time windows, there will
be a better port rotation to reduce the total cost.

(en, we examine the effect of different time windows on
the results. Scenarios 4 and 5 are set to different time
windows from that of scenario 1, and each of them has only 1
day available in a week on each port, as shown in Table 9.
From the results in Table 10, we can see that, under different
time window restrictions, both the optimal port rotation and
the total cost are different. (e results also confirm the
applicability and flexibility of our proposed models and
algorithms, which always seek the optimal port rotation
subject to the constraints of the time windows.

4.4. Effects of Bunker Prices. (e bunker price fluctuates, and
the fuel cost constitutes the bulk of the total operating
expenses. Hence, in this section, we examine the impact of
bunker price on the solution. We set the bunker price from
US$200 to US$600, and the other parameters are the same as
those in Section 4.1. (e results are shown in Table 11. We
can see that, when the bunker price rises, the port rotation
remains the same, while the total cost increases significantly.
Moreover, with the increase in the bunker price, one more
container ship is deployed to maintain the weekly service
frequency. (e reason is that when more ships are deployed,
the round-trip time is longer, and hence ships can sail at a
lower speed to reduce bunker consumption.

4.5. Effects of Port Efficiency. In this section, we discuss the
effect of port efficiency on the solution. We varied the dwell
time at each port by −50%, −25%, +25%, +50%, and +100%
of the benchmark value, but the other parameters remained
the same.(e results are shown in Table 12. We can see that,
with the decrease in port efficiency, the total cost increased
significantly. (e port rotation changed only when the dwell
time was +100% of the benchmark value, and in other cases,
it remained the same. (is indicates that the port rotation
under the benchmark value cannot meet the limit of the time
windows. Hence, the optimal solution approach gives a new
port call order.

5. Conclusions and Future Work

In this paper, we investigated a new and practical tactical-
level decision support system that simultaneously opti-
mizes the liner shipping route and ship schedule designs
with time windows for the liner shipping industry. Owing
to the constraint of the time windows, the liner shipping
route design and the schedule design cannot be dealt with
separately. Otherwise, the designed schedule may result in
a delay in delivery and a huge increase in operating costs.
To deal with the problem, we developed a mathematical
programming model to simultaneously determine the
optimal port rotation, the optimal arrival time at each port
of call, and the optimal sailing speed on each leg, with the
objective of minimizing the total cost of the shipping
route. (e nonconvex and nonlinear model is then
transformed into a mixed-integer linear programming
model by reformulating the piecewise functions from the
reconstruction of the hard time windows and by ap-
proximating the convex nonlinear function through an
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outer linear approximation technique. (e new model can
be solved efficiently by using the current mainstream
optimization solver to obtain the optimal solution, which
proves the applicability of the model to the problem.

(e model was applied to a real-world case study in-
volving SITC Container Lines. A number of numerical
experiments were conducted, and a sensitivity analysis was
performed on the bunker price, port efficiency, and port
time windows. First, a higher bunker price and a lower port

efficiency result in a higher total cost, and the changes barely
affect the port call sequence. Second, with the relaxation of
the time windows, a better port rotation with a lower total
cost is obtained.

Our model can also accommodate the possibility of
violating time windows with only minor modifications.
Actually, M5 can be deemed as a high penalty cost using a
premium berth. If M5 is set to be an appropriate penalty
cost, a ship can arrive at the port outside time windows by

Table 1: Port-to-port distance matrix (in nautical miles).

Port QHD TXG DAL NAG YCI TOK YOK KAW SZU
QHD 0 131.4 167.2 1,169.5 1,165.2 1,297.8 1,281.6 1,288.2 1,212.7
TXG 131.4 0 218.7 1,221.1 1,216.7 1,349.4 1,333.2 1,339.7 1,264.3
DAL 167.2 218.7 0 1,058.1 1,053.7 1,186.4 1,170.2 1,176.7 1,101.3
NAG 1,169.5 1,221.1 1,058.1 0 14.1 225.6 209.4 215.5 139.1
YCI 1,165.2 1,216.7 1,053.7 14.1 0 221.5 205.2 211.3 135
TOK 1,297.8 1,349.4 1,186.4 225.6 221.5 0 21.2 18 135.9
YOK 1,281.6 1,333.2 1,170.2 209.4 205.2 21.2 0 11.6 119.7
KAW 1,288.2 1,339.7 1,176.7 215.5 211.3 18 11.6 0 125.8
SZU 1,212.7 1,264.3 1,101.3 139.1 135 135.9 119.7 125.8 0
Source: result of the Port Distance Desktop software.

Table 2: Dwell time at each port (in hours).

Port QHD TXG DAL NAG YCI TOK YOK KAW SZU
Dwell time 20 13 24 12 4 20 8 8 6

Table 3: Available time at each port.

Port Sun Mon Tue Wed (u Fri Sat
QHD Free
TXG Free
DAL Free
NAG Free
YCI Free
TOK Free
YOK Free
KAW Free
SZU Free
(e blanks indicate that the port is busy on this day.

Table 4: Optimal sailing speed on each leg.

Leg QHD⟶ TXG⟶ DAL⟶ YCI⟶ NAG⟶ YOK⟶ KAW⟶ TOK⟶ SZU⟶
Speed (knots) 10.73 19.88 21.95 10.73 10.73 10.73 10.73 10.73 10.68

Table 5: Optimal arrival time at each port.

Port call QHD TXG DAL YCI NAG TOK KAW TOK SZU QHD
Arrival time 87.75 120.00 144.00 216.00 221.31 252.83 261.91 271.59 304.25 423.75

Table 6: Comparison between the model [M2] and the model of Wang et al. [3].

Model Total cost (×105 US$) Fleet size Total waiting time in the anchorage (h)

(e model [M2] 6.38 2 0
Route: QHD⟶TXG⟶DAL⟶YCI⟶NAG⟶YOK⟶KAW⟶TOK⟶ SZU⟶QHD

(e model of [3] 11.6 5 400.76
Route: QHD⟶TXG⟶DAL⟶NAG⟶YCI⟶ SZU⟶TOK⟶YOK⟶KAW⟶QHD
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paying a penalty cost that is equal to M5. (en, the objective
is to minimize the sum of the vessel operating cost, fuel cost,
waiting cost, and penalty cost.

In the future, first, we will extend the proposed model by
incorporating the inventory cost. Second, as this study

focuses on a single shipping route, future research could
extend the investigation of the problem to a liner shipping
network composed of multiple shipping routes, on each of
which a port can be visited twice a week. (ird, future
research could incorporate the proposed problem into a fleet

Table 7: Relaxations of the time windows at each port.

Port call Scenario Sun Mon Tue Wed (u Fri Sat

QHD 2 Free Free
3 Free Free Free

TXG 2 Free Free
3 Free Free Free

DAL 2 Free Free
3 Free Free Free

NAG 2 Free Free
3 Free Free Free

YCI 2 Free Free
3 Free Free Free

TOK 2 Free Free
3 Free Free Free

YOK 2 Free Free
3 Free Free Free

KAW 2 Free Free
3 Free Free Free

SZU 2 Free Free
3 Free Free Free

Table 8: Optimal solutions with different relaxations of the time windows.

Scenario Fleet size Total cost (×105 US$)

1 2 6.38
Route: QHD⟶TXG⟶DAL⟶YCI⟶NAG⟶YOK⟶KAW⟶TOK⟶ SZU⟶QHD

2 2 5.67
Route: QHD⟶DAL⟶YCI⟶NAG⟶ SZU⟶YOK⟶KAW⟶TOK⟶TXG⟶QHD

3 2 5.66
Route: QHD⟶DAL⟶YCI⟶NAG⟶ SZU⟶KAW⟶TOK⟶YOK⟶TXG⟶QHD

Table 9: Different time windows at each port.

Port call Scenario Sun Mon Tue Wed (u Fri Sat

QHD 4 Free
5 Free

TXG 4 Free
5 Free

DAL 4 Free
5 Free

NAG 4 Free
5 Free

YCI 4 Free
5 Free

TOK 4 Free
5 Free

YOK 4 Free
5 Free

KAW 4 Free
5 Free

SZU 4 Free
5 Free
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deployment problem while considering decisions making
for coordinating the contractual and spot voyages assign-
ment [28, 29]. Fourth, the convergent speed of the solvers is
generally slow with large-scale cases, so we will attempt to
use appropriate heuristic algorithms to accelerate solution
efficiency.
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