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Aiming at remedying the problem of low prediction accuracy of existing air pollutant prediction models, a denoising autoencoder
deep network (DAEDN) model that is based on long short-term memory (LSTM) networks was designed. (is model created a
noise reduction autoencoder with an LSTM network to extract the inherent air quality characteristics of original monitoring data
and to implement noise reduction processing on monitoring data to improve the accuracy of air quality predictions. (e LSTM
network structure in the DAEDN model was designed as bidirectional LSTM (Bi-LSTM) to solve the problem of a lag in the
unidirectional LSTM prediction results and thereby to further improve the prediction accuracy of the prediction model. Using air
pollutant time series data, the DAEDNmodel was trained using hourly PM2.5 concentration data collected in Beijing over 5 years.
(e experimental results show that the DAEDN model can extract more stable features from the noisy input after training was
completed. (e models were evaluated using RMSE and MAE, and the results show that the indexes are 15.504 and 6.789;
compared with unidirectional LSTM, it is reduced by 7.33% and 5.87%, respectively. In addition, the new prediction model
essentially considered the time series properties of the prediction of the concentration of spatial pollutants and the fully integrated
environmental big data, such as air quality monitoring, meteorological monitoring, and forecasting.

1. Introduction

Air quality prediction is highly significant to any govern-
ment’s emergency management of severely polluted
weather. Predictions not only warn the public to reasonably
avoid highly polluted weather but also provide time for the
government to implement appropriate emergency measures
to mitigate atmospheric pollution, such as limiting the
production and emissions of heavily polluting enterprises
and restricting motor vehicles [1]. At the same time, air
quality forecasting is an effective technical means to im-
plement scientific decision-making and comprehensively
manage the environment in an effort to strengthen air
pollution prevention and control, and it provides an im-
portant way to quickly convert relevant environmental
monitoring information into a basis for air pollution pre-
vention and decision-making. For those reasons, air pol-
lution prediction is highly valued by the state. In accord with
the requirements of China’s State Council’s Notice on

Printing and Distributing Action Plan for Air Pollution
Prevention and Control (Guo Fa [2013] No. 37), the Beijing-
Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta
regions were established in 2014. Construction of regional,
provincial, and municipal levels of heavy-pollution weather
monitoring and early warning systems were to be completed
by the end of that year. Other provinces (autonomous re-
gions and municipalities), subprovincial cities, and capital
cities were to be completed by the end of 2015. As a core
function of heavy-pollution weather monitoring and early
warning systems, air quality prediction has an important
influence on the function of the entire system. However, air
quality prediction is a complex, systematic undertaking, and
improving the accuracy of predictions is an urgent and
difficult problem in the field of air pollution prevention.

A goal of air quality prediction is to predict the degree of
air pollution in an area for the next day, basing that pre-
diction on past air pollutant emissions and meteorological
conditions, atmospheric diffusion, and geographical features
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[2]. (ere are many pollutants in the atmosphere. Among
them, SO2, NO2, CO2, NO, CO, and fine particulate matter
(PM2.5 and PM10) are very important pollutants, so the
urgency of predicting air pollution is mainly to predict these
six pollutants. Research on air quality prediction began in
the 1960s, and in the beginning, there was no way to achieve
quantitative prediction of atmospheric pollutants. In the
1980s, people began to quantify pollutants by using math-
ematical statistical prediction methods and numerical an-
alyses. (e statistical prediction method [3], which uses a
mathematical technique combining factor analysis and re-
gression analysis to replace the physical, chemical, and bi-
ological process prediction methods, has three significant
shortcomings: (1) the accuracy level of its prediction is based
on whether there is a sufficient number of detailed and true
historical weather data; (2) analysis of long-term historical
monitoring data takes significant time, energy, and financial
resources if sufficient data are available; and (3) extreme
weather conditions often cannot be accurately predicted
because of sudden events such as sandstorms, tornadoes,
and thunderstorms. (e numerical prediction method is a
scientific, effective method that mathematically models the
change law of atmospheric pollutants and uses mathematical
models to approximate the changes in the trend of pollut-
ants. However, the method’s implementation process is
relatively complicated and the efficiency is not high.

In the 21st century, the era of information storms and big
data has arrived. Data collection is no longer a technical
problem, so an air quality prediction method based on
machine learning is proposed. Machine learning uses a type
of algorithm that does not provide accurate results but does
produce approximate solutions [4]. Common machine
learning algorithms are (1) classification and regression, (2)
clustering, (3) recommended algorithms, (4) association
rules, and (5) artificial neural networks. Air quality pre-
diction methods based on machine learning algorithms have
overcome some of the shortcomings of the older statistical
prediction methods and numerical predictions mentioned
above and have become the mainstream of air quality
prediction research. So far, air quality prediction methods
based on machine learning have achieved some good results.
Sahafizadeh and Ahmadi [5] took historical data on air
quality in Bushehr City from 1951 to 2013, and using the
k-mean algorithm, they constructed the city’s air quality
prediction model. Athanasiadis et al. [6] focused on the
application of classification algorithms to air quality pre-
diction. Although people have continuously tried to apply
classification algorithms, clustering algorithms, and logistic
regression algorithms in machine learning algorithms for air
quality prediction, air quality is affected by a variety of
geographical conditions, human activities, and the atmo-
spheric environment, making it a complex, multidimen-
sional, large-scale system that is driven by multiple feature
factors, and the relationships between those feature factors
are intricate and complex. Even more important is the fact
that air quality has extremely significant nonlinear char-
acteristics. (erefore, an increasing number of experts and
scholars have begun to focus their research on air quality
prediction by using artificial neural networks that are

inherently good at dealing with nonlinear problems in
machine learning algorithms and that have strong noise
tolerance.

With the continuous deepening of relevant research,
various prediction models based on neural network tech-
nology have been constructed, and artificial neural network
technology has achieved an irreplaceable position in the field
of atmospheric pollutant prediction and has become a hot
research topic [7–10]. Azid and others [11] combined
principal component analysis and neural networks to es-
tablish a prediction model for the Malaysian Air Quality
Index (AQI). Mishra and others [12] used multiple linear
regression analysis and artificial neural networks to predict
PM2.5 concentrations in New Delhi, India. (at experiment
proved that the prediction results of neural networks are
superior. Neural networks have strong nonlinear fitting
capabilities and can map complex nonlinear relationships.
However, as the number of layers of neural network in-
creases, the gradient descent algorithm may converge to a
local minimum, with a resulting error that leads to a result
ratio. Shallow networks are even worse, and neural networks
have additional shortcomings, such as overfitting, poor
generalization ability, slow convergence speed, and low
prediction accuracy [13].

In 2015, three leading figures in the field of machine
learning, Yann LeCun, Yoshua Bengio, and Geoffrey Hin-
ton, published a landmark article titled “Deep Learning” in
the journal Nature [14]. Deep learning technology has since
evolved into the current field of artificial intelligence. One
very active research focus in China has shown huge ad-
vantages in the fields of image recognition and speech
recognition, and it continues to develop and change. Deep
learning can be an effective method for big data processing
by training big data, mining it, and capturing deep con-
nections within big data, thus improving classification and
prediction accuracy. In addition, the deep learning model
includes faster training, and with an increase of training
samples, it can show better performance growth than the
general method does. Practice has proved that air pollution
prediction models based on deep learning can better
overcome the shortcomings of existing prediction methods
for three reasons. (1) In recent years, with China’s increased
attention and investment in environmental monitoring, a
large number of air pollutants have been monitored in real
time. Data have been accumulated over a long period of
time, including air pollutant concentrations and meteoro-
logical conditions. In the context of environmental big data,
deep learning technology can integrate massive, multisource
environmental protection data and can use sufficient ob-
servational data as training samples to ensure that the deep-
learning-based air pollution prediction model has high
accuracy [15]. (2) (e deep learning model can deeply ex-
plore the inherent data relationships among the factors that
affect pollutant concentrations and can establish a more
accurate proxy model of a complex mechanism model be-
tween air pollutant concentrations and impact factors. Deep
mining extracts advanced and semantic patterns and rules of
air quality changes and organically integrates multiple
models and expertise to achieve effective air quality analyses
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[16]. (3) (e deep learning model has strong scalability. By
properly setting the input factors, other methods can be
integrated into the model, which then can avoid the defects
and uncertainty of the single air pollution prediction model
to a certain extent and can improve the accuracy of pre-
dictions. In short, with the establishment of a large number
of air quality detection systems, the relevant data have
gradually become richer, and that advantage makes it
possible to use deep learning technology to predict air
quality [17]. Deep learning that is based on deep neural
network models has a high order of magnitude and com-
plexity. Larger data show a greater advantage than tradi-
tional machine learning methods and overcome the
shortcomings of traditional machine learning methods in
model building and feature extraction. Many scholars have
begun to invest in research and have achieved good results.
Zheng Yi and Zhu Chengzhang [18] applied a deep belief
network (DBN) to the prediction of regional PM2.5 daily
average data. By optimizing the DBN network parameter
settings, their experimental results were compared with a
backpropagation (BP) neural network and radial basis
function (radial basis function or RBF) model prediction
results. (e DBN-based prediction method could better
predict the daily average change trend of PM2.5 in the region,
and the prediction accuracy significantly improved. Dong
Ting et al. [19] proposed an AQI predictionmethod based on
space-time optimized input stacked denoising autoencoders
(SDAEs), and the SDAE model had better prediction per-
formance when compared with other models. Yin Wenjun
et al. [20] aimed at remedying the shortcomings of tradi-
tional statistical methods and artificial neural network
models in the prediction of urban AQI indexes in the context
of big data, by proposing a DBN-based prediction method
that obtained hierarchical data feature representations from
model training. Such predictions have been more instructive
than traditional methods. For the case of air quality pre-
diction using a shallow neural network model when the
prediction result is not good, Xiang Li et al. [21] adopted a
spatiotemporal stacked autoencoder (SAE) to extract air
quality data features, using greedy training and working with
spatiotemporal neural network (STNN) and autoregressive
and moving average (ARMA) models. A comparison be-
tween their model and the support vector regression (SVR)
model showed that the SAE had superior performance.
Because it considers the correlation between space and time,
it can simultaneously predict the air quality of different
monitoring points, and it reflects the temporal stability of air
quality in each season. Bun(eangOng, Komei Sugiura, and
Koji Zettsu [22] proposed an automatic encoder-based deep
recurrent neural network (AE-DRNN) model based on
environmental data collected by sensors and used it to
predict PM2.5 concentrations in Japan. With the help of a
sparsity of autoencoders (AEs), the model was pretrained
and the data features were extracted, and then the DRNN
completed the prediction. (e results showed that the
prediction for time series was better than that of the con-
ventional AE model. Zhang and Ding [23] proposed a
method based on an extreme learning machine (ELM) to
predict air pollutant concentrations, and it overcame the

feedforward artificial neural networks (FFANNs), had
convergent convergence, and was easily trapped in local
extremes, so the ELM further improved prediction accuracy,
robustness, and generalization. Fan Junxiang and others [24]
constructed a deep neural network composed of long short-
term memory (LSTM) layers and fully connected layers.
(eir model was trained using air quality data and mete-
orological data from the Beijing-Tianjin-Hebei region, and
the results performed better than traditional deep recurrent
neural networks (DRNNs) did, thereby confirming the ef-
fectiveness of the deep learning framework in spatiotem-
poral predictions. Liu Bingchun et al. [25] first decomposed
the historical time series of daily air pollutant concentrations
into different frequencies by wavelet decomposition and
recombined them into a high-dimensional training data set;
subsequently, the high-dimensional data set was used to
train the LSTM prediction model, and repeated experiments
adjusted the parameters to obtain the optimal prediction
model.(ose research results show that the combinedmodel
had a higher prediction accuracy and stability for predicting
pollutant concentration than the traditional LSTM model
did.

Although deep neural networks have been applied
successfully in air quality modelling, it has some short-
comings. First, there is noise in air quality data and mete-
orological monitoring data, and existing air quality
prediction methods are very sensitive to noise, which affects
to a certain extent the accuracy of their predictions. Second,
the theory and learning algorithms still contain many in-
tractable problems. (e biggest challenge is the problem of
the time-consuming training phase [26], and the current
solutions include improving the learning parameters
through reasonable selection. (e convergence speed of a
deep network [27], using a hardware accelerator based on
the graphic processing unit (GPU), has been applied to the
algorithm operation and has achieved significant accelera-
tion convergence effects [28–31], but the hardware equip-
ment cost and maintenance costs are too high, making it
uneconomical, and it does not improve the convergence
speed from the perspective of the algorithm. In tandem with
the era of big data, the amount of information for processing
data will increase exponentially, and traditional deep net-
works cannot quickly converge or even complete learning
tasks. (erefore, one direction for the future development of
deep networks lies in quickly and economically completing
the full learning of large amounts of data [32].

(e LSTM networks have a positive effect on the pre-
diction of time series signals, so they are suitable for air
quality prediction. For this study, based on an LSTM net-
work, a denoising autoencoder deep network (DAEDN)
model was designed to solve the low prediction accuracy of
existing air pollutant prediction models. (is model
designed a noise reduction autoencoder with an LSTM
structure to extract the inherent air quality characteristics of
the original monitoring data and to implement noise re-
duction processing on the monitoring data to improve the
accuracy of air quality prediction.(e LSTM networks in the
DAEDN model were all designed as a two-way structure to
solve the problem of lagging in one-way LSTM prediction
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results and further improve the prediction accuracy of air
quality prediction models. Using the hourly PM2.5 con-
centration data collected by Beijing’s 12 air quality-moni-
toring stations over 5 years, the prediction model of the
study was analyzed and verified.

2. Methods

(e DAEDN model designed in this study was based on the
use of time series data of air pollutants as experimental data.
(e network structure was extended based on the encoder-
decoder framework. (e structure of the study’s DAEDN
model is shown in Figure 1. In the figure, the green solid line
frame contains the main input of the model, including
historical air quality data, primarily the air quality index AQI
and PM2.5, PM10, SO2, NO2, O3, CO, and other pollutant
concentrations. (e yellow dotted frame contains the aux-
iliary input time data, along with the time data taken from 1-
hour intervals, which corresponded to the historical air
quality data one by one. (e input layer used a denoising
autoencoder (DAE) to extract the inherent air quality
characteristics of the original monitoring data to achieve
noise reduction processing on the monitoring data and thus
to improve the model’s prediction accuracy. At the same
time, the internal structure of the DAE was designed as a Bi-
LSTM (bidirectional long short-term memory or Bi-LSTM)
network that was used to solve the problem of the lag in the
prediction results of the unidirectional LSTM structure and
thus to improve the prediction accuracy of the model. (e
middle layer was a fully connected layer that combined the
air quality features extracted by the input layer. (e output
layer still used the Bi-LSTM structure to generate a predicted
output of air quality.

(e input layer used a DAE structure that was based on
an extension of the autoencoder and added noise to the
input data, based on that AE. (e AE was a three-layer
unsupervised neural network. By extracting the most im-
portant features that could represent the input data, the
output reproduced the input signal as much as possible. (e
AE consisted of an encoder, a hidden layer, and a decoder.
(e encoder converted the input data from being high di-
mensional to low dimensional, in order to extract the data’s
features, and the decoder converted the data back from low-
dimensional to high-dimensional outputs, thus verifying
whether the extracted features could represent the input data
well. (e ultimate goal of the AE training process was to
minimize reconstruction errors, which meant essentially
reducing the difference between the input data and the
expression of its features. (e network structure is shown in
Figure 2.

(e functional relationship between the input layer of
the encoder and the hidden layer can be expressed as

y � s W1x + b1(  , (1)

where s(x) is the encoder activation function, W1 is the
adjacent node weight, b1 is the adjacent node offset, x is the
input layer data, and y is the hidden layer data. (e above

formula is the encoding process, and the decoding process
can be expressed as

z � s W2y + b2(  , (2)

where s(y) is the decoder activation function, W2 is the
adjacent node weight, b2 is the adjacent node offset, and z is
the output layer data.

(e structure of the DAE is shown in Figure 3. (e DAE
added noise to the input data on the basis of the AE, which
was to randomly erase certain nodes of the input layer with a
certain probability distribution. At that point, the encoder
automatically learned to remove the noise, thereby obtaining
an input signal that was not contaminated by noise. (e
trained encoder with a noise reduction function could ex-
tract more robust features from the noisy input; that is, the
input data x became x′, which improved the pan of the input
data by the self-encoding neural network model and in-
creased the model’s ability to improve data processing
accuracy.

(e DAE internal structure of the input layer was
designed as a bidirectional LSTM. Commonly, DAEs are
based on fully connected neural networks, and it is relatively
rare to use a bidirectional LSTM network.

(e structure of the LSTM unit is shown in Figure 4. (e
LSTM is a variant of recurrent neural networks (RNNs).
Although in theory a RNN can handle any long-distance
dependence problem, in reality, that is difficult to achieve
due to problems such as gradient disappearance and ex-
plosion.(e LSTM provided a solution by introducing a gate
mechanism and amemory unit by replacing the hidden layer
neural unit in the RNN with an LSTM unit.

(e historical information stored in the LSTM was
controlled by the input gate, the forget gate, and the output
gate, which were calculated as follows:

Ct � tan h WC · ht−1, xt  + bC(  ,

it � σ Wi · ht−1, xt  + bi(  ,

it � σ Wi · ht−1, xt  + bi(  ,

Ct � ft ⊗Ct + it ⊗ Ct ,

ht � Ot · tan h Ct(  .

(3)

Here, xt is the input data at time t, ht is the output state value
of the LSTM unit at time t, Ct is the candidate value of the
memory unit at time t, it is the state value at time t of the
input gate, and ft is the state at time t of the forget gate. Of the
values, W is the corresponding weight, b is the corre-
sponding paranoid parameter, and ⊗ represents the dot
product between the elements and is multiplied point by
point.(e state value of thememory unit was adjusted by the
input gate and the forget gate.

However, for an input sequence, at a time node t, an LSTM
network only contains information before t and does not
contain information after t. (at situation will cause the
problem of the lag in the prediction result and lose the
function of real-time prediction in practical applications. To
solve that problem, the model in this study used a Bi-LSTM
network.(eBi-LSTMnetwork structure is shown in Figure 5.
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(e network structure included a forward LSTM and a
reverse LSTM. (e forward LSTM obtained a sequence ha
according to the normal input. (e reverse LSTM reversed
the input and then passed through a network with the same
structure as the forward LSTM but with different weight
parameters. Finally, it obtained a sequence and then reversed
that sequence to obtain hb. Ultimately, the two sequences
were added to obtain H, which was the final result through
the Bi-LSTM network:

H � ha ⊕ hb . (4)

A Bi-LSTM can simultaneously use the historical and
future information in the sequence, divide the sequence

information into two directions for input into the model, use
two hidden layers to save the input information in both
directions, and connect the corresponding outputs of the
hidden layers to the same output layer. (e two structures
are the same and independent of each other, but they only
accept different sequence inputs. (erefore, the final hidden
layer vector contains the data of the positive and negative
time series of the data set, which solves the problem of the lag
of the prediction result in the unidirectional LSTM and
improves the accuracy of the air quality predictions.

3. Evaluation Index and Data Preprocessing

3.1. Evaluation Index. (e research background of this study
was the air pollution index, and the type of problem was a
regression (a real value prediction of air pollutant con-
centration). (e data sets used in the experiments were real
data sets. For such a data set, it is possible to make a certain
accuracy prediction based on life experience, even without
training the model, so it obviously was inappropriate to use
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the accuracy rate to judge the performance of the prediction
model. In this study, when training the model, the root-
mean-square error (RMSE) and the mean absolute error
(MAE) were used as the evaluation criteria for prediction
accuracy. (e RMSE and MAE calculations are shown in the
following equations:

RMSE �

������������
1
n



n

i�1
xi − xi
′( 
2



, (5)

MAE �
1
n



n

i�1
xi − xi
′


 . (6)

In the above two formulas, n is the data length, that is,
the number of hours in the test set, xi is the true value of the
air pollution index at the ith hour, and xi′ is the predicted
value of the air pollution index at the ith hour.

3.2. Data and Modelling. (e data set used in this paper
comes from Beijing Municipal Environmental Monitoring
Center (http://www.bjmemc.com.cn/). (e area targeted in
this study was Beijing, and the data sources were divided into
three categories: (1) air quality-monitoring data, (2) pollutant
concentration-monitoring data were PM2.5, PM2.5 24h, PM10,

PM10 24h, SO2, SO2 24h, NO2, NO2 24h, O3, O3 24h, O3 8h, O3 8h 24h,
CO, and CO 24h, and (3) time data were month and hour.

(e source data were updated every hour. (e air
quality-monitoring data were the air quality index AQI, and
the gas concentration-monitoring data were PM2.5 con-
centration, PM10 concentration, SO2 concentration, NO2
concentration, O3 concentration, and CO concentration.
(e time span of the data was from May 13, 2014, to De-
cember 31, 2018, a total of 4 years and 7months. (e data
from May 13, 2014, to December 31, 2017, were selected as
the training data set, the data from January 1, 2018, to June
30, 2018, were used as the validation data set, and the data
from July 1, 2018, to December 31, 2018, were used as the test
data set. (e data sets are not intersected with each other,
which can effectively achieve the goal of continuous opti-
mization of model training.

3.3. Data Preprocessing. Data loss may occur in the data set.
Without changing the structure of the neural network, the
average value of the data in the same period was used to
replace the missing value, as shown in the following
equations:

xd
t⟵md

t xd
t + 1 − md

t( xd , (7)

md
t �

1, xd
t valid

0, xd
t loss

 , (8)

xd �


T
t′�1 md

t′x
d
t′Ihour st, st′( 


T
t′�1 md

t′Ihour st, st′( 
, (9)

Ihour st, st′(  �
1, st � st′

0, st ≠ st′
 . (10)

In the above four formulas, t′(< t) represents the time
step in which the d-dimensional component was recently
observed, xd represents the mean value of the d-dimensional
component of the observation at the current time in the
same month, xd

t′ represents the current valid observation of
the component, and st represents the time corresponding to
the t-th time step (s1 � 0).

Many factors affect air quality, and each factor has its
own physical properties and dimensions. Direct analysis of
those factors will affect the accuracy of the results, so to
facilitate network training and prevent problems such as
“overfitting” in the calculation process, the original data
needed to be normalized first to put the different impact
factors in the same order of magnitude for more accurate
data analysis. (is study used the min-max normalization
method, which was to perform a linear transformation on
each attribute of the original data. After normalization, the
data were between (0, 1). (e normalized function was as in
the following equation:

x′ �
x − min

max − min
, (11)
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where x is the data before normalization, x′ is the data after
normalization, min is the minimum value of all data in the
influence factor to which x belongs, and max is the maxi-
mum value of all data in the influence factor to which x
belongs.

After normalizing the training set, the test data should
also be standardized in the same way, so as to ensure that the
test data and the training set are scaled at the same pro-
portion. However, most air quality and meteorological data
values do not have exact boundaries. For individual test data
that are smaller than the minimum or larger than the
training set, in order to normalize the data to fall within the
interval (0, 1), one must add the following restrictions on the
basis of the equation

x′ �
0， x<min

1， x>max
 . (12)

4. Experimental Results and Analysis

By using the DAEDN model in Figure 1, we built an ex-
perimental process framework, as shown in Figure 6. (e
process included three primary steps: (1) data pre-
processing, to process missing values and other issues in
the original data set to complete the original data; (2) data
fusion, based on the time series distribution of the data,
formatting the data, adding time steps, and then generating
time series data for training and testing the model; and (3)
training and evaluating the model, using the generated
input data to train the DAEDNmodel, and using the RMSE
and MAE to evaluate the prediction effectiveness of the
network.

(is study used the programming language Python and
the deep learning libraries TensorFlow and Keras to build
and train the deep network models. (e Python packages
used are NumPy, Matplotlib, Pandas, SciKit-Learn, etc. In
comparison experiments, different network structure pa-
rameters were unified.

First, we set the number of neurons in the input and
output layers of the model to 17 and 1, respectively. (e
input is a time series data with 17-dimensional features that
can be summarized in three categories: (1) air quality-
monitoring data were AQI, (2) pollutant concentration-
monitoring data were PM2.5, PM2.5 24h, PM10, PM10 24h, SO2,
SO2 24h, NO2, NO2 24h, O3, O3 24h, O3 8h, O3 8h 24h, CO, and
CO 24h, and (3) time data were month and hour. (e output
is a 1-dimensional scalar, an AQI value for the Beijing area in
the next hour. We took the first 30633 data as the training
data, the next 4325 data as the validation data, and the last
4053 data as the test data, and we standardized those data
separately. We set the number of training samples (batch
size) in each batch to 72 and the time step to 50, and then we
defined the neural network variables. After the training of
the model, the validation set was used to verify the pre-
diction performance of the model, and the hyperparameters
were fine-tuned to obtain the values. (e number of hidden
layer nodes is set to 128, and the learning rate is set to 0.1.
Adam is an optimization extension of the gradient descent

algorithm, which maintains an independent and adaptive
learning rate for each network weight and has a good
convergence effect. (e activation function is set to ReLu,
which is simple and prevents the gradient from
disappearing.

When inputting features, one needs to convert the tensor
into two dimensions for calculation. (e input of the layer,
and finally the tensor, are converted into three-dimension
input for the LSTM cell. In the training model, the number
of iterations can be represented, with the more iterations
there are, the more accurate the prediction result is, but the
longer the processing takes. (e trained model can predict
the AQI of the next hour.

4.1. Performance Analysis of the DAEDN Model’s Noise
Reduction. Two types of deep network models for the
structure were established in the experiment.(e input layer
had both a DAE structure and non-DAE structure, and the
noise reduction effect of the DAE structure was verified by
comparison. (e experimental results are shown in Table 1.
It can be seen from the results that the RMSE value with the
DAE structure was 15.459 and the MAE value was 7.000,
which were 7.61% and 2.94% lower than the values without
the DAE structure. It can be seen that the prediction ac-
curacy of the DAE structure model was significantly higher
than that of the non-DAE structure model, which indicates
that the DAE structure had a good noise reduction effect on
the processing of air quality data, removing the noise
contained in the data and reducing the overall noise. (e
impact on network model training effectively improved the
prediction accuracy of the model.

4.2. Experimental Analysis of Lag Suppression. When using
an LSTMnetwork for prediction, there is a certain resulting lag
due to the accumulation of errors. In order to verify the
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Generate input data

Training the DAEDN model

Model evaluation and comparison

Test data

Test data
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Training and evaluation
model

Data Fusion

Remove missing value data
Data encoding correction
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Add time step 
Add nearest neighbor

(i)
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LSTM
Bi-LSTM

(i)
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Figure 6: Experimental flowchart.
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suppression effect of the Bi-LSTM network on the hysteresis
phenomenon, an experimental comparison with a unidirec-
tional LSTM network was performed, and the results are
shown in Figure 7. It can be seen that the use of the Bi-LSTM
network had a certain suppression effect on the lag phe-
nomenon, and the lag phenomenon greatly affected the real-
time performance of the model’s prediction.(at effect is very
important in practical applications, because real-time per-
formance is a key factor in air quality prediction. Here, the
inhibition effect of the Bi-LSTM on the lag effectively guar-
anteed the real-time performance of the model prediction.

From the perspective of accuracy, the accuracy evaluation
criteria of the LSTM and the Bi-LSTM are shown in Table 2.
(e RMSE of the Bi-LSTM was 15.504 and the MAE was
6.789. Compared with the values from the LSTM, the re-
duction values for the Bi-LSTM were 5.12% and 4.54%, re-
spectively, and the prediction accuracy was improved. In an
actual application of air quality prediction, the problem of the
lag in the prediction of the LSTM greatly affects one’s
judgment of the results. Aiming at remedying that problem,
utilizing the characteristics of the Bi-LSTM allowed us to
simultaneously use the historical information and future
information in the sequence, thus suppressing the problem of
the lag in the prediction results of the LSTM to some extent.

4.3. Comparative Analysis of Different Network Models.
At present, the commonly used air quality prediction
methods are BP neural networks, deep recurrent neural
networks (DRNNs), DBNs, and others. In order to verify the
prediction effect of our DAEDN model and compare the

DAEDNmodel with the test results of those commonly used
models, we conducted comparison experiments, the input
features of each model are 17-dimensional time series data
and the output is a 1-dimensional data. (e prediction ef-
fects of the models on the test data set are shown in Figure 8.

It can be seen from Figure 8 that among the different
model structures, the accuracy of the BPmodel was relatively
low, the performance of the DRNN was slightly better than
the performance of the BP model, the DBN model had the
best prediction performance among the first three, and the
DAEDN model in our study and using the test data set had
the greatest improvement of all in accuracy. Compared with
the BP model, the DAEDN model’s RMSE and MAE values
were reduced by 7.29% and 21.85%, respectively, to achieve
by far the best prediction accuracy. (is shows that in the
time series regression prediction problem, a DAEDN can
extract the characteristics of the data better and has certain
advantages in air quality prediction.

Figure 9 shows the study’s training and verification loss
values for three of the deep network models: the BP, DBN,
and DAEDN models. Combining Figures 8 and 9, from the
perspective of prediction accuracy and convergence speed,
the performance of the BP networkmodel was far lower than

Table 1: Evaluation criteria for model prediction accuracy.

Model RMSE MAE
Non-DAE structure 16.732 7.212
DAE structure 15.459 7.000
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Figure 7: Deep network predictions and real values based on the DAEDN model. (a) LSTM. (b) Bi-LSTM.

Table 2: Evaluation criteria for the LSTM and Bi-LSTM structure
prediction accuracy.

Model RMSE MAE
LSTM 16.340 7.112
Bi-LSTM 15.504 6.789
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Figure 9: Continued.
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that of the DBN andDAEDNnetworkmodels.(eDBN and
DAEDN network models were similar in accuracy, but the
DAEDN model was significantly better than the DBN in
terms of convergence speed. In the early stage, the DBN
model experienced a long period of iterative stagnation,
which led to a decrease in the model’s convergence speed.
(e DAEDN model did not show such a stagnation, which
improved the training speed of the model to a certain extent.

4.4. Seasonal Forecast Performance Analysis. Taking the data
from 2015 as an example, air quality in different quarters of
the year were affected by objective factors, such as human
activities and production and construction, and by seasonal
changes that varied greatly, as can be seen in Figure 10. (e

April-October, October-December air quality indexes were
significantly higher, with more days exceeding 300, and the
May-September 2015 air quality index was almost always
below 300, with only one day exceeding 300. From those
changes in the AQI, it can be seen that the severity of
pollution varied from quarter to quarter, and whether the
model could make good predictions based on the charac-
teristics of each quarter became a focus of our testing and
analyses.

April-May is the peak period of sandstorm weather in
Beijing, which causes serious air pollution. At the same time,
as the weather gets warmer, human travel and industrial
production begin to increase, as the weather changes sharply
and unstable, the fluctuation of pollution index has a greater
impact. In the fourth quarter (October–December), the
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Figure 9: BP, DRNN, and DAEDN models’ deep network training loss and verification loss values. (a) BP. (b) DRNN. (c) DAEDN.
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Figure 10: Beijing air quality index data from 2015.
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winter in Beijing comes. It can be seen that the air pollution
index increases significantly after the start of central heating.
Coal and other burning have some influence on the air
quality.

For this situation, the dataset is divided into four datasets
by quarter and trained and tested using the DAEDN model,
respectively. (e prediction accuracy of the model is shown
in Table 3. It can be seen that among the models that are
trained according to the quarter, the predictions in the first
and third quarters are better, while the predictions in the
second and fourth quarters are slightly worse. Among them,
the second quarter is most affected, but the accuracy is still
within the acceptable range, which indicates that the
DAEDNmodel has a strong adaptability and still has a good
predictive effect under the interference.

5. Conclusions

Using as its basis the structural framework of an LSTM
network, this study designed a DAEDN air quality pre-
diction model. (rough training and learning, the rela-
tionships among air quality levels, pollutant factor
concentrations, and meteorological data were used to
make real-time predictions. Taking the air quality and
meteorological data of the Beijing area from 2014 to 2018
as our sample for experimental analysis, the following
conclusions were obtained: (1) the DAE structure of the
DAEDN model input layer could effectively reduce noise
and improve prediction accuracy; (2) the model’s Bi-
LSTM structure made good use of historical and future
information to eliminate the lag and improve prediction
accuracy; (3) the prediction performance of the study’s
surface DAEDN prediction model was superior to the
prediction results of BP, DRNN, and DBN network
models; and (4) the test results divided by quarters in-
dicated that the prediction accuracy of the model was
different in different quarters, but the quarterly accuracy
levels basically remained near the accuracy level of the
annual average prediction.
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