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A class of partially observed nonzero-sum differential games for backward stochastic differential equations with time delays
is studied, in which both game system and cost functional involve the time delays of state variables and control variables
under each participant with different observation equations. A necessary condition (maximum principle) for the Nash
equilibrium point to this kind of partially observed game is established, and a sufficient condition (verification theorem) for
the Nash equilibrium point is given. A partially observed linear quadratic game is taken as an example to illustrate the
application of the maximum principle.

1. Introduction

Game theory has penetrated into many fields of economics
and attractedmore andmore attention. A series of studies on
game theory was given by [1–9]. *ere have been many
papers about the differential games driven by backward
stochastic differential equations (BSDEs), such as [10, 11].
*e prospective progress of many systems relies as much on
their past history as on their current state. *e optimal
control problem of stochastic systems with time delays is
studied by [12–22]. *e game problem of stochastic systems
with the time-delayed generator is discussed by [23–25].

Nevertheless, in the aforementioned control and game
problems, it is assumed that the information is fully observed.
*is does not make sense in real life. In general, only partial
information is available for controllers in most cases. *e latest
research studies on the partially observed optimal control issues
of stochastic differential systems were given by [26–32]. *e
partially observed game issues of stochastic systemswere studied
by [33–36].

As far as we know, the results in regard to partially
observed differential games corresponding to backward

stochastic systems with time delays (BSDDE) are few. *is
problem will be investigated in this paper. Comparing the
above results, our work differs in several aspects. Firstly, we
research such a kind of partially observed differential game
problem corresponding to the BSDDE, which enriches the
game theory of backward stochastic systems. Secondly,
under the circumstance of different observation equations
for each participant, our controlled systems and utility
functions include the delays of state variables and control
variables. *irdly, we study a class of linear quadratic (LQ)
game corresponding to backward stochastic systems with
the time-delayed generator and give the specific expression
of the Nash equilibrium point.

*e outline of this article is as follows. We present the
main hypotheses and the partially observed differential game
problem of BSDDE in Section 2. In Section 3, we obtain the
necessary optimality conditions of the partially observed
game of BSDDE. Section 4 is devoted to the sufficient
maximum principle. In Section 5, we take a partially ob-
served LQ game as an example to illustrate the application of
our maximum principle. Section 6 is the conclusion of this
paper.
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2. Statement of the Problems

*roughout our article, (Ω,F, Ft t≥ 0,P) is a complete
filtered probability space, on which three mutually inde-
pendent one-dimensional standard Brownian motions
W(t), Y1(t), and Y2(t) are defined. Let FW

t ,F1
t , andF2

t be
the natural filtrations generated by W(·), Y1(·), and Y2(·),
respectively. We setFt � FW

t ⊗F
1
t ⊗F

2
t . For all t ∈ [−δ, 0],

Ft ≡ F0, which is the trivial σ-field, and F :� FT+δ. Set
Fi

t � σ Yi(s); 0≤ s≤ t , (i � 1, 2) and Fi
t ≡ F

i
0 ≠ ϕ,

∀t ∈ [−δ, 0]. *e finite time duration is defined by T> 0, and

the constant time delays are defined by 0< δ, δ1, δ2 <T,
respectively. *e expectation on (Ω,F, P) is denoted by E,
and the conditional expectation under Ft is denoted by
EFt ≔ E[. |Ft]. In R and Rn×d, 〈·, ·〉 is the usual inner
product and |·| is the Euclidean norm. *e symbol “⊤” that
appears in the superscript represents the transpose of the
matrix. In this article, all of the equalities and inequalities are
in the sense of dt × dP almost surely on [0, T] ×Ω.

We introduce the following notations:

L
2
FT;R(  � ξ: ξ is anR − valued, FT − measurable randomvariable satisfyingE|ξ|

2 <∞ ,

L
2
F(s, r;R) � v(t), s≤ t≤ r: v(t) is anR − valued, Ft − adapted process satisfyingE

r

s
|v(t)|

2dt<∞ .
(1)

Let the nonempty set Ui ∈ R(i � 1, 2) be convex and the
admissible control set be defined as the following:

Ui[0, T] � vi: [0, T] ×Ω→Ui

 vi isF
i
t − adapted, E

T

0
vi(t)



4dt<∞ , (i � 1, 2). (2)

Every element inUi is known as an admissible control to
Player i(i � 1, 2). And U1 × U2 is known as the admissible
control set to the players.

*is work pays attention to a kind of partially observed
games of BSDDE, which stems from some attractive fi-
nancial scenarios. Now let us elaborate on the problem. Take
into account the following BSDDE:

−dyv1 ,v2(t) � f Θv1 ,v2(t)( )dt − zv1,v2(t)dW(t), t ∈ [0, T],

yv1 ,v2(T) � ξ, yv1,v2(t) � ψ0(t), t ∈ [−δ, 0],

v1(t) � ψ1(t), t ∈ −δ1, 0 ,

v2(t) � ψ2(t), t ∈ −δ2, 0 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where

Θv1 ,v2(t) � t, y
v1 ,v2(t), y

v1 ,v2(t − δ), z
v1 ,v2(t), v1(t),(

v1 t − δ1( , v2(t), v2 t − δ2( ,
(4)

and f: [0, T] × R × R × R × R × R × R × R⟶ R, ξ ∈
L2(FT;R), and ψ0(·) ∈ L2

F(−δ, 0;R), ψ1(·) ∈ L2
F(−δ1,

0;R), and ψ2(·) ∈ L2
F(−δ2, 0;R) are the initial paths of y, v1,

andv2, respectively. We suppose that ψ1(t) ∈ F1
0 and

ψ2(t) ∈ F2
0 are measurable continuous functions such that

E
T

0 |ψ1(t)|4dt<∞ and E
T

0 |ψ2(t)|4dt<∞. *e control
processes for Player 1 and Player 2 are v1(·) and v2(·), and
v(·) � (v1(·), v2(·)). Subscript 1 presents the variables to
Player 1, and subscript 2 presents the variables to Player 2,
respectively. BSDDE game system (3) means that the two
players complete a common target ξ in the end time T.

Suppose that the two participants cannot directly ob-
serve the state processes yv1 ,v2(·), but they can be aware of
related noisy processes Y1(·) and Y2(·) of yv1 ,v2(·), which are
described as follows:

dYi(t) � hi t, yv1 ,v2(t), yv1 ,v2(t − δ), zv1 ,v2(t), v1(t), v2(t)( dt + dWi(t),

Yi(0) � 0, (i � 1, 2),
 (5)

where W1(·) andW2(·) are R-valued stochastic processes
depending on v1(·) and v2(·) and hi: [0, T] × R × R×

R × R × R⟶ R, i � 1, 2, are continuous functions.
We assume

(H1) (i) f and hi, i � 1, 2, are continuously differen-
tiable with respect to (y, yδ, z, v1, v1δ, v2, v2δ)

(ii) fy, fyδ
, fz, fv1

, fv1δ
, fv2

, fv2δ
, hiy, hiyδ

, hiz, hiv1
,

hiv2
, i � 1, 2, are bounded by c> 0
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Now, if (H1) is true and both v1(·) and v2(·) are ad-
missible controls, then BSDDE (3) has a unique solution

(yv1 ,v2(·), zv1 ,v2(·)) ∈ L2
F(−δ, T;R) × L2

F(−δ, T;R) (see
[14]).

Define dPv1 ,v2 ≐Zv1 ,v2(t)dP, where

Z
v1 ,v2(t) � exp 

2

j�1


t

0
hj s, y

v1 ,v2(s), y
v1 ,v2(s − δ), z

v1,v2(s), v1(s), v2(s)( dYj(s)
⎧⎪⎨

⎪⎩

−
1
2



2

j�1


t

0
hj s, y

v1 ,v2(s), y
v1 ,v2(s − δ), z

v1 ,v2(s), v1(s), v2(s)( 



2
ds

⎫⎪⎬

⎪⎭
.

(6)

Obviously, Zv1 ,v2(t) satisfies the subsequent SDE:

dZv1 ,v2(t) � 
2

j�1
hj t, yv1 ,v2(t), yv1,v2(t − δ), zv1 ,v2(t), v1(t), v2(t)( Zv1 ,v2(t)dYj(t),

Zv1 ,v2(0) � 1.

⎧⎪⎪⎨

⎪⎪⎩
(7)

Hence, by (H1) and Girsanov’s theorem, we obtain a
three-dimensional Brownian motion (W(·), W1(·), W2(·))

built on the probability space (Ω,F,Pv1 ,v2), in whichPv1 ,v2 is
a probability measure.

Making sure to accomplish the target ξ, each player owns
his individual interest, which is the cost functional as
follows:

Ji v1(·), v2(·)(  � E
v1,v2 

T

0
li Θ

v1 ,v2(t)( dt +Φi y
v1,v2(0)(  , (i � 1, 2),

(8)

where Ev1 ,v2 is the expectation on (Ω,F,Pv1 ,v2) and

li: f: [0, T] × R × R × R × R × R × R × R⟶ R,

Φi: R⟶ R, (i � 1, 2).
(9)

We also assume for i � 1, 2,

(H2) (i) li are continuously differentiable with respect
to (y, yδ, z, v1, v1δ, v2, v2δ), and their partial derivatives

are continuous in (y, yδ, z, v1, v1δ, v2, v2δ) and bounded
by c(1 + |y| + |yδ| + |z| + |v1| + |v1δ| + |v2| + |v2δ|)

(ii) Φi are continuously differentiable, and Φiy are
bounded by c(1 + |y|)

Assume that every player wants to minimize the cost
functional Ji(v1(·), v2(·)) by picking the appropriate ad-
missible control vi(·)(i � 1, 2). *en, our partially observed
nonzero-sum stochastic differential game problem is to find
out a pair of admissible controls (u1(·), u2(·)) ∈ U1 × U2
such that

J1 u1(·), u2(·)(  � min
v1(·)∈U1

J1 v1(·), u2(·)( ,

J2 u1(·), u2(·)(  � min
v2(·)∈U2

J2 u1(·), v2(·)( .

⎧⎪⎪⎨

⎪⎪⎩
(10)

Obviously, cost functional (8) can be converted to

Ji v1(·), v2(·)(  � E 
T

0
Z

v1 ,v2(t)li Θ
v1 ,v2(t)( dt +Φi y

v1 ,v2(0)(  , (i � 1, 2). (11)

So, the original problem (10) is the same thing as
minimizing (11) over (v1(·), v2(·)) ∈ U1 × U2 subject to (3)
and (7). For the sake of convenience, we refer to the above
game problem as Problem (POBNZ). If an admissible
control u(·) � (u1(·), u2(·)) which satisfied (10) can be
found, then it is called as an equilibrium point of Problem
(POBNZ), and the corresponding state trajectory is denoted
by (y(·), z(·)) � (yu(·), zu(·)).

3. A Partially Observed Necessary
Maximum Principle

In the case of a convex admissible control set, the convex
perturbation method is the classical method to obtain the
necessary optimality condition. Let the equilibrium point of
Problem (POBNZ) be u(·) � (u1(·), u2(·)), and the corre-
sponding optimal trajectory is (y(·), z(·)). Let (v1(·), v2(·))
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be such that (u1(·) + v1(·), u2(·) + v2(·)) ∈ U1 × U2. Since
U1 and U2 are convex, for any 0≤ ρ≤ 1, (u

ρ
1(·), u

ρ
2(·)) �

(u1(·) + ρv1(·), u2(·) + ρv2(·)) is also in U1 × U2. For the
controls (u

ρ
1(·), u2(·)) and (u1(·), u

ρ
2(·)), the corresponding

state trajectories of game system (3) are denoted by (yu
ρ
1

(·), zu
ρ
1(·)) and (yu

ρ
2(·), zu

ρ
2(·)).

We introduce the subsequent symbols:

φ(t) � φ t, y(t), y(t − δ), z(t), u1(t), u1 t − δ1( , u2(t), u2 t − δ2( ( ,

φv1 ,v2(t) � φ t, y(t), y(t − δ), z(t), v1(t), v1 t − δ1( , v2(t), v2 t − δ2( ( ,

φu
ρ
1 ,u2(t) � φ t, y(t), y(t − δ), z(t), u

ρ
1(t), u

ρ
1 t − δ1( , u2(t), u2 t − δ2( ( ,

φu1 ,u
ρ
2(t) � φ t, y(t), y(t − δ), z(t), u1(t), u1 t − δ1( , u

ρ
2(t), u

ρ
2 t − δ2( ( ,

(12)

where φ denotes one of f, li, i � 1, 2, and

hi(t) � hi t, y(t), y(t − δ), z(t), u1(t), u2(t)( ,

h
v1 ,v2
i (t) � hi t, y(t), y(t − δ), z(t), v1(t), v2(t)( ,

h
u
ρ
1 ,u2

i (t) � hi t, y(t), y(t − δ), z(t), u
ρ
1(t), u2(t)( ,

h
u1 ,u

ρ
2

i (t) � hi t, y(t), y(t − δ), z(t), u1(t), u
ρ
2(t)( ,

(i � 1, 2).

(13)

*e variational equations are as follows:

−dy1
i (t) � fy(t)y1

i (t) + fyδ
(t)y1

i (t − δ) + fz(t)z1
i (t) + fvi

(t)vi(t) + fviδ
(t)vi t − δi(  dt − z1i (t)dW(t), t ∈ [0, T],

y1
i (T) � 0, y1

i (t) � 0, t ∈ [−δ, 0],

v1(t) � 0, t ∈ −δ1, 0 ,

v2(t) � 0, t ∈ −δ2, 0 , (i � 1, 2),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

dZ1
i (t) � 

2

j�1
Z1

i (t)hj(t) + Z(t) hjy(t)y1
i (t) + hjyδ

(t)y1
i (t − δ) + hjz(t)z1

i (t) + hjvi
(t)vi(t)  dYj(t),

Z1
i (0) � 0, (i � 1, 2).

⎧⎪⎪⎨

⎪⎪⎩
(15)

From (H1), it is easy to see that (14) and (15) admit
unique solutions (yv1 ,v2(·), zv1 ,v2(·)) ∈ L2

F(−δ, T;R)×

L2
F(−δ, T;R) and Z1(t) ∈ L2

F(0, T;R), respectively.
For t ∈ [0, T] and ρ> 0, we set

y
ρ
i (t) �

yu
ρ
i (t) − y(t)

ρ
− y

1
i (t),

z
ρ
i (t) �

zu
ρ
i (t) − z(t)

ρ
− z

1
i (t),

Z
ρ
i (t) �

Zu
ρ
i (t) − Z(t)

ρ
− Z

1
i (t),

(i � 1, 2).

(16)

Similar to the arguments in Lemmas 3.1 and 3.2 in [34], it
is easy to obtain subsequent Lemmas 1 and 2. *us, we omit
the details for simplicity.

Lemma 1. Assume (H1) and (H2) are true. 4en,

lim
ρ→0

sup
0≤t≤T

E y
ρ
i (t)



2

� 0,

lim
ρ→0

E
T

0
z
ρ
i (t)



2dt � 0,

lim
ρ→0

sup
0≤t≤T

E Z
ρ
i (t)



2

� 0,

(i � 1, 2).

(17)

Since (u1(·), u2(·)) is a Nash equilibrium point, then

ρ− 1
J1 u

ρ
1(·), u2(·)(  − J1 u1(·), u2(·)(  ≥ 0,

ρ− 1
J2 u1(·), u

ρ
2(·)(  − J2 u1(·), u2(·)(  ≥ 0.

(18)

Let Γi(t) � Z− 1(t)Z1
i (t), i � 1, 2. From Itô’s formula, we

deduce
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dΓi(t) � 
2

j�1
hjy(t)y1

i (t) + hjz(t)z1
i (t) + hjv(t)vi(t) dWj(t),

Γi(0) � 0, (i � 1, 2).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

From this and Lemma 1, we have the following. Lemma 2. Assume (H1) and (H2) are true. 4en, we get the
following variational inequality:

E
u1 ,u2 

T

0
li(t)Γi(t) + liy(t)y

1
i (t) + liyδ

(t)y
1
i (t − δ) + liz(t)z

1
i (t) + livi

(t)vi(t) + liviδ
(t)vi t − δi(  dt

+ E
u1 ,u2 Φiy(y(0))y

1
i (0) ≥ 0, (i � 1, 2).

(20)

OurHamiltonian functionHi: [0, T] × R × R × R × R ×

R× R × R × R × R × R→R, i � 1, 2, is defined as follows:

Hi t, y, yδ, z, v1, v1δ, v2, v2δ, pi, Q1i, Q2i(  � −〈pi(t), f t, y, yδ, z, v1, v1δ, v2, v2δ( 〉

+ 
2

j�1
〈Qji(t), hj t, y, yδ, z, v1, v2( 〉 + li t, y, yδ, z, v1, v1δ, v2, v2δ( , (i � 1, 2).

(21)

Denote Hi(t) ≡ Hi(t, y, yδ, z, v1, v1δ, v2, v2δ, pi, Q1i, Q2i)

and its derivatives.
We note that the adjoint equation to (19) is a BSDE,

whose solution is (Pi(·), Q1i(·), Q2i(·)):

−dPi(t) � li(t)dt − 
2

j�1
Qji(t)dWj(t),

Pi(T) � 0, (i � 1, 2),

⎧⎪⎪⎨

⎪⎪⎩
(22)

and the adjoint equation to (14) is an SDE, whose solution is
pi(·):

dpi(t) � − Hiy(t) + EFt Hiyδ
(t + δ)  dt − Hiz(t)dW(t),

pi(0) � −Φiy(y(0)), (i � 1, 2).

⎧⎨

⎩

(23)

Remark 1. It is easy to see that equation (23) is a linear
anticipated SDE. Under (H1) and (H2), the unique solv-
ability of equation (23) is assured by *eorem 2.2 in [14].

Based on variational inequality (20), we set out the main
result of this section.

Theorem 1 (partially observed necessary maximum
principle). Assume (H1) and (H2) are true, an equilibrium
point of Problem (POBNZ) is (u1(·), u2(·)), the optimal
trajectory is (y(·), z(·)), and the solution of (7) is Z(·). Let
(Pi(·), Q1i(·), Q2i(·)), i � 1, 2, be the solution of (22) and
pi(·) be the solution of adjoint equation (23). 4en, the
following maximum principle

E
u1 ,u2 H1v1

(t) + E
u1,u2 H1v1

t + δ1( 
F

1
t   v1 − u1(t)( 

F
1
t ≥ 0,

(24)

E
u1 ,u2 H2v2

(t) + E
u1 ,u2 H2v2

t + δ2( 
F

2
t   v2 − u2(t)( 

F
2
t ≥ 0,

(25)

for any (v1, v2) ∈ U1 × U2, a.e., t ∈ [0, T], in which the
Hamiltonian function H is defined as (21).

Proof. For i � 1, using Itô’s formula to 〈y1
1(t), p1(t)〉 +

〈Γ(t), P1(t)〉, from variational equations (14) and (15),
variational inequality (20), and adjoint equations (22) and
(23), we obtain

Mathematical Problems in Engineering 5



E
u1 ,u2 

T

0
l1(t)Γ1(t) + l1y(t)y

1
1(t) + l1yδ

(t)y
1
1(t − δ) + l1z(t)z

1
1(t) + l1v1

(t)v1(t) + l1v1δ
(t)v1 t − δ1(  dt

+ E
u1 ,u2 Φ1y(y(0))y

1
1(0) 

� E
u1 ,u2 

T

0
〈f⊤v1(t)p1(t) + 

2

j�1
h
⊤
jv1

(t)Qj1(t) + l1v1
(t)

+ E
u1 ,u2 f

⊤
v1

(t + δ)p1(t + δ) + 

2

j�1
h
⊤
jv1

(t + δ)Qj1(t + δ) +l1v1
(t + δ)

F
1
t

⎡⎢⎢⎣ ⎤⎥⎥⎦, v1(t)〉dt

� E
u1 ,u2 

T

0
〈H1v1

(t) + E
u1 ,u2 H1v1

t + δ1( 
F

1
t , v1(t)〉dt

≥ 0.

(26)

Because v1(t) satisfies u1(t) + v1(t) ∈ U1, we have

E
u1,u2 

T

0
〈H1v1

(t) + E
u1,u2 H1v1

t + δ1( 
F

1
t , v1

− u1(t)〉dt≥ 0, ∀v1 ∈ U1.

(27)

*is implies that

E
u1 ,u2〈H1v1

(t) + E
u1,u2 H1v1

t + δ1( 
F

1
t , v1 − u1(t)〉 ≥ 0, ∀v1 ∈ U1.

(28)

Now, assume that F is an arbitrary element of σ-algebra
F1

t and v1(t) ∈ U1 is a deterministic element. Let

w1(t) � v1(t)1F + u1(t)1Ω−F. (29)

Obviously, w1 is an admissible control.
Using the above inequality to w1, we obtain

E
u1,u2 1F〈H1v1

(t) + E
u1 ,u2 H1v1

t + δ1( 
F

1
t , v1

− u1(t)〉≥ 0, ∀F ∈ F1
t ,

(30)

which implies that

E
u1 ,u2 〈H1v1

(t) + E
u1 ,u2 H1v1

t + δ1( 
F

1
t , v1 − u1(t)〉


F

1
t ≥ 0, ∀v1 ∈ U1, a.e.t ∈ [0, T], a.s. (31)

Similar to the aforementioned method, we can get the
other inequality for any v2 ∈ U2. *e proof of *eorem 1 is
completed. □

4. A Partially Observed Sufficient
Maximum Principle

In this section, we explore a sufficient maximum principle to
Problem (POBNZ). Let (y(t), z(t), u1(t), u2(t)) be a

quintuple that satisfies (3), and assume that there is a so-
lution pi(t) corresponding to adjoint SDE (23). We assume
the following:

(H3) For i � 1, 2, for all t ∈ [0, T], Hi(t, ·, ·, ·, ·, ·, ·, ·,

pi, Q1i, Q2i) is convex in (y, yδ, z, v1, v1δ, v2, v2δ), and
Φi(y) is convex in y

For i � 1, 2, let

Hi(t) � Hi t, y(t), y(t − δ), z(t), u1(t), u1(t − δ), u2(t), u2(t − δ), pi(t), Q1i(t), Q2i(t)( ,

H
v1
i (t) � Hi t, y(t), y(t − δ), z(t), v1(t), v1 t − δ1( , u2(t), u2 t − δ2( , pi(t), Q1i(t), Q2i(t)( ,

H
v2
i (t) � Hi t, y(t), y(t − δ), z(t), u1(t), u1 t − δ1( , v2(t), v2 t − δ2( , pi(t), Q1i(t), Q2i(t)( ,

hi(t) � hi t, y(t), y(t − δ), z(t), u1(t), u2(t)( ,

h
v1
i (t) � hi t, y(t), y(t − δ), z(t), v1(t), u2(t)( ,

h
v2
i (t) � hi t, y(t), y(t − δ), z(t), u1(t), v2(t)( ,

φ(t) � φ t, y(t), yδ(t), z(t), u1(t), u1 t − δ1( , u2(t), u2 t − δ2( ( ,

φv1(t, ·) � φ t, y(t), yδ(t), z(t), v1(t), v1 t − δ1( , u2(t), u2 t − δ2( ( ,

φv2(t, ·) � φ t, y(t), yδ(t), z(t), u1(t), u1 t − δ1( , v2(t), v2 t − δ2( ( ,

(32)
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where φ � f, li, i � 1, 2.

Theorem 2 (partially observed sufficient maximum
principle). Assume (H1)–(H3) are true. Moreover, the
maximum conditions (24) and (25) of the partial observation

are true; then, (u1(·), u2(·)) is the equilibrium point to
Problem (POBNZ).

Proof. For any v1(·) ∈ U1, we consider

J1 v1(·), u2(·)(  − J1 u1(·), u2(·)( 

� E
T

0
l1(t) Z

v1(t) − Z(t) dt + E Φ1 y
v1(0)(  −Φ1(y(0))  + E

v1 ,u2 
T

0
l
v1
1 (t) − l1(t) dt

� I1 + I2 + I3.

(33)

Using Itô’s formula to 〈P1(t), Zv1 ,u2(t) − Z(t)〉 on
[0, T], we deduce

I1 � E
v1 ,u2 

T

0


2

j�1
Qj1(t) h

v1
j (t) − hj(t) dt. (34)

Using Itô’s formula to 〈p1(t), yv1(t) − y(t)〉 on [0, T],
from the convexity of Φ1, we have

I2 ≥E
v1 ,u2〈Φ1y(y(0)), y

v1(0) − y(0)〉

� −E
v1 ,u2 

T

0
〈yv1(t) − y(t), H1y(t) + E

Ft H1yδ
(t + δ) 〉dt

− E
v1 ,u2 

T

0
〈zv1(t) − z(t), H1z(t)〉dt + E

v1 ,u2 
T

0
〈p1(t), f

v1(t) − f(t)〉dt.

(35)

*en, we have

J1 v1(·), u2(·)(  − J1 u1(·), u2(·)( 

≥E
T

0
H

v1
1 (t) − H1(t) dt − E

T

0
〈yv1(t) − y(t), H1y(t) + E

Ft H1yδ
(t + δ) 〉dt − E

T

0
〈zv1(t) − z(t), H1z(t)〉dt.

(36)

By the virtue of convexity of H1 to (y, yδ, z, v1,

v1δ, v2, v2δ), we deduce

H
v1
1 (t) − H1(t)≥ 〈yv1(t) − y(t), H1y(t)〉 +〈yv1

δ (t) − yδ(t), H1yδ
(t)〉

+ 〈zv1(t) − z(t), H1z(t)〉 +〈v1(t) − u1(t), H1v1
(t)〉 +〈v1δ(t) − u1δ(t), H1v1δ

(t)〉.
(37)

Notice the truth that

E
T

0
〈yv1

δ (t) − yδ(t), H1yδ
(t)〉dt − E

T

0
〈yv1(t) − y(t),E

Ft H1yδ
(t + δ) 〉dt

� E
T

0
〈yv1

δ (t) − yδ(t), H1yδ
(t)〉dt − E

T+δ

δ
〈yv1

δ (t) − yδ(t), H1yδ
(t)〉dt

� E
δ

0
〈yv1

δ (t) − yδ(t), H1yδ
(t)〉dt − E

T+δ

T
〈yv1

δ (t) − yδ(t), H1yδ
(t)〉dt

� 0.

(38)
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*en, we get

J1 v1(·), u2(·)(  − J1 u1(·), u2(·)( 

≥E
T

0
〈H1v1

(t) + E
Ft H1v1δ

(t + δ) , v1(t) − u1(t)〉dt.

(39)

Finally, by necessary optimality conditions (24), we
obtain

J1 v1(·), u2(·)(  − J1 u1(·), u2(·)( ≥ 0. (40)

*en, it implies

J1 u1(·), u2(·)(  � min
v1(·)∈U1

J1 v1(·), u2(·)( . (41)

In the same way,

J2 u1(·), u2(·)(  � min
v2(·)∈U2

J2 u1(·), v2(·)( . (42)

So, we come to the expected conclusion. *e proof is
completed. □

5. Application

In this section, we construct a partially observed LQ dif-
ferential game with regard to backward stochastic systems
with time delays. Using the classical filtering theory and the
aforementioned theoretical results, we attempt to give a
specific expression of the Nash equilibrium point. Let us
think about the subsequent linear BSDDE:

−dyv1 ,v2(t) � A(t)yv1 ,v2(t) + A(t)yv1 ,v2(t − δ) + B(t)zv1 ,v2(t) + C1(t)v1(t) + C2(t)v2(t)( dt − zv1 ,v2(t)dW(t), t ∈ [0, T],

yv1,v2(T) � ξ, yv1 ,v2(t) � ψ(t), t ∈ [−δ, 0],

⎧⎨

⎩

(43)

and the observation

dYi(t) � Di(t)dt + dWi(t),

Y
v1 ,v2
i (0) � 0,

(i � 1, 2).

(44)

We introduce the following cost functional:

Ji v1(·), v2(·)(  �
1
2
E

v1 ,v2 
T

0
Mi(t)v

2
i (t)dt + Ni y

v
(0)( 

2
 , (i � 1, 2),

(45)

where constant Ni ≥ 0, functions A(·), A(·), B(·),

Ci(·), Di(·), Mi(·), i � 1, 2, are deterministic and bounded,
andM−1

i (·) is bounded. Our partially observed nonzero-sum
LQ differential game is to find out a pair of admissible
controls (u1(·), u2(·)) ∈ U1 × U2 satisfying

J1 u1(·), u2(·)(  � min
v1(·)∈U1

J1 v1(·), u2(·)( ,

J2 u1(·), u2(·)(  � min
v2(·)∈U2

J2 u1(·), v2(·)( .

⎧⎪⎪⎨

⎪⎪⎩
(46)

Similarly to [34], with the help of the necessary maxi-
mum principle (*eorem 1), we have the explicit expression
to a Nash equilibrium point with regard to the above LQ
game problem.

Theorem 3. For the above LQ game, we find out a Nash
equilibrium point as

u1(t), u2(t)(  � M
−1
1 (t)C

⊤
1 (t)E

v1,v2 p1(t)
F

1
t ,

M
−1
2 (t)C

⊤
2 (t)E

v1,v2 p2(t)
F

2
t , t ∈ [0, T],

(47)

in which (y(t), z(t), p1(t), p2(t)) satisfy the general FBSDE:

−dyv1 ,v2(t) � A(t)yv1 ,v2(t) + A(t)yv1 ,v2(t − δ) + B(t)zv1 ,v2(t) + C1(t)M−1
1 (t)C⊤1 (t)Ev1 ,v2 p1(t)

F1
t 

+ C2(t)M−1
2 (t)C⊤2 (t)Ev1 ,v2 p2(t)

F2
t dt − zv1 ,v2(t)dW(t), t ∈ [0, T],

dpi(t) � A⊤(t)pi(t) + EFt A
⊤

(t)piδ+(t)  dt + B⊤(t)pi(t)dW(t), t ∈ [0, T], (i � 1, 2),

yv1 ,v2(T) � ξ, yv1 ,v2(t) � ψ(t), t ∈ [−δ, 0],

pi(0) � Niy(0), pi(t) � 0, t ∈ [T, T + δ], (i � 1, 2).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

6. Conclusion

In this research, we have explored a class of partially
observed game problem of the backward stochastic system
with delay. More specially, based on the convex varia-
tional method, we establish the necessary and sufficient
conditions with regard to Nash equilibrium in our game
issue. *e theoretical results of this paper are applied to an

LQ game, for which the unique equilibrium point is
expressed explicitly. On account of that the LQ model is
usually used to depict many financial and economic
phenomena, we expect that our LQ game result of
BSDDEs can be widely used in these fields. As far as we
know, the partially observed nonzero-sum backward
game problem with the time-delay generator is firstly
investigated in our paper.
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Notwithstanding that we are committed to the above
game problem, we are likewise able to progress some
consequences of optimal control for BSDDEs, for example,
[14, 34].
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