
Research Article
AnEffectiveComputational Algorithm for theGlobal Solution of a
Class of Linear Fractional Programming

XiaoLi Huang,1,2 YueLin Gao ,1,2 Bo Zhang,3 and Xia Liu3

1Ningxia Province Cooperative Innovation Center of Scientific Computing and Intelligent Information Processing,
North Minzu University, Yinchuan 750021, China
2Ningxia Province Key Laboratory of Intelligent Information and Data Processing, North Minzu University,
Yinchuan 750021, China
3School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China

Correspondence should be addressed to YueLin Gao; gaoyuelin@263.net

Received 14 August 2020; Revised 21 September 2020; Accepted 22 October 2020; Published 10 November 2020

Academic Editor: S. A. Edalatpanah

Copyright © 2020 XiaoLi Huang et al.*is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the minimization of the sum of linear fractions on polyhedra, it is likewise a class of linear fractional programming (LFP). In
this paper, we mainly propose a new linear relaxation technique and combine the branch-and-bound algorithm framework to
solve the LFP globally. It is worthwhile to mention that the branching operation of the algorithm occurs in the relatively small
output space of the dimension rather than the space where the decision variable is located. When the number of linear fractions in
the objective function is much lower than the dimension of the decision variable, the performance of the algorithm is better. After
that, we also explain the effectiveness, feasibility, and other performances of the algorithm through numerical experiments.

1. Introduction

Consider the linear fractional programming (LFP):

(LFP) ≔ minf(x) � 􏽘

p

i�1

c
T
i x + di

e
T
i x + fi

s.t. x ∈ X � x ∈ Rn
|Ax≤ b, x≥ 0􏼈 􏼉,

(1)

where ci ∈ Rn, di ∈ R, ei ∈ Rn, and fi ∈ R. X is a nonempty
polyhedron-feasible set, with A ∈ Rm×n and b ∈ Rm, in a de-
cision (or variable) spaceRn. Note that throughout the paper, T
represents the transpose of vectors, such as the previous cT

i

representing the transpose of vector ci. Furthermore, for each
i � 1, 2, . . . , p, we let gi(x) � cT

i x + di and hi(x) � eT
i x + fi,

which are in favour of the following narrative. For the single
linear fraction gi(x)/hi(x) in the objective function, we assume
that gi(x)≥ 0 and hi(x)> 0; at the same time, by [1], our
hypothesis has not lost generality, that is, as long as the de-
nominator hi(x) of gi(x)/hi(x) is not 0, we can convert it into
gi(x)≥ 0 and hi(x)> 0 by means of the method in [1].

*e problem (LFP) has many important applications in
laminated manufacturing [2, 3], material layout [4], MIMO
networks [5], and economics [6], among others. From [7–9],
it can be seen that the computational efficiency of the al-
gorithm is very sensitive to the number p of linear fractions
in the problem (LFP).When p � 1, Charnes and Cooper [10]
indirectly solved the linear fractional programming by
transforming the original linear fractional programming
into an equivalent linear programming problem. Charnes
and Novaes [11] proposed an updated objective function
method to solve linear fractional programs by resolving a
series of linear programs, while Dinkelbach [12] used a
parametric approach to solving linear fractional program-
ming problems. *rough the transformation of the objective
function and constraint, Das and Mandal [13] simplified the
linear fractional programming into an equivalent linear
program and then used the simplex method to solve this
linear program. Indeed, when p � 2, Matsui [14] proved that
the problem (LFP) is an NP-hard problem. *erefore, its
solution method has caught the attention of numerous
scholars. So far, many methods have been proposed and

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 3580419, 14 pages
https://doi.org/10.1155/2020/3580419

mailto:gaoyuelin@263.net
https://orcid.org/0000-0003-2021-2097
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3580419

used to solve the LFP and its special forms, such as the image
space method [15], outer approximation method [16],
unifying monotone method [17], cutting plane method [18],
branch-and-bound algorithm [7, 8, 19, 20], interval-split
algorithm [21], internal point method [22], heuristic method
[23], and concave minimization method [24]. Besides, based
on [25], by introducing strategies such as bound-lift and
cone-compression, Shen et al. [26] proposed a new branch-
reduction-bound algorithm. According to Jiao and Liu [9],
the original problem is transformed into a bilinear pro-
gramming problem, and then the lower bound of the
original problem is constructed by using the technique of
linearization of convex envelope and concave envelope of
the bivariate product function and then solved by the
branch-and-bound algorithm. By utilising the linearization
technique, Jiao et al. [27] constructed the linear relaxation
lower bound of the original problem and then proposed a
new algorithm by pruning strategy and gave the convergence
of the algorithm. When p is a fixed number, an approximate
solution algorithm is given in [1, 28, 29], and its complexity
analysis shows that it is a complete polynomial-time ap-
proximation algorithm. Xia et al. [30] extended the con-
clusion in [28] to the problem of linear-ratio-sum with the
linear matrix inequality. Moreover, relevant scholars have
also studied linear fractional programming problems in
uncertain environments, such as fuzzy linear fractional
programming [31, 32], linear fractional programming with
absolute value variables [33], and interval linear fractional
programming [34]. Das et al. [31] proposed the concept of a
simple sorting method between the fuzzy numbers of two
triangles and gave an equivalent three-objective linear
fractional programming problem to calculate the upper,
middle, and lower bounds of the fuzzy linear fraction
programming problem, thus numerically constructing and
solving the optimal value. In [32], the authors used the
Charnes–Cooper scheme and the multiobjective linear
programming problem to obtain an effective algorithm for
solving the fully fuzzy linear fractional programming
problem, and in [33], they also proposed a new model of
linear fractional programming problems with absolute value
functions and then transformed the linear fractional pro-
gramming problems into independent linear programming
problems with some theorems. *en, popular algorithms
(such as the simplex algorithm) are utilized to solve these
problems. Recently, in [34], Abad et al. proposed two new
approaches to interval linear fractional programming, and in
each method, two submodels were used to obtain the range
of the objective function.

In this paper, a branch-and-bound algorithm based on
the branch of the p-dimensional output space is presented
for solving the LFP. *e literature studies [7–9] all report
that the branching operation of the branch-and-bound al-
gorithm occurring in the p-dimensional space may save
more computation than in the 2p-dimensional or n-di-
mensional space, especially in [8], which, by *eorem 5 and
its corollary, shows that the branching operation occurring
in the p-dimensional space, in the case of p≪ n, is the most
advantageous. *erefore, the algorithm set forth in the
present paper can greatly save the computational cost

compared with the branching operation for the 2p- or
n-dimensional space. In addition, another advantage of our
algorithm is the fact that we only need to solve linear
programming in the iterative process of the algorithm,
which is easier to solve than the general nonlinear pro-
gramming algorithm.

*is paper is organized as follows. In Section 2, we give
the equivalence problem (EP) of the problem (LFP) as well as
some preparatory work. Section 3 mainly discusses the
relevant theories of the proposed algorithm based on the
equivalence problem (EP), including the bounding,
branching, pruning, detailed steps, and the convergence
analysis of the proposed algorithm. In Section 4, numerical
experiments are performed, which are utilized to illustrate
the effectiveness and feasibility of the algorithm and other
performances. Finally, the conclusion part mainly makes a
simple summary and prospect of the algorithm in this paper.

2. Equivalent Problem of Problem (LFP)

To get the equivalent problem of the LFP, we first solve the
following 4p-linear programming problems using the
existing linear programming method:

y
0
i

� min
x∈X

gi(x) � min
x∈X

c
T
i x + di, i � 1, 2, . . . , p,

y
0
i � max

x∈X
gi(x) � max

x∈X
c

T
i x + di, i � 1, 2, . . . , p,

z
0
i � min

x∈X
hi(x) � min

x∈X
e

T
i x + fi, i � 1, 2, . . . , p,

z
0
i � max

x∈X
hi(x) � max

x∈X
e

T
i x + fi, i � 1, 2, . . . , p.

(2)

Obviously, the optimal values of the above 4p-linear
programming problems determine the initial upper and
lower bounds of the numerator and denominator in each
linear fraction function, that is, y0

i
, y0

i , z0
i , and y0

i ,
respectively.

Next, we define the initial rectangle

R ≔ (y, z) ∈ R2p
: y

0
i
≤yi ≤y

0
i , z

0
i ≤ zi ≤ z

0
i , i � 1, 2, . . . , p}􏽮

(3)

and the subrectangle

R
k ≔ (y, z) ∈ R2p

: y
0
i
≤yi ≤y

0
i , z

k
i ≤ zi ≤ z

k
i , i � 1, 2, . . . , p}⊆R􏽮

(4)

at the current iteration k(k≥ 1).
Consider the following equivalent problem (EP):

(EP) ≔ minφ(y, z) ≔ 􏽘

p

i�1

yi

zi

,

s.t.

gi(x) − yi � 0, i � 1, 2, . . . , p

hi(x) − zi � 0, i � 1, 2, . . . , p

x ∈ X, (y, z) ∈ R.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

2 Mathematical Problems in Engineering

*e following *eorem 1 creates the equivalent rela-
tionship between the problem (EP) and the original problem
(LFP).

Theorem 1. If (x∗, y∗, z∗) is a global optimal solution for
problem (EP), then x∗ is a global optimal solution for problem
(LFP). Conversely, if x∗ is an optimal solution for problem
(LFP), then (x∗, y∗, z∗) is a global optimal solution for
problem (EP), where y∗ ≔ g(x∗) and z∗ ≔ h(x∗).

Proof. *e conclusion of the theorem is obvious and
omitted here.

*eorem 1 shows that the solution of problem (LFP) can
be obtained indirectly by addressing problem (EP).

In addition, if the rectangle R in problem (EP) is replaced
by its subrectangle Rk, this will generate subproblem (EPRk)

of problem (EP) over the rectangle Rk. □

3. Branch-and-Bound Algorithm

In this section, we will consider the three components of the
branch-and-bound algorithm, namely, branching, bound-
ing, and pruning, respectively, by studying problem (EP).

3.1. Bounding. Note that the objective function of the
problem (EPRk)(or (EP)) is separable and still nonconvex.
And then, we can propose a new underestimation method
for (yi/zi)(i � 1, 2, . . . , p) and give it through the following
*eorem 2.

Theorem 2. Consider the rectangle LR ≔ (y, z) ∈􏼈

R × R: y ≤y≤y, z ≤ z≤ z}, where y, y, z, and z are all
constants satisfying 0≤ y ≤y≤y and 0< z ≤ z≤ z. For any
(y, z) ∈ LR, define the functions ψ(y, z) and ψ(y, z) as
follows:

ψ(y, z) ≔
y

z
,

ϕ1(y, z) ≔ −
y z

z z
+

y

z
+

y 2z −
���
z z

􏽰
(􏼁

z
���
z z

􏽰 ,

ϕ2(y, z) ≔ −
yz

z z
+

2z −
���
z z

􏽰
(􏼁y

z
���
z z

􏽰 +
y

z
,

ψ(y, z) ≔ max ϕ1(y, z), ϕ2(y, z)􏽮 􏽯.

(6)

7en, the following conclusions hold:

(i) For any (y, z) ∈ LR, the functions ψ(y, z) and ψ(y, z)

satisfy

ψ(y, z)≥ ψ(y, z). (7)

(ii) Let ∇ � ((2y
�
z

√
)/(z z(

�
z

√
+

�
z

√
))) and Δ � z − z;

then, limΔ⟶0ψ(y, z) − ψ(y, z) � 0.

Proof. (i) For any (y, z) ∈ LR, we have

ψ(y, z) − ψ(y, z)

� ψ(y, z) − max −
y z

z z
+

y

z
+

y 2z −
���
z z

􏽰
(􏼁

z
���
z z

􏽰 , −
yz

z z
+

2z −
���
z z

􏽰
(􏼁y

z
���
z z

􏽰 +
y

z

⎧⎨

⎩

⎫⎬

⎭,

�
y

z
− max

y

z
+ y

2
���
z z

􏽰 −
z

z z
􏼠 􏼡 −

y

z
􏼢 􏼣, −

1
z z

yz + y z − y z(􏼁 +
2y
���
z z

􏽰􏼢 􏼣􏼨 􏼩,

≥min
y

z
−

y

z
+

y

z
−

y

z
􏼠 􏼡,

y

z
− −

yz

z z
+

2y
���
z z

􏽰􏼠 􏼡􏼨 􏼩,

� min y − y􏼐 􏼑
1
z

−
1
z

􏼒 􏼓, y
1
z

−
2
���
z z

􏽰 −
z

z z
􏼠 􏼡􏼢 􏼣􏼨 􏼩,

≥ 0.

(8)

*e establishment of the first inequality in formula
(8) takes advantage of the convexity of the univariate
function 1/z in the case of z> 0, i.e.,

(1/z)≥ (2/
���
z z

􏽰
) − (z/z z). Moreover, the estab-

lishment of the first inequality of formula (8) also
takes advantage of the fact that (y − y)(z − z)≤ 0.

Mathematical Problems in Engineering 3

As a result, according to formula (8), it is easy to
know ψ(y, z)≥ ψ(y, z). Conclusion (i) holds.

(ii) By the definition of ψ(y, z) and ψ(y, z), we have

ψ(y, z) − ϕ1(y, z) �
y

z
−

y

z
􏼒 􏼓 + y

1
z

−
2
���
z z

􏽰 +
z

z z
􏼠 􏼡,

≤
y z − z(􏼁

z z
+ y

z

z z
−

2
���
z z

􏽰 +
z

z z
􏼠 􏼡,

�

�y z − z
�

􏼒 􏼓

z z
�

+
y

z z

�
z

√
−

�
z

􏽰
􏼐 􏼑

2
, ≤

y

z z
1 +

�
z

√
−

�
z

√

�
z

√
+

�
z

√􏼠 􏼡 z − z(􏼁, �
2y

�
z

√
z − z(􏼁

z z
�
z

√
+

�
z

√
(􏼁

, � ∇Δ,

(9)

ψ(y, z) − ϕ2(y, z) � y
1
z

− −
z

z z
+

2
���
z z

􏽰􏼠 􏼡􏼠 􏼡 +
1

z z
(y − y) z − z(􏼁,

≤y
1
�
z

√ −

�
z

√

���
z z

􏽰􏼠 􏼡

2

+
1

z z
y − y􏼐 􏼑 z − z(􏼁,

≤
y

z z

�
z

√
−

�
z

􏽰
􏼐 􏼑

2
+

y

z z
z − z(􏼁,

�
y

z z
1 +

�
z

√
−

�
z

√

�
z

√
+

�
z

√􏼠 􏼡 z − z(􏼁,

� ∇Δ.

(10)

According to formulae (9) and (10) and conclusion (i),
we have

0≤ lim
Δ⟶0

ψ(y, z) − ψ(y, z)≤ lim
Δ⟶0
∇Δ. (11)

Since ∇ is a bounded value, this implies that ∇Δ⟶ 0 as
Δ⟶ 0. *us, combined with (11), we have
limΔ⟶0ψ(y, z) − ψ(y, z) � 0, and the proof is completed.

In the following, by using *eorem 2, we will construct
the lower bounding function of the objective function for
problem (EPRk)(or (EP)). Assume that 􏽢R denotes R or a
subrectangle Rk of R that is generated by the branching
process, where 􏽢R � 􏽑

p
i�1

􏽢Ri, with 􏽢Ri � [y0
i
, y0

i] ×

[zi, zi], i � 1, 2, . . . , p. Obviously, y0
i
, y0

i , zi, and zi satisfy
0≤y0

i
≤yi ≤y0

i and 0< zi ≤ zi ≤ zi. For each i ∈ 1, 2, . . . , p􏼈 􏼉

and for each (yi, zi) ∈ 􏽢Ri, define

ψi yi, zi(􏼁 ≔
yi

zi

,

ϕ1i yi, zi(􏼁 ≔ −
y
0
i
zi

zizi

+
yi

zi

+
y
0
i
2zi −

���
zizi

􏽰
(􏼁

zi

���
zizi

􏽰 ,

ϕ2i yi, zi(􏼁 ≔ −
y
0
i zi

zizi

+
2zi −

���
zizi

􏽰
(􏼁yi

zi

���
zizi

􏽰 +
y
0
i

zi

,

ψ
i

yi, zi(􏼁 ≔ max ϕ1i yi, zi(􏼁, ϕ2i yi, zi(􏼁􏽮 􏽯.

(12)

*en, by *eorem 2, we have

ψi yi, zi(􏼁≥ψ
i

yi, zi(􏼁, i ∈ 1, 2, . . . , p􏼈 􏼉. (13)

*us, for any (y, z) ∈ 􏽢R, let ψ(y, z) � 􏽐
p
i�1 ψi

(yi, zi), and
we have

4 Mathematical Problems in Engineering

φ(y, z)≥ ψ(y, z), ∀(y, z) ∈ 􏽢R. (14)

Furthermore, by using formulae (13) and (14), we can
construct the following linear relaxation programming
problem (LRP􏽢R

) of (EP􏽢R
):

LRP􏽢R􏼐 􏼑: ψ(y, z) � min􏽘

p

i�1
ri,

s.t.

ϕ1i yi, zi(􏼁≤ ri, i � 1, 2, . . . , p,

ϕ2i yi, zi(􏼁≤ ri, i � 1, 2, . . . , p,

gi(x) − yi � 0, i � 1, 2, . . . , p,

hi(x) − zi � 0, i � 1, 2, . . . , p,

x ∈ X, (y, z) ∈􏽢R.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Based on the construction method of the linear relax-
ation programming problem (LRP􏽢R

), obviously, the optimal
value for problem (NLRP􏽢R

) is less than or equal to that of
(EP􏽢R

), i.e., v(NLRP􏽢R
)≤ v(EP􏽢R

). *en, we have
v(LRP􏽢R

) � v(NLRP􏽢R
)≤ v(EP􏽢R

). *erefore, the linear re-
laxation programming problem (LRP􏽢R

) provides a valid
lower bound for the optimal value of (EP􏽢R

).
It is noted that the solution (􏽢x, 􏽢y, 􏽢z) obtained from the

above linear relaxation programming problem (LRP􏽢R
),

which is used to progressively update the upper bound of the
optimal value of problem (EP), is a feasible solution to
problem (EP). □

3.2. Branching. For the selected rectangle 􏽢R, we use the
dichotomization as a branching process, which subdivides a
2p-dimensional rectangle

􏽢R � 􏽙

p

i�1

􏽢Ri � 􏽙

p

i�1
y
0
i
, y

0
i] × zi, zi􏼂 􏼃⊆R􏽨 (16)

into two 2p-dimensional subrectangles 􏽢R
1 and 􏽢R

2 of the
same volume along the midpoint of its longest edge. *e
specific rectangle-branch method is as follows:

(i) Let j ∈ argmax zi − zi, i � 1, 2, . . . , p􏼈 􏼉.
(ii) 􏽢Rj is divided into 􏽢R

1
j and 􏽢R

2
j , i.e.,

􏽢R
1
j � y

0
j
, y

0
j] × zj,

zj + zj

2
􏼢 􏼣, 􏽢R

2
j � y

0
j
, y

0
j] ×

zj + zj

2
, zj􏼢 􏼣.􏼢􏼢

(17)

(iii) Let 􏽢R
1

� 􏽑
j− 1
i�1

􏽢Ri × 􏽢R
1
j × 􏽑

p
i�j+1

􏽢Ri and 􏽢R
2

� 􏽑
j− 1
i�1

􏽢Ri×
􏽢R
2
j × 􏽑

p
i�j+1

􏽢Ri.

Be sure to note that the interval [y0
i
, y0

i](i � 1, 2, . . . , p)

is never subdivided during the branching process. *us, the
branching process occurs only in the p-dimensional space,
which greatly saves this computational cost.

3.3. Pruning. Suppose L(􏽢R) is the lower bound of problem
(EP􏽢R

) over the rectangle 􏽢R and U represents the best upper

bound that the algorithm has known so far. And let ε ∈ (0, 1)

represent the tolerance of the algorithm. *en, the pruning
process is the transversion of deleting the node information
on the branch-and-bound tree corresponding to the rect-
angle 􏽢R that satisfies L(􏽢R)>U − ε.

3.4. Output-Space Branch-and-Bound Algorithm. Now, we
present an output-space branch-and-bound algorithm for
solving (LFP). For the k-th iteration, we give the following
notation in advance: Rk is the rectangle to be subdivided, Q

represents a set that produces a new solution after each
iteration (note that the number of elements in the set Q does
not exceed 2), and Ξ is a collection of rectangles left after
pruning. (xk, yk, zk) and L(Rk) represent the optimal so-
lution and optimal value of problem (LRPRk) over the
rectangle Rk, respectively. Lk represents the current lower
bound of the global optimal value of problem (EP), and Uk

represents the current upper bound of the global optimal
value of problem (EP). U′ represents the best function value
of all new feasible solutions to the resulting problem (EP)
after each iteration is completed.

Combined with the above content, the proposed algo-
rithm is as follows:

Step 0 (initialization):

y0, y0, z0, and z0 are obtained by (2), and then the
initial rectangle R0 � R is constructed. Set tolerance
ε ∈ (0, 1). *en, the initial linear relaxation pro-
gramming problem (LRPR0) is solved, and its optimal
solution (x0, y0, z0) and optimal value L(R0) are
obtained. And then, let

U
1

� φ y
0
, z

0
􏼐 􏼑,

L
1

� L R
0

􏼐 􏼑,

R
1

� R
0
,

Ξ � R
1
,

Q � ∅, k � 1.

(18)

Step 1 (termination):

If Uk − Lk ≤ ε, then terminate the algorithm. *en,
(xk, yk, zk) is the global ε-optimal solution of problem
(EP), and the global optimal solution of problem
(LFP) can be obtained according to *eorem 1 which
is xk. Otherwise, go to Step 2.

Step 2 (branching):

Let Rk � 􏽢R∈ Ξ: Lk � L(􏽢R)􏽮 􏽯 and Ξ � Ξ∖Rk. *en,
using the rectangle-branching method in Section 3.2,
Rk is divided into two subrectangles Rk1 and Rk2.

Step 3 (pruning):

For each s ∈ 1, 2{ }, solve (LRPRks) to obtain L(Rks)

and (xks, yks, zks) for Rks⊆Rk. If L(Rks)≥Uk − ε, then
delete the rectangle Rks. Otherwise, let Ξ � Ξ∪Rks and
Q � Q∪ (xks, yks, zks).

Mathematical Problems in Engineering 5

Step 4 (bounding):

Step 4.1 (upper bounding):
If Q is not empty, let U′ � min(x,y,z)∈Qφ(y, z). If
U′ <Uk, set Uk � U′ and (xk, yk, zk) �

argmin(x,y,z)∈Qφ(y, z).
If Q is empty, both Uk and (xk, yk, zk) remain the
same.
Step 4.2 (lower bounding):

L
k

�
U

k
, if Ξ � ∅,

min L(􏽢R): 􏽢R∈ Ξ􏽮 􏽯, else.

⎧⎨

⎩ (19)

Set k � k + 1 and Q � ∅, and go to Step 1.

3.5.Convergence of theAlgorithm. *e global convergence of
the algorithm is reproduced as follows.

Theorem 3. 7e above algorithm either terminates in a finite
iteration and is accompanied by the generation of optimal
values of problem (LFP) or produces an infinite sequence xk􏼈 􏼉

composed of feasible solutions and makes any convergence
point of xk􏼈 􏼉 global optimal solutions for (LFP).

Proof. If this algorithm is terminated at iteration k(k≥ 1),
then according to Step 1 of the algorithm, we have

U
k

− L
k ≤ ε. (20)

So, if (x∗, y∗, z∗) is the global optimal solution of
problem (EP), there is

U
k

� φ y
k
, z

k
􏼐 􏼑≥φ y

∗
, z
∗

(􏼁≥L
k
. (21)

By integrating (20) and (21),

f x
∗

(􏼁 � φ y
∗
, z
∗

(􏼁≤f x
k

􏼐 􏼑 � φ y
k
, z

k
􏼐 􏼑≤φ y

∗
, z
∗

(􏼁 + ε � f x
∗

(􏼁 + ε

(22)

can be obtained. *us, when the algorithm terminates in the
k − th iteration, the corresponding solution f(xk) is a global
optimal value of problem (LFP).

*e algorithm produces an infinite sequence xk, yk, zk􏼈 􏼉

by solving a series of linear programs (LRPRk). And each
point of this sequence is a feasible point for problem (EP),
respectively. From the algorithm, there will be an infinite
sequence Rk􏼈 􏼉

∞
k�1 of rectangles corresponding to this series of

linear programs. By the branching process of Step 2, we have

lim
k⟶∞

R
k

� 􏽙

p

i�1
y
0
i , y

0
i􏽨 􏽩 × lim

k⟶∞
􏽑
p

i�1
z

k
i , z

k
i􏽨 􏽩 � 􏽑

p

i�1
y
0
i
, y

0
i􏽨 􏽩 × 􏽑

p

i�1
z
∗
i .

(23)

*erefore, we have

lim
k⟶∞

z
k
i � z
∗
i � lim

k⟶∞
z

k
i , i � 1, 2, . . . , p. (24)

Also, since zk
i � hi(xk), i � 1, 2, . . . , p, we have

z
k
i ≤ z

k
i � hi x

k
􏼐 􏼑≤ z

k
i , i � 1, 2, . . . , p. (25)

By (24) and (25), we have

hi x
∗

(􏼁 � lim
k⟶∞

hi x
k

􏼐 􏼑 � lim
k⟶∞

z
k
i � z
∗
i . (26)

*us, (x∗, y∗, z∗) is also a viable solution to problem
(EP). Moreover, according to the properties of the branch-
and-bound algorithm, the sequence Lk􏼈 􏼉 is an increasing
sequence bounded by φ(y∗, z∗), and then we have

φ y
∗
, z
∗

(􏼁≥ lim
k⟶∞

L
k
. (27)

*rough the update process of the lower bound in Step 4
of the algorithm, we have

lim
k⟶∞

L
k

� lim
k⟶∞

ψ y
k
, z

k
􏼐 􏼑. (28)

*rough *eorem 2 and the continuity of function
ψ(y, z), we have

lim
k⟶∞

ψ y
k
, z

k
􏼐 􏼑 � lim

k⟶∞
􏽘

p

i�1
ψ

i
y

k
, z

k
􏼐 􏼑 � φ y

∗
, z
∗

(􏼁. (29)

By using the previous formulae (27), (28), and (29), we
have

lim
k⟶∞

L
k

� φ y
∗
, z
∗

(􏼁. (30)

Ultimately, (x∗, y∗, z∗) is a global optimal solution to
problem (EP), and then using equivalence *eorem 2, we
can know that x∗ is a global optimal solution to problem
(LFP) immediately. *e proof is completed. □

4. Numerical Experiments

In this section, several test problems are given to illustrate
the performance of the algorithm. All of our testing pro-
cedures were performed viaMATLAB (2012a) on computers
with Intel(R) Core(TM)i5-2320 3.00GHz power processor
4.00GB memory and Microsoft Win7 operating system.

Problem 1 (see [1])

min
− 3.333x1 − 3.000x2 − 1.000

1.666x1 + x2 + 1.000
+

− 4.000x1 − 3.000x2 − 1.000
x1 + x2 + 1.000

s.t.

5.000x1 + 4.000x2 ≤ 10.000, − x2 ≤ − 0.100

− 2.000x1 − x2 ≤ − 2.000, − 2.000x1 − x2 ≤ − 2.000

x1, x2 ≥ 0.000.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(31)

For test Problem 1, we use the proposed algorithm to
address the problem in detail, which can explain the fea-
sibility of the algorithm. *en, the calculation results of the
three test problems in other literature studies are also cal-
culated and indicated in Table 1 together with the results of
Problem 1. First, for convenience, we denote the feasible
domain of Problem 1 by

6 Mathematical Problems in Engineering

X ≔

5.000x1 + 4.000x2 ≤ 10.000, − x2 ≤ − 0.100,

− 2.000x1 − x2 ≤ − 2.000, − 2.000x1 − x2 ≤ − 2.000,

x1, x2 ≥ 0.000.

⎧⎪⎪⎨

⎪⎪⎩

(32)

We also let

g1(x) � − 3.333x1 − 3.000x2 − 1.000,

g2(x) � − 4.000x1 − 3.000x2 − 1.000,

h1(x) � 1.666x1 + x2 + 1.000,

h2(x) � x1 + x2 + 1.000.

(33)

It is easy to see that the molecules of Problem 1 are
negative (i.e., g1(x)< 0 andg2(x)< 0,∀x ∈ X), and we need
to convert these two molecules into nonnegative functions.

Next, we solve the following four linear programming
problems:

y
0
1 � min

x∈X
g1(x), y

0
2 � min

x∈X
g2(x), z

0
1 � min

x∈X
h1(x), z

0
2 � min

x∈X
h2(x).

(34)

Among them, y0
1 � − 8.4583, y0

2 � − 8.9800, z0
1 � 2.6827,

and z0
2 � 2.0500 are obtained by solving the above four linear

programming problems. Apparently, y0
1 ≤g1(x)

< 0, y0
2 ≤g2(x)< 0, h1 (x)≥ z0

1 > 0, and h2(x)≥ z0
2 > 0, and

we let

M1 �
− y

0
1

z
0
1

� 3.1529> 0, M2 �
− y

0
2

z
0
2

� 4.3804> 0. (35)

Well, for any x ∈ X, we have

gi(x) ≔ gi(x) + Mihi(x) � gi(x) +
− y

0
i

z
0
i

hi(x) �
z0

i gi(x) − y
0
i
hi(x)

z
0
i

� z
0
i gi(x) − z

0
i y

0
i

+ z
0
i

y0
i

− y
0
i
hi(x)

z
0
i

�
z0

i gi(x) − y
0
i

􏼐 􏼑 + y
0
i

z
0
i − hi(x)􏼐 􏼑

z
0
i

≥ 0, i � 1, 2. (36)

According to the above data, we can get

g1(x) � 1.9197x1 + 0.1529x2 + 2.1529,

g2(x) � 0.3804x1 + 1.3804x2 + 3.3804.
(37)

As a result, Problem 1 can be reconstructed as follows:

min
g1(x)

h1(x)
+

g2(x)

h2(x)
− M1 + M2(􏼁

s.t. x ∈ X.

(38)

*erefore, the optimal solution of Problem 1 is the same
as that of the following problem (P):

Table 1: Comparison of results in Problems 1– 5.

Problem Reference Solution Optimum Iter Time ε

1 [1] (0.1000, 2.3750) − 4.84151 2 0 10− 2

Ours (0.1000, 2.3750) − 4.84151 8 0.3187 10− 2

2
[8] (1.5000, 1.5000) 4.9125 460 8.7944 10− 4

[21] (1.5, 1.5) 4.9125874 56 1.0870 10− 3

Ours (1.5, 1.5) 4.9125874 73 1.8091 10− 4

3
[8] (0.0000, 1.66666667, 0.0000) 3.7109 169 4.2429 10− 6

[21] (0.0000, 1.66666667, 0.0000) 3.710919 8 0.1830 10− 3

Ours (0, 1.6667, 0) 3.7109 132 3.5214 10− 6

4
[8] (0, 0.333333, 0) − 3.0029 2090 50.8226 10− 6

[21] (0, 0.333333, 0) − 3.0029 17 0.1290 10− 3

Ours (0, 0.333333, 0) − 3.0029 38 1.0237 10− 6

5

[9] (6.24409, 20.0249, 3.79672, 5.93972, 0, 7.43852, 0, 23.2833, 0.515015, 40.9896, 0,
3.14363)

16.2619 927 — 10− 3

[17] (6.223689, 20.060317, 3.774684, 5.947841, 0, 7.456686, 0, 23.312579, 0.000204,
41.031824, 0, 3.171106)

16.077978 620 65.58 10− 2

Ours (6.22369, 20.0603, 3.7746, 5.94784,0, 7.45668, 0,23.31257, 0, 41.03182, 0, 3.17111)
16.077978 415 7.8815 10− 3

Mathematical Problems in Engineering 7

(P): min
g1(x)

h1(x)
+

g2(x)

h2(x)
,

s.t. x ∈ X.

(39)

Now, we convert problem (P) into the following initial
equivalence problem (EP1):

(EP1): min
y1

z1
+

y2

z2
,

s.t.

gi(x) − yi � 0, i � 1, 2,

hi(x) − zi � 0, i � 1, 2,

x ∈ X, (y, z) ∈ R
1
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(40)

where

R
1

�

2.6201 5.8541

3.8800 6.6971

2.6827 4.2987

2.0500 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 1 of flowchart 1 represents rectangleR
1
.

(41)

By solving the linear relaxation programming problem
(LPRR1) constructed over the rectangle R1, we can obtain the
initial lower bound 2.5843, the initial upper bound 2.6918
of problem (EP1), and the corresponding optimal solu-
tion (x1, y1, z1) � [0.1000; 2.2357; 2.7080; 6.6972; 3.5416;

3.4750]; then, we select the rectangleR1 corresponding to the
initial lower bound and then generate the subrectangle

R
11

�

2.6201 5.8541

3.8800 6.6971

2.6827 3.4907

2.0500 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R
12

�

2.6201 5.8541

3.8800 6.6971

3.4907 4.2987

2.0500 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

by the branching operation. 2 of flowchart 1 represents
rectangle R11; 3 of flowchart 1 represents rectangle R12;
through solving linear programming problem (LPRR11), the
corresponding optimal solution and the optimal value
are (x11, y11, z11) � [0.1000; 2.3241; 2.7003; 6.6269; 3.4907;

3.4241] and 2.5916, respectively, and the objective function
value of problem (EP1) is 2.7086> 2.6918, so the current
optimal solution and optimal value of problem (EP1) are
not updated. *en, we continue to solve linear pro-
gramming problem (LPRR12) and obtain the corresponding
optimal solution and optimal value which are (x12, y12,

z12) � [0.1000; 2.3257; 2.7080; 6.6972; 3.5416; 3.4750] and
2.5844, respectively, and the objective function value of
problem (EP1) is 2.6919; then, the current optimal solution
and optimal value of the problem will not be updated. As a

result, the lower bound of the current problem (EP1) is
updated to 2.5844. Next, we select the rectangle R12 cor-
responding to the contemporary lower boundary to divide
and then obtain two subrectangles:

R
21

�

2.6201 5.8541

3.8800 6.6971

3.4907 4.2987

2.0500 2.7625

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R
22

�

2.6201 5.8541

3.8800 6.6971

3.4907 4.2987

2.7625 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(43)

4 of flowchart 1 represents rectangle R21; 5 of flowchart 1
represents rectangle R22; through solving linear program-
ming problem (LPRR21), the corresponding optimal value
and the optimal solution are 2.8388> 2.6918 and (x21, y21,

z21) � [1.6625; 0.1000; 5.3598; 4.1511; 3.8697; 2.7625], re-
spectively. So, this node is deleted. *en, we continue to
solve linear programming problem (LPRR22) and obtain
the corresponding optimal solution and optimal value which
are (x22, y22, z22) � [0.1000; 2.3750; 2.7080; 6.6972; 3.5416;

3.4750] and 2.6655, respectively, and the objective function
value of problem (EP1) is 2.6918; then, the current optimal
solution and optimal value of the problem will not be
updated. As a consequence, the lower bound of the current
problem (EP1) is updated to 2.5916. We continue to select
the rectangle R11 corresponding to the current lower bound
and divide it to obtain two subrectangles:

R
31

�

2.6201 5.8541

3.8800 6.6971

2.6827 3.4907

2.0500 2.7625

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R
32

�

2.6201 5.8541

3.8800 6.6971

2.6827 3.4907

2.7625 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(44)

6 of flowchart 1 represents rectangle R31; 7 of flowchart 1
represents rectangle R32; through solving linear program-
ming problem (LPRR31), the corresponding optimal
value and the optimal solution are 2.9048> 2.6918
and (x31, y31, z31) � [1.0934; 0.6691; 4.3543; 4.7202; 3.4907;

2.76250], respectively. So, this node is deleted. *en, we
continue to solve linear programming problem (LPRR32) and
obtain the corresponding optimal solution and optimal
value which are (x32, y32, z32) � [0.1000; 2.3241;

2.7003; 6.6269; 3.4907; 3.4241] and 2.6697, respectively, and
the objective function value of problem (EP1) is
2.7089> 2.6918; then, the current optimal solution and optimal
value of the problem will not be updated. As a result, the lower
bound of the current problem (EP1) is updated to 2.6655.

8 Mathematical Problems in Engineering

Continue to select and section the rectangle R22 corresponding
to the current lower bound, resulting in two subrectangles:

R
41

�

2.6201 5.8541

3.8800 6.6971

3.4907 3.8947

2.7625 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R
42

�

2.6201 5.8541

3.8800 6.6971

3.8947 4.2987

2.7625 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(45)

8 of flowchart 1 represents rectangle R41; 9 of flowchart 1
represents rectangle R42; through solving linear programming
problem (LPRR41), the corresponding optimal value and the
optimal solution are 2.6719 and (x41, y41, z41) �

[0.1000; 0.3750; 2.7080; 6.6972; 3.5416; 3.4750], and the ob-
jective function value of problem (EP1) is 2.6918, respectively.
*en, we continue to solve linear programming problem
(LPRR42) and get the corresponding optimal solution and value
which are (x42, y42, z42) � [0.9488; 1.3139; 4.1753; 5.5554;

3.8947; 3.2628] and 2.7375> 2.6918, respectively. So, this node
is deleted; then, the current optimal solution and optimal value
of the problemwill not be updated. As a result, the lower bound
of the current problem (EP1) is updated to 2.6697. Continue to
select and section the rectangleR32 corresponding to the current
lower bound, resulting in two subrectangles:

R
51

�

2.6201 5.8541

3.8800 6.6971

2.6827 3.0867

2.7625 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R
52

�

2.6201 5.8541

3.8800 6.6971

3.0867 3.4907

2.7625 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(46)

10 of flowchart 1 represents rectangle R51; 11 of flow-
chart 1 represents rectangle R52; through solving linear
programming problem (LPRR51), the corresponding optimal
value and the optimal solution are 2.8417> 2.6918 and (x51,

y51, z51) � [0.1000;1.9201;2.6385;6.0692;3.0867; 3.0201],
respectively. So, this node is deleted. *en, we continue to
solve linear programming problem (LPRR52) and obtain the
corresponding optimal solution and optimal value which are
(x52,y52,z52) � [0.0999;2.3241;2.7002; 6.6269;3.4907;

3.4241] and 2.6816, and the objective function value of
problem (EP1) is 2.7089>2.6918, respectively; then, the
current optimal solution and optimal value of the problem
will not be updated. As a result, the lower bound of the
current problem (EP1) is updated to 2.6719. Continue to
select and section the rectangle R41 corresponding to the
current lower bound, resulting in two subrectangles:

R
61

�

2.6201 5.8541
3.8800 6.6971
3.4907 3.8947
2.7625 3.1188

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R
62

�

2.6201 5.8541
3.8800 6.6971
3.4907 3.8947
3.1188 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(47)

12 of flowchart 1 represents rectangleR61; 13 of flowchart 1
represents rectangle R62; through solving linear programming
problem (LPRR61), the corresponding optimal value and the
optimal solution are 2.8039> 2.6918 and (x61,y61,z61) �

[0.7855;1.3332;3.8649;5.5198;3.6420; 3.1188], respectively.
So, this node is removed. *en, we continue to solve linear
programming problem (LPRR62) and obtain the corre-
sponding optimal solution and optimal value which are (x62,

y62, z62) � [0.1000;2.3750;2.7080; 6.6972;3.5416; 3.4750]

and 2.6850, and the objective function value of problem (EP1)
is 2.6918, respectively; then, the current optimal solution and
optimal value of problem (EP1) will not be updated. As a
result, the lower bound of the current problem (EP1) is
updated to 2.6816. Continue to select and section the rectangle
R52 corresponding to the current lower bound, resulting in
two subrectangles:

R
71

�

2.6201 5.8541
3.8800 6.6971
3.0867 3.4907
2.7625 3.1188

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R
72

�

2.6201 5.8541
3.8800 6.6971
3.0867 3.4907
3.1188 3.4750

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(48)

14 of flowchart 1 represents rectangle R71; 15 of flow-
chart 1 represents rectangle R72; through solving linear
programming problem (LPRR71), the corresponding optimal
value and the optimal solution are 2.8162> 2.6918 and (x71,

y71, z71) � [0.1000; 2.0188; 2.6536; 6.2054; 3.1854; 3.1188],
respectively. So, this node is removed. *en, we continue to
solve linear programming problem (LPRR72) and obtain the
corresponding optimal solution and optimal value which are
(x72, y72, z72) � [0.1000; 2.3241; 2.7003; 6.6269; 3.4907;

3.4241] and 2.7008> 2.6918, respectively. So, this node is
deleted; then, the current optimal solution and optimal value
of problem (EP1) will not be updated. So far, there is one
node 13 left on the branch-and-bound tree, and the current
best optimal value and best solution for problem (EP1) are
2.6918 and [0.1000; 2.3750; 2.7080; 6.6972; 3.5416; 3.4750],
respectively. As a result, the lower bound of the current
problem (EP1) is updated to 2.6850. At this point, in the
current iteration, the difference between the upper and lower
bounds of problem (EP1) satisfies 2.6918 − 2.6850 �

0.0068< 0.01, so the algorithm iteration stops. *en, the
optimal solution of Problem 1 (or (P)) is [0.1000; 2.3750],
and the optimal value is 2.6918 − (M1 + M2) � − 4.84151.
*e specific steps are shown in Figure 1.

Mathematical Problems in Engineering 9

Problem 2 (see [8, 21])

min
37x1 + 73x2 + 13
13x1 + 13x2 + 13

+
63x1 − 18x2 + 39
13x1 + 26x2 + 13

s.t. 5x1 − 3x2 � 3, 1.5≤ x1 ≤ 3.

(49)

Problem 3 see [1, 8, 21])

min
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50
4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50
x1 + 5x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50
5x2 + 4x3 + 50

s.t.
2x1 + x2 + 5x3 ≤ 10, x1 + 6x2 + 2x3 ≤ 10

9x1 + 7x2 + 3x3 ≥ 10, x1, x2, x3 ≥ 0.

⎧⎪⎨

⎪⎩

(50)

Problem 4 (see [1, 8, 21])

min −
3x1 + 5x2 + 3x3 + 50
3x1 + 4x2 + 5x3 + 50

−
3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50

−
4x1 + 2x2 + 4x3 + 50
5x1 + 4x2 + 3x3 + 50

s.t. 6x1 + 3x2 + 3x3 ≤ 10, 10x1 + 3x2 + 8x3 ≤ 10, x1, x2, x3 ≥ 0.

(51)

Problem 5 (see [9, 17])

max􏽘

5

i�1

c
T
i x + di

e
T
i x + fi

s.t. Ax≤ b, x≥ 0,

(52)

where

(2.5916, 2.6918) (2.5844, 2.6918)

(2.6655, 2.6918)

(2.6719, 2.6918)

(2.6850, 2.6918)(2.8039, 2.6918)
Delete it

(2.7008, 2.6918)
Delete it

(2.8162, 2.6918)
Delete it

(2.8817, 2.6918)
Delete it

(2.9084, 2.6918)
Delete it

(2.8388, 2.6918)
Delete it

(2.7375, 2.6918)
Delete it

(2.5843, 2.6918)

(2.6697, 2.6918)

(2.6816, 2.6918)

(The initial upper lower bound are
2.6918 and 2.5843, respectively.)

1

2 3

7

11

14 15

8901

12 13

6 4 5

Figure 1: Algorithm flowchart 1. Note. (a, b), where “a” represents the object value of the relaxation problem and “b” represents the object
value of the original problem. Spherical arrows represent the termination nodes. Node box represents a corresponding reduced rectangle,
and it is finally removed.

10 Mathematical Problems in Engineering

c1 � (0.0, − 0.1, − 0.3, 0.3, 0.5, 0.5, − 0.8, 0.4, − 0.4, 0.2, 0.2, − 0.1)
T
,

d1 � 14.6,

e1 � (− 0.3, − 0.1, − 0.1, − 0.1, 0.1, 0.4, 0.2, − 0.2, 0.4, 0.2, − 0.4, 0.3)
T
,

f1 � 14.2,

c2 � (0.2, 0.5, 0.0, 0.4, 0.1, − 0.6, − 0.1, − 0.2, − 0.2, 0.1, 0.2, 0.3)
T
,

d2 � 7.1,

e2 � (0.0, 0.1, − 0.1, 0.3, 0.3, − 0.2, 0.3, 0.0, − 0.4, 0.5, − 0.3, 0.1)
T
,

f2 � 1.7,

c3 � (− 0.1, 0.3, 0.0, 0.1, − 0.1, 0.0, 0.3, − 0.2, 0.0, 0.3, 0.5, 0.3)
T
,

d3 � 1.7,

e3 � (0.8, − 0.4, 0.7, − 0.4, − 0.4, 0.5, − 0.2, − 0.8, 0.5, 0.6, − 0.2, 0.6)
T
,

f3 � 8.1,

c4 � (− 0.1, 0.5, 0.1, 0.1, − 0.2, − 0.5, 0.6, 0.7, 0.5, 0.7, − 0.1, 0.1)
T
,

d4 � 4.0,

e4 � (0.0, 0.6, − 0.3, 0.3, 0.0, 0.2, 0.3, − 0.6, − 0.2, − 0.5, 0.8, − 0.5)
T
,

f4 � 26.9,

c5 � (0.7, − 0.5, 0.1, 0.2, − 0.1, − 0.3, 0.0, − 0.1, − 0.2, 0.6, 0.5, − 0.2)
T
,

d5 � 6.8,

e5 � (0.4, 0.2, − 0.2, 0.9, 0.5, − 0.1, 0.3, − 0.8, − 0.2, 0.6, − 0.2, − 0.4)
T
,

f5 � 3.7,

A �

− 1.8 − 2.2 0.8 4.1 3.8 − 2.3 − 0.8 2.5 − 1.6 0.2 − 4.5 − 1.8

4.6 − 2.0 1.4 3.2 − 4.2 − 3.3 1.9 0.7 0.8 − 4.4 4.4 2.0

3.7 − 2.8 − 3.2 − 2.0 − 3.7 − 3.3 3.5 − 0.7 1.5 − 3.1 4.5 − 1.1

− 0.6 − 0.6 − 2.5 4.1 0.6 3.3 2.8 − 0.1 4.1 − 3.2 − 1.2 − 4.3

1.8 − 1.6 − 4.5 − 1.3 4.6 3.3 4.2 − 1.2 1.9 2.4 3.4 − 2.9

− 0.5 − 4.1 1.7 3.9 − 0.1 − 3.9 − 1.5 1.6 2.3 − 2.3 − 3.2 3.9

0.3 1.7 1.3 4.7 0.9 3.9 − 0.5 − 1.2 3.8 0.6 − 0.2 − 1.5

0.5 − 4.2 3.6 − 0.6 − 4.8 1.5 − 0.3 0.6 − 3.6 0.2 3.8 − 2.8

0.1 3.3 − 4.3 2.4 4.1 1.7 1.0 − 3.3 4.4 − 3.7 − 1.1 − 1.4

− 0.6 2.2 2.5 1.3 − 4.3 − 2.9 − 4.1 2.7 − 0.8 − 2.9 3.5 1.2

4.3 1.9 − 4.0 − 2.6 1.8 2.5 0.6 1.3 − 4.3 − 2.3 4.1 − 1.1

0.0 0.4 − 4.5 − 4.4 1.2 − 3.8 − 1.9 1.2 3.0 − 1.1 − 0.2 2.5

− 0.1 − 1.7 2.9 1.5 4.7 − 0.3 4.2 − 4.4 − 3.9 4.4 4.7 − 1.0

− 3.8 1.4 − 4.7 1.9 3.8 3.5 1.5 2.3 − 3.7 − 4.2 2.7 − 0.1

0.2 − 0.1 4.9 − 0.9 0.1 4.3 1.6 2.6 1.5 − 1.0 0.8 1.6

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

,

b � (15.7, 31.8, − 36.4, 38.5, 40.3, 10.0, 89.8, 5.8, 2.7, − 16.3, − 14.6, − 72.7, 57.7, − 34.5, 69.1)T
.

(53)

Mathematical Problems in Engineering 11

Problem 6 (see [1])

min􏽘

p

i�1

􏽐
n
j�1 a

i
jxj + bi

􏽐
n
j�1 c

i
jxj + di

s.t. 􏽘
n

j�1
Q

l
jxj ≤ ql, l � 1, 2, . . . , m, x≥ 0,

(54)

where both real numbers ai
j, ci

j and Ql
j are randomly gen-

erated in the interval [0, 10], bi � di � 10, and ql � 10, which
are the same as the data generation method in [1].

Besides, as can be seen from Table 1, the algorithm in this
paper can effectively solve the five test problems known in
the literature. *rough the description of the solving process
of Problem 1, it can be seen that the proposed algorithm
finds the optimal solution in the initial iteration, but the
branch-and-bound algorithm needs to run again 7 times,
which can make the upper and lower bounds meet the
precision requirements. *e results are not as good as the
methods in [1]. However, Problem 1 is a small-scale ex-
ample. In the relatively large-scale random experiments to
Problem 6 in the following, the numerical results show that
the proposed algorithm is better than that of [1]. At least, the
algorithm is better than the algorithm in [8] when solving
Problems 2– 4. And then, for Problem 5, we find that the
solution obtained by the algorithm in [9] is not feasible, but
the solution solved by the algorithm in [17] is feasible, and
the results obtained by the proposed algorithm are the same
as those obtained in [17], and the number of iterations used
is less than the previous two.

Next, we also perform random tests on Problem 6 to
further explore the performance of the algorithm.We set the
convergence accuracy of the algorithm to 0.01. For each set
of the fixed parameter (p, m, n), we run the algorithm 15
times to compare with the algorithm in [1] and give the

numerical results in Table 2. In addition, we have done a
series of large-scale numerical experiments, and the nu-
merical results are also indicated in Table 3. In Tables 2 and
3, Avg.Time and Avg.Iter represent the average CPU run
time and average number of iterations applied by the al-
gorithm to run 15 times, and Std.Time and Std.Iter represent
the standard deviation of the CPU run time and number of
iterations used by the algorithm to run 15 times, respectively.

Table 2 shows that the proposed algorithm is better than
the one in [1] in terms of average CPU running time and
average number of iterations. In addition, from the standard
deviation of the number of iterations and CPU running time,
it can be seen that our algorithm is more stable than the
algorithm in [1]. Moreover, it can be seen from the data in
Tables 2 and 3 that, under the premise of fixed parameter
(p, m), the CPU running time required by the algorithm is
gradually increasing with the scale of Problem 6. On the
premise of fixed parameter (m, n), however, the CPU
running time and iteration times of the algorithm are in-
creasing with the increase of the number p of the linear

Table 2: Comparison of numerical results by using Problem 6.

(p, m, n)
*e algorithm of the [1] Our algorithm in this paper

Avg (Std).Iter Avg (Std).Time Avg (Std).Iter Avg (Std).Time
(2,100,100) 48.3571 (17.2386) 3.9248 (1.7489) 16.8667(5.4267) 2.2959 (0.7955)
(2,100,500) 67 (27.1833) 20.0863 (10.6748) 17.3333 (4.7703) 8.9810 (2.6774)
(2,100,800) 78 (7.1614) 42.3103 (19.5719) 16.4000 (4.1091) 14.3999 (4.2656)
(2,100,1000) 75.2308 (24.3145) 57.3531 (35.5371) 14.9333 (2.5157) 16.1681 (3.2219)
(2,100,1500) 86.0769 (5.7076) 107.0487 (37.6392) 15.2667 (2.4891) 27.3314 (5.2243)
(2,100,2000) 88.5333 (7.7724) 152.7871 (62.4697) 15 (1.1596) 37.5513 (4.4475)
(2,100,2500) 92.8462 (5.9979) 184.3362 (66.3833) 16 (3.0984) 54.4253 (12.8335)
(2,100,3000) 91.9000 (7.7810) 296.6591 (32.0870) 15.0667 (2.5157) 63.8862 (13.5362)
(3,50,50) 230.5217 (74.0483) 5.2437 (1.6432) 64.9333 (36.3858) 3.1009 (1.5003)
(3,50,100) 317.6522 (69.9140) 10.0783 (2.5300) 79.8000 (42.6555) 4.8213 (2.4819)
(3,50,200) 329 (85.8534) 15.6736 (4.0080) 99.6667 (55.4997) 9.3447 (3.8551)
(3,50,500) 367.9412 (85.5055) 34.1162 (8.4457) 89.7333 (37.3050) 18.4939 (8.0485)
(3,50,1000) 387.6667 (80.9100) 111.7268 (56.1365) 86.8667 (27.7101) 35.3195 (11.5188)
(3,50,2000) 462.6667 (112.0655) 242.6109 (117.1050) 86.2667 (22.8195) 80.6322 (21.9889)
(3,100,50) 236.0714 (74.0088) 11.4581 (7.0665) 78.6000 (65.1356) 8.1895 (6.8602)
(3,100,100) 252.8182 (74.0362) 20.5326 (8.1031) 89 (57.1116) 12.8639 (8.5089)
(3,100,200) 290.8824 (54.0600) 44.2078 (20.3639) 78.8000 (33.2189) 18.2206 (7.6801)
(3,100,300) 313.9167 (79.1483) 62.4293 (29.0958) 79.6667 (33.3500) 26.5176 (12.0702)
(3,100,400) 326.5333 (72.9421) 80.5609 (28.5460) 83.0667 (23.9429) 36.1708 (11.4116)
(3,100,500) 338.5833 (63.1278) 91.9672 (36.7591) 91.4667 (40.4242) 50.8475 (24.0507)

Table 3: Numerical results for Problem 6 with large-scale variables.

(p, m, n) Avg (Std).Iter Avg (Std).Time
(2, 100, 4000) 15.4000 (3.3025) 96.5791 (25.2020)
(2, 100, 5000) 15.5333 (2.2171) 133.1045 (24.0255)
(3, 100, 1000) 80.3333 (21.2781) 93.9706 (25.2906)
(3, 100, 2000) 87.0667 (29.1330) 243.9302 (87.2392)
(3, 100, 3000) 74.2667 (15.0309) 350.9187 (75.8487)
(3, 100, 4000) 69.0667 (14.7036) 484.1551 (110.7565)
(3, 100, 5000) 65.0667 (15.8513) 606.5856 (154.7327)
(4, 100, 1000) 459.9333 (239.5927) 577.2682 (322.2345)
(4, 100, 2000) 508.5333 (239.1791) 1462.4441 (692.1418)
(4, 100, 3000) 403.8667 (161.4930) 1997.0592 (825.9073)
(5, 100, 1000) 1908.4000 (1298.0444) 1795.8044 (769.7409)
(6, 100, 1000) 4874.2000 (2968.7632) 4714.3262 (936.0817)

12 Mathematical Problems in Engineering

fraction in the objective function of problem (LFP). Inter-
estingly, the numerical results in Table 3 show that our
algorithm has more advantages in solving large-scale (LFP)
problems when p≪ n, which is in agreement with the
conclusions described in [8].

5. Concluding Remarks

In this paper, we mainly propose an algorithm that can
address problem (LFP) effectively. Based on the branching
operation of the p-dimensional output space, a unique
construction method of the linear lower-bound relaxation
subproblem is given. A branch-and-bound algorithm is
therefore proposed to find the global optimal solution of
problem (LFP) by combining the pruning operation. Nu-
merical experiments show that their algorithm is effective
and feasible, its calculation effect is better than that in [1],
and it is more suitable for solving large-scale (LFP) problems
in the case of p≪ n. Moreover, linear fractional program-
ming problems in uncertain environments (such as [31–34])
have also been gradually studied by relevant scholars. In
future studies, we will also try to gradually study the linear
fractional programming problems in uncertain
environments.

Data Availability

All data and models generated or used during the study are
described in the numerical experiments section (Section 4)
of the submitted manuscript.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is research was supported by the National Natural Science
Foundation of China (Grant no. 11961001), the Construc-
tion Project of First-Class Subjects in Ningxia Higher Ed-
ucation (Grant no. NXYLXK2017B09), and the Major
Proprietary Funded Project of North Minzu University
(Grant no. ZDZX201901).

References

[1] P. Shen, B. Huang, and L. Wang, “Range division and line-
arization algorithm for a class of linear ratios optimization
problems,” Journal of Computational and Applied Mathe-
matics, vol. 350, pp. 324–342, 2019.

[2] J. Majhi, R. Janardan, J. Schwerdt et al., “Minimizing support
structures and trapped area in two-dimensional layered
manufacturing,” Computational Geometry, vol. 12, no. 3-4,
pp. 241–267, 1999.

[3] J. Majhi, R. Janardan, M. Smid et al., “On some geometric
optimization problems in layered manufacturing (extended
abstract),” Computational Geometry, vol. 12, no. 3-4,
pp. 219–239, 1999.

[4] E. M. Arkin, Y.-J. Chiang, M. Held et al., “On minimum-area
hulls,” Algorithmica, vol. 21, no. 1, pp. 119–136, 1998.

[5] A. A. Khan, R. S. Adve, and W. Yu, “Optimizing downlink
resource allocation in multiuser mimo networks via fractional
programming and the Hungarian algorithm,” IEEE Trans-
actions on Wireless Communications, vol. 19, no. 8,
pp. 5162–5175, 2020.

[6] S. Schaible, Fractional Programming, Springer, Berlin, Ger-
many, pp. 495–608, 1995.

[7] H. Jiao, S. Liu, J. Yin, and Y. Zhao, “Outcome space range
reduction method for global optimization of sum of affine
ratios problem,” Open Mathematics, vol. 14, no. 1,
pp. 736–746, 2016.

[8] X. Liu, Y. L. Gao, B. Zhang, and F. P. Tian, “A new global
optimization algorithm for a class of linear fractional pro-
gramming,” Mathematics, vol. 7, no. 9, p. 867, 2019.

[9] H.-W. Jiao and S.-Y. Liu, “A practicable branch and bound
algorithm for sum of linear ratios problem,” European Journal
of Operational Research, vol. 243, no. 3, pp. 723–730, 2015.

[10] A. Charnes and W. W. Cooper, “Programming with linear
fractional functionals,” Naval Research Logistics Quarterly,
vol. 9, no. 3-4, pp. 181–186, 1962.

[11] G. Charnes and A. Novaes, “Linear programming with a
fractional objective function,” Operation Research, vol. 21,
no. 1, pp. 22–29, 1973.

[12] W. Dinkelbach, “On nonlinear fractional programming,”
Management Science, vol. 13, no. 7, pp. 492–498, 1967.

[13] S. Das and T. Mandal, “A single stage single constraints linear
fractional programming problem: an approach,” Operations
Research and Applications: An International Journal, vol. 2,
no. 1, 2015.

[14] T. Matsui, “Np-hardness of linear multiplicative program-
ming and related problems,” Journal of Global Optimization,
vol. 9, no. 2, pp. 113–119, 1996.

[15] J. E. Falk and S. W. Palocsay, “Image space analysis of gen-
eralized fractional programs,” Journal of Global Optimization,
vol. 4, no. 1, pp. 63–88, 1994.

[16] H. P. Benson, “Branch-and-Bound outer approximation al-
gorithm for sum-of-ratios fractional programs,” Journal of
Optimization 7eory and Applications, vol. 146, no. 1, 2010.

[17] N. T. H. Phuong and H. Tuy, “A unified monotonic approach
to generalized linear fractional programming,” Journal of
Global Optimization, vol. 26, no. 3, pp. 229–259, 2003.

[18] A. M. Ashtiani and P. A. V. Ferreira, “A branch-and-cut
algorithm for a class of sum-of-ratios problems,” Applied
Mathematics and Computation, vol. 268, pp. 596–608, 2015.

[19] H. Jiao, Z. Wang, and Y. Chen, “Global optimization algorithm
for sum of generalized polynomial ratios problem,” Applied
Mathematical Modelling, vol. 37, no. 1-2, pp. 187–197, 2013.

[20] P. Shen and B. Huang, “Global algorithm for solving linear
multiplicative programming problems,” Optimization Letters,
vol. 14, no. 3, pp. 693–710, 2019.

[21] P.-P. Shen and T. Lu, “Regional division and reduction al-
gorithm for minimizing the sum of linear fractional func-
tions,” Journal of Inequalities and Applications, vol. 2018,
no. 1, p. 63, 2018.

[22] Y. E. Nesterov and A. S. Nemirovskii, “An interior-point
method for generalized linear-fractional programming,”
Mathematical Programming, vol. 69, no. 1-3, pp. 177–204,
1995.

[23] H. Konno and N. Abe, “Minimization of the sum of three
linear fractional functions,” Journal of Global Optimization,
vol. 15, no. 4, pp. 419–432, 1999.

[24] H. P. Benson, “On the global optimization of sums of linear
fractional functions over a convex set,” Journal of Optimization
7eory and Applications, vol. 121, no. 1, pp. 19–39, 2004.

Mathematical Problems in Engineering 13

[25] T. Kuno, “A revision of the trapezoidal branch-and-bound
algorithm for linear sum-of-ratios problems,” Journal of
Global Optimization, vol. 33, no. 2, pp. 215–234, 2005.

[26] P. Shen, W. Li, and Y. Liang, “Branch-reduction-bound al-
gorithm for linear sum-of-ratios fractional programs,” Pacific
Journal of Optimization, vol. 11, no. 1, pp. 79–99, 2015.

[27] H. Jiao, Q. Feng, P. Shen, and Y. Guo, “Global optimization
for sum of linear ratios problem using new pruning tech-
nique,” Mathematical Problems in Engineering, vol. 2008,
no. 3, 13 pages, Article ID 646205, 2008.

[28] D. Depetrini and M. Locatelli, “Approximation of linear
fractional-multiplicative problems,” Mathematical Program-
ming, vol. 128, no. 1-2, pp. 437–443, 2011.

[29] P. Shen, T. Zhang, and C. Wang, “Solving a class of gener-
alized fractional programming problems using the feasibility
of linear programs,” Journal of Inequalities and Applications,
vol. 2017, no. 1, p. 147, 2017.

[30] Y. Xia, L. Wang, and S. Wang, “Minimizing the sum of linear
fractional functions over the cone of positive semidefinite
matrices: approximation and applications,” Operations Re-
search Letters, vol. 46, no. 1, pp. 76–80, 2018.

[31] S. K. Das, T. Mandal, and S. A. Edalatpanah, “A new approach
for solving fully fuzzy linear fractional programming prob-
lems using the multi-objective linear programming,” RAIRO-
Operations Research, vol. 51, no. 1, pp. 285–297, 2017.

[32] S. K. Das, S. A. Edalatpanah, and T. Mandal, “A proposed
model for solving fuzzy linear fractional programming
problem: numerical point of view,” Journal of Computational
Science, vol. 25, pp. 367–375, 2018.

[33] S. K. Das, S. A. Edalatpanah, and T. Mandal, “A new method
for solving linear fractional programming problem with ab-
solute value functions,” International Journal of Operational
Research, vol. 36, no. 4, pp. 455–466, 2019.

[34] F. Abad, M. Allahdadi, and H. Nehi, “Interval linear fractional
programming: optimal value range of the objective function,”
Computational and Applied Mathematics, vol. 39, no. 4,
pp. 1–17, 2020.

14 Mathematical Problems in Engineering

