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In order to solve the problem of unknown parameter drift in the nonlinear pure-feedback system, a novel nonlinear pure-feedback
system is proposed in which an unconventional coordinate transformation is introduced and a novel unconventional dynamic
surface algorithm is designed to eliminate the problem of “calculation expansion” caused by the use of backstepping in the pure-
feedback system.Meanwhile, a sufficiently smooth projection algorithm is introduced to suppress the parameter drift in the nonlinear
pure-feedback system. Simulation experiments demonstrate that the designed controller ensures the global and ultimate bound-
edness of all signals in the closed-loop system and the appropriate designed parameters can make the tracking error arbitrarily small.

1. Introduction

In recent years, nonlinear systems have been widely studied
by researchers at home and abroad. Isidori [1] proposed a
precise linearization technique, Krstic et al. [2] proposed
backstepping, and Astolfi et al. [3] put forward adaptive
control methods. After that, backstepping adaptive control
has been widely developed and applied [4, 5]. In the majority
of studies on nonlinear system tracking control problems
[6, 7], the global or semiglobal asymptotic stability and the
gradual stability of tracking error are considered as the
ultimate control target of nonlinear systems. However, at
present, there is no uniform method to analyze nonlinear
systems in the control theory of nonlinear systems.

Since nonlinear systems are different from linear sys-
tems, it is difficult to be analyzed in the way that linear
systems are discussed. However, nonlinear pure-feedback
systems [8, 9] are more general systems compared with
lower triangle nonlinear systems, which can reflect the actual
physical situation while the nonaffine pure-feedback system
is one of the complicated systems. According to the literature
[10, 11], there are two nonaffine functions in the pure-
feedback system: system control input and system state

variables. Liu [12] proposed a novel coordinate transfor-
mation in the research on the tracking problem of pure-
feedback systems and achieved global asymptotic stability of
tracking error using the backstepping method. Zeng et al.
[13] proposed an active sliding mode disturbance rejection
control of a single-input single-output nonaffine nonlinear
system. However, the research of Zeng et al. is only appli-
cable to a second-order system. For systems larger than
second-order, this method cannot work. In this regard, Liu
[14] proposed nonconventional coordinate transformation
based on [12] and introduced a first-order auxiliary con-
troller to solve the nonaffine control input problem of
n-order system. In engineering applications, system pa-
rameters change due to various conditions, so system pa-
rameters are variables rather than constants. However, in
most of the tracking control theory studies of nonlinear
systems [15, 16], we often set system parameters as con-
stants, which reduces the practicality of the tracking control
theory of nonlinear systems, so it is necessary to study the
influence of unknown parameter drift on system stability.
For the uncertainty of parameterization, when there is ex-
ternal disturbance or unmodeled dynamics, parameter drift
will occur, and the adaptive controller will deteriorate the
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system and even lead to system instability [17]. In this case,
the boundedness of the estimated value of parameters
cannot be guaranteed, causing divergence of other signals in
the closed-loop system. A common method for dealing with
this situation is to add a robust term (leakage term) to the
parameter adaptive law or use a projection operator [18].

In this paper, a sufficiently smooth projection algorithm
[19] is introduced to deal with the parameter drift in the
designed nonlinear pure-feedback system. Since nonaffine
functions exist in the system state variables xi and the system
control input u in the nonlinear pure-feedback system, the
conventional coordinate transformation [2] will increase the
difficulty of designing the controllers, so the nonconven-
tional coordinate transformation proposed by [14] is in-
troduced. Due to the nonaffine structure of the pure-
feedback system, it is difficult to design the virtual con-
trollers αi, and the conventional dynamic surface algorithm
[20] is difficult to be directly used in the pure-feedback
system. -us, in this paper, a novel nonconventional dy-
namic surface algorithm is designed to reduce the com-
plexity of designing the controllers for the nonlinear pure-
feedback system. A nonlinear pure-feedback system with
unknown parameters θi is designed, in which unknown
parameters are added compared with [21] in order to solve
the control problem of parameter uncertainty in the pure-
feedback system, which is a further supplement to nonlinear
pure-feedback systems. In [21], the unknown parameters are
set to θ∗, which limits the selection of system parameters,
thus constraining the whole system. However, the unknown
parameters are θi in this paper, so the nonlinear pure-
feedback system designed is more common. In this paper,
backstepping method, nonconventional dynamic surface
algorithm, Nussbaum function [22], and sufficiently smooth
projection algorithm are combined so that the designed
controller can achieve the uniform and ultimate bounded-
ness of all signals in the closed-loop system.

Main contributions of this paper are summarized as
follows:

(1) -e parametric drift concept is first proposed in
pure-feedback systems. In order to solve the pa-
rameter drift problem of the nonlinear pure-feed-
back system, a sufficiently smooth projection
algorithm is introduced.

(2) A novel nonconventional dynamic surface algorithm
is designed according to the nonconventional co-
ordinate transformation to eliminate the problem of
“calculation expansion” in the pure-feedback system.

(3) -e virtual controllers αi, the actual controller w, and
the adaptive laws 􏽢θi are designed so that the tracking
error of the nonlinear pure-feedback system with
parameter drift converges to a region of the origin,
and all signals in the closed-loop system are uniform
and ultimately bounded.

Other parts of this paper are arranged as follows: In
Section 2, problem statement and preliminaries are pre-
sented. In the third section, aiming at the tracking control
problem of the nonlinear pure-feedback system with

parameter drift, the virtual controllers αi, the actual
controller w, and the parameter adaptive laws 􏽢θi are
designed and semiglobal uniform ultimate boundedness
of all signals in the closed-loop system are proved. In
Section 4, the correctness of the proposed control scheme
is proved by simulation study. -e conclusion is presented
in Section 5.

2. Problem Statement and Preliminaries

2.1. Systems Description. Consider the following nonlinear
pure-feedback system:

_xi(t) � fi xi+1(t), xi(t)( 􏼁 + ϕT
i xi(t), t( 􏼁θi + di xi(t), t( 􏼁,

_xn(t) � fn bu(t), xn(t)( 􏼁 + ϕT
n xn(t), t( 􏼁θn + dn xn(t), t( 􏼁,

y(t) � x1(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where 1≤ i≤ n − 1, xi � [x1, x2, . . . , xi]
T ∈ Ri with i �

1, 2, . . . , n, u ∈ R, and y ∈ R are system state variables,
system control input, and system output, respectively. -e
nonlinear functions fi(xi+1, xi) are smooth nonaffine
known functions; the nonlinear function fn(bu, xn) is
the smooth nonaffine known function with control input
coefficient b, among which b is a unknown nonzero con-
stant; ϕi(xi, t) are known smooth functions, where
ϕi(0, . . . , 0) � 0; θi � [θ1, . . . , θh]T ∈ Rh are unknown pa-
rameters; and di(x1, . . . , xi) are unmodeled dynamics and
external disturbances related to state variables.

In system (1), the control coefficient b is added compared
with [11, 12]. -e unknown parameters θi ∈ Rh are added in
system (1) compared with [21], where i represents the ith
order subsystem and h represents the number of unknown
parameters in the ith subsystem. In [21], the number of
parameters in each subsystem is equal, while in actual en-
gineering systems, the number of parameters in each sub-
system cannot be equal. -e unknown parameters θi ∈ Rh

designed in this paper just solve this defect, that is, different
h is set according to different i.

For easy analysis and calculation, fi(xi+1, xi) are sim-
plified as fi and fn(bu, xn) is simplified as fn.

In order to avoid the control problem of system (1) in the
design of the controller, the following assumptions are
made.

Remark 1. Since the control coefficient b is an unknown
nonzero constant, the positive and negative signs are un-
known, i.e., the control direction is unknown.

Assumption 1. -e following equation is made workable at
any time:

zfi

zxi+1
≠ 0, i � 1, . . . , n,

zfn

zu
≠ 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)
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Remark 2. Assumption 1 is weaker than the assumed
condition ∃κ ∈ R+, |zfi(xi+1, xi)/zxi+1|> κ in [11].

Because the input u is characterized by being nonaffine.
-erefore, the first-order auxiliary system of the controller is
designed as follows:

zfn

zxn+1
_u � w, (3)

where w is the undetermined function and xn+1 � u.

Assumption 2. Unknown parameters are bounded and there
is a bounded set Ω

Ω � θ: ‖θ‖≤ θ0􏼉􏼈 , (4)

where θ0 is a known positive constant.

Assumption 3. di(xi, t) are bounded and their known upper
bounds satisfy

di xi, t( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤di xi( 􏼁, i � 1, 2, . . . , n, (5)

where di(xi) are positive constants correlated with xi.

Assumption 4. Smooth nonaffine functions fi(xi+1, xi) meet

0<
zfi xi+1, xi( 􏼁

zxi+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤Ai, i � 1, 2, . . . , n − 1, (6)

where Ai are positive constants.

Lemma 1. If smooth bounded functions fi(xi+1, xi) meet
assumption 4, xi+1 are bounded.

Proof. According to mean value theorem, the following
equation is obtained:

fi xi+1, xi( 􏼁 − fi 0, xi( 􏼁 �
zfi ς, xi( 􏼁

zς
xi+1 − 0( 􏼁, (7)

where ς is the arbitrary point of (0, xi+1) interval. It can be
known from assumption 4 that zfi(xi+1, xi)/zxi+1 are
bounded and fi(xi+1, xi) are also bounded; thus, xi+1 are
bounded with i � 1, 2, . . . , n. □

Assumption 5. -e smooth reference trajectory r is bounded
and the n + 1th order is derivable.

2.2. Preliminaries. In this paper, a sufficiently smooth
projection algorithm [19] is introduced to the nonlinear
pure-feedback system, as shown in (8)–(11).

Projd(μ, 􏽢θ) � μ −
η1η2

4 σ2 + 2σθ0( 􏼁
m+1θ20
∇pd(􏽢θ),

pd(􏽢θ) � 􏽢θ
T􏽢θ − θ20,

η1 �
pm+1

d (􏽢θ), pd(􏽢θ)> 0,

0, others,

⎧⎪⎨

⎪⎩

η2 �
1
2
∇pd(􏽢θ)

Tμ +

����������������

1
2
∇pd(􏽢θ)Tμ􏼒 􏼓

2
+ δ2

􏽳

,

(8)

where σ > 0 and δ > 0 are arbitrary positive constants.
If 􏽢θ(0) ∈ Ω, the algorithm has the following properties:

(1) ‖􏽢θ(t)‖≤ θ0 + σ, ∀t≥ 0
(2) 􏽥θ

T
Projd(μ, 􏽢θ)≥ 􏽥θ

T
μ

(3) Projd(μ, 􏽢θ) is m-order differentiable

Definition 1. If the continuous function N(·) satisfies (9), it
is called the Nussbaum function [22].

lim
s⟶+∞

sup
1
s

􏽚
s

0
N(ξ)dξ � +∞,

lim
s⟶+∞

inf
1
s

􏽚
s

0
N(ξ)dξ � − ∞,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where ξ2 cos(ξ) is adopted as the Nussbaum function in this
paper.

Lemma 2 (see [23]). If V(·) and ξ(·) are smooth functions
defined in [0, tf) and V(t)≥ 0 with ∀t ∈ [0, tf), N(·) is even
smooth Nussbaum function, if the following inequality holds:

V(t)≤C0 + e
− C1t

􏽚
t

0
(N(ξ(τ)) + 1) _ξ(τ)e

C1τdτ, ∀t ∈ 0, tf􏽨 􏼑,

(10)

where C1 > 0 and C0 are certain appropriate constants, then
V(t), ξ(t) and 􏽒

t

0(N(ξ(τ)) + 1) _ξ(τ)dτ are bounded in
[0, tf).

3. Main Results

-e backstepping design is based on the following non-
conventional coordinate transformation [14]:

z1 � x1 − r,

zi � _xi− 1 − qi− 1,
􏼨 (11)

where i � 2, 3, . . . , n + 1, z1 ∈ R, r, and qi− 1 are the tracking
error, smooth reference trajectory signal, and error state
variables, respectively.
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Remark 3. In the conventional coordinate transformation
[2], xi+1 are made as the virtual controller of the ith order
subsystem, as shown in (15).

z1 � x1 − r,

zi � xi − ai− 1.
􏼨 (12)

Unlike the standard dynamic surface algorithm [20], the
nonconventional dynamic surface algorithm designed in this
paper is as follows.

Define the first-order low-pass filter formula.
τ1 _q1 + q1 � α1,

zfi− 1

zxi

τi _qi + _q( 􏼁 � αi,

q1(0) � α1(0),

qi(0) � αi(0),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where i � 2, . . . , n, τi are the filter time constants.
-e filter error equation is defined as follows:

y1 � q1 − α1,

zfi− 1

zxi

yi �
zfi− 1

zxi

qi − αi,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

where i � 2, . . . , n, αi are the ith virtual controllers. -e
nonconventional coordinate transformation cooperates
with the nonconventional dynamic surface algorithm
to solve the problem of “calculation expansion” caused
by the application of the nonconventional coordi-
nate transformation in the nonlinear pure-feedback
systems.

Remark 4. -e first-order low-pass filter of standard dy-
namic surface algorithm [20]

τi+1 _qi+1 + qi+1 � αi. (15)

-e filter error of standard dynamic surface algorithm

yi � qi − ai− 1. (16)

Step 1. According to (1) and (11), we obtain
_z1 � _x1 − _r � z2 + y1 + α1 − _r. (17)

Design the virtual controller α1 as

α1 � − c1z1 + _r, (18)

where c1 is a positive design constant.
According to (14), the following equation is obtained:

y1 � q1 − α1. (19)

By deriving y1 with respect to time, we can obtain

_y1 � _q1 − _α1

� −
y1

τ1
+ c1 z2 + y1 + α1 − _r( 􏼁 − €r

� −
y1

τ1
+ B1 z1, z2, y1, r, _r, €r( 􏼁,

(20)

where B1(z1, z2, y1, r, _r, €r) is a continuous function, the
maximum of |B1(·)| is set to be D1.

-e Lyapunov function is defined as

V1 �
1
2
z
2
1 +

1
2
y
2
1. (21)

According to (17), (20) and Young’s inequality, we have

_V1 ≤ − c1 −
1
2

􏼒 􏼓z
2
1 −

1
τ1

−
1 + δ
2

􏼠 􏼡y
2
1 + z1z2 +

D2
1

2δ
, (22)

where |y1| · |B1|≤ (δy2
1/2) + (D2

1/2δ), δ is a positive
constant.

Step 2. According to (1) and (11), we have

_z2 �
zf1

zx2
_x2 +

zf1

zx1
_x1 +

zϕ1

zx1
_x1θ1 +

zd1

zx1
_x1 − _q1

�
zf1

zx2

z3 + y2 + α2
zf1/zx2( 􏼁

􏼠 􏼡 +
zf1

zx1
_x1 +

zϕ1
zx1

_x1θ1 +
zd1

zx1
_x1 − _q1.

(23)

Design the virtual controller α2 as

α2 � − c2z2 − z1 −
zf1

zx1
_x1 −

zϕ1
zx1

_x1
􏽢θ1 −

d x1( 􏼁
2
1

2ε
z2 + _q1,

(24)

where c2 is a positive design constant, 􏽢θ1 is the estimation of
θ1, and d(x1)

2
1z2/2ε is a nonlinear damping term which is

used to process the disturbance term in (23).
Design the adaptive law as

_􏽢θ1 � cProjd μ1, 􏽢θ1􏼐 􏼑, (25)

μ1 �
zϕ1
zx1

_x1z2. (26)

Substituting (24) into (23) yields

_z2 � − c2z2 − z1 +
zf1

zx2
z3 +

zf1

zx2
y2 +

zϕ1
zx1

_x1
􏽥θ1

+
zd1

zx1
_x1 −

d x1( 􏼁
2
1

2ε
z2,

(27)

where 􏽥θ1 � θ1 − 􏽢θ1.
According to (14), we can obtain

zf1

zx2
y2 �

zf1

zx2
q2 − α2. (28)

By deriving y2 with respect to time, we can obtain
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_y2 � −
y2

τ2
+ B2, (29)

where B2(z1, z2, z3, y1, y2, r, _r, €r) is a continuous function
and the maximum of |B2(·)| is set to be D2.

-e Lyapunov function is defined as

V2 � V1 +
1
2

z
2
2 +

1
2c

􏽥θ
T

1
􏽥θ1 +

1
2
y
2
2. (30)

According to (22), (25), (27), (28), and Young’s in-
equality, we have

_V2 ≤ _V1 − c2z
2
2 − z1z2 +

zf1

zx2
z2z3 +

zf1

zx2
y2z2 +

ε
2

+ 􏽥θ1
zϕ1
zx1

_x1z2 − Projd μ1, 􏽢θ1􏼐 􏼑􏼠 􏼡 −
y2
2

τ2
+
δy2

2
2

+
D2

2
2δ

.

(31)

According to the properties (2) of the sufficiently smooth
projection algorithm [20], the following equation is
obtained:

_V2 ≤ − c1 −
1
2

􏼒 􏼓z
2
1 − c2 −

A2
1
2

􏼠 􏼡z
2
2 − 􏽘

2

i�1

1
τi

−
1 + δ
2

􏼠 􏼡y
2
i

+ 􏽘
2

i�1

D2
i

2δ
+

zf1

zx2
z2z3 +

ε
2
,

(32)

where |y2| · |B2|≤ (δy2
2/2) + (D2

2/2δ) and ε is a positive
constant.

Step i (3≤ i≤ n − 1). According to (1) and (11), we can
obtain

_zi �
zfi− 1

zxi

_xi + 􏽘

i− 1

j�1

zfi− 1

zxj

_xj + 􏽘

i− 1

j�1

zϕi− 1

zxj

_xjθi− 1 + 􏽘

i− 1

j�1

zdi− 1

zxj

_xj − _qi− 1

�
zfi− 1

zxi

zi+1 + yi + αi

zfi− 1/zxi

􏼠 􏼡 + 􏽘

i− 1

j�1

zfi− 1

zxj

_xj + 􏽘

i− 1

j�1

zϕi− 1

zxj

_xjθi− 1

+ 􏽘

i− 1

j�1

zdi− 1

zxj

_xj − _qi− 1.

(33)

Design the virtual controller αi as

αi � − cizi −
zfi− 2

zxi− 1
zi− 1 − 􏽘

i− 1

j�1

zfi− 1

zxj

_xj − 􏽘
i− 1

j�1

zϕi− 1

zxj

_xj
􏽢θi− 1

− (i − 1)
d xi− 1( 􏼁

2
i− 1

2ε
zi + _qi− 1,

(34)

where ci is a positive design constant, 􏽢θi− 1 is the estimation of
θi− 1, and (i − 1)zid(xi− 1)

2
i− 1/2ε is the nonlinear damping

term which is used to process the disturbance term in (33).
Design the adaptive law as

_􏽢θi− 1 � cProjd μi− 1,
􏽢θi− 1􏼐 􏼑, (35)

μi− 1 � 􏽘
i− 1

j�1

zϕi− 1

zxj

_xjzi. (36)

Substituting (34) into (33) yields

_zi � − cizi −
zfi− 2

zxi− 1
zi− 1 +

zfi− 1

zxi

zi+1 +
zfi− 1

zxi

yi

+ 􏽘
i− 1

j�1

zϕi− 1

zxj

_xj
􏽥θi− 1 + 􏽘

i− 1

j�1

zdi− 1

zxj

_xj − (i − 1)
d xi− 1( 􏼁

2
i− 1

2ε
zi,

(37)

where 􏽥θi− 1 � θi− 1 − 􏽢θi− 1.

Based on the filter error equation (14), we can obtain

zfi− 1

zxi

yi �
zfi− 1

zxi

qi − αi. (38)

By deriving yi with respect to time, the following
equation is obtained:

_yi � −
yi

τi

+ Bi, (39)

where Bi(z1, . . . , zi+1, y1, . . . , yi, r, _r, €r) is a continuous
function and the maximum of |Bi(·)| is set to be Di.

-e Lyapunov function is defined as Vi � Vi− 1

+(z2
i /2) + (􏽥θ

T

i− 1
􏽥θi− 1/2c) + (y2

i /2).

According to (35), (37), (39) and Young’s inequality, we
have

_Vi ≤ _Vi− 1 − ciz
2
i −

zfi− 2

zxi− 1
zi− 1zi +

zfi− 1

zxi

zizi+1 +
zfi− 1

zxi

yizi

+ 􏽥θi− 1 􏽘

i− 1

j�1

zϕi− 1
zxj

_xjzi − Projd μi− 1,
􏽢θi− 1􏼐 􏼑⎛⎝ ⎞⎠

+ 􏽘
i− 1

j�1

zdi− 1

zxj

_xjzi − (i − 1)
d xi− 1( 􏼁

2
i− 1

2ε
z
2
i −

y2
i

τi

+
δy2

i

2
+

D2
i

2δ
.

(40)

By the properties (2) of the sufficiently smooth projec-
tion algorithm [20], the following equation is obtained:

_Vi ≤ − c1 −
1
2

􏼒 􏼓z
2
1 − 􏽘

i

j�2
cj −

A2
j

2
⎛⎝ ⎞⎠z

2
j − 􏽘

i

j�1

1
τj

−
1 + δ
2

􏼠 􏼡y
2
i

+ 􏽘
i

j�1

D2
j

2δ
+

zfi− 1

zxi

zizi+1 +
i(i − 1)

4
ε,

(41)

where |yi| · |Bi|≤ (δy2
i /2) + (D2

i /2δ).

Step n. According to (1) and (11), we can obtain
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_zn �
zfn− 1

zxn

_xn + 􏽘
n− 1

j�1

zfn− 1

zxj

_xj + 􏽘
n− 1

j�1

zϕn− 1

zxj

_xjθn− 1 + 􏽘
n− 1

j�1

zdn− 1

zxj

_xj − _qn− 1

�
zfn− 1

zxn

zn+1 + yn + αn

zfn− 1/zxn

􏼠 􏼡 + 􏽘

n− 1

j�1

zfn− 1

zxj

_xj + 􏽘

n− 1

j�1

zϕn− 1

zxj

_xjθn− 1

+ 􏽘
n− 1

j�1

zdn− 1

zxj

_xj − _qn− 1.

(42)

Design the virtual controller αn as

αn � − cnzn −
zfn− 2

zxn− 1
zn− 1 − 􏽘

n− 1

j�1

zfn− 1

zxj

_xj − 􏽘
n− 1

j�1

zϕn− 1
zxj

_xj
􏽢θn− 1

− (n − 1)
d xn− 1( 􏼁

2
n− 1

2ε
zn + _qn− 1,

(43)

where cn is a positive design constant, 􏽢θn− 1 is the esti-
mation of θn− 1, (n − 1)znd(xn− 1)

2
n− 1/2ε is the nonlinear

damping term which is used to process the disturbance
term in (42).

Design the adaptive law as
_􏽢θn− 1 � cProjd μn− 1,

􏽢θn− 1􏼐 􏼑, (44)

μn− 1 � 􏽘
n− 1

j�1

zϕn− 1
zxj

_xjzn. (45)

Substituting (43) into (42) yields

_zn � − cnzn −
zfn− 2

zxn− 1
zn− 1 +

zfn− 1

zxn

zn+1 +
zfn− 1

zxn

yn

+ 􏽘
n− 1

j�1

zϕn− 1

zxj

_xj
􏽥θn− 1 + 􏽘

n− 1

j�1

zdn− 1

zxj

_xj − (n − 1)
d xn− 1( 􏼁

2
n− 1

2ε
zn,

(46)

where 􏽥θn− 1 � θn− 1 − 􏽢θn− 1.

According to (14), we can obtain
zfn− 1

zxn

yn �
zfn− 1

zxn

qn − αn, (47)

By deriving yn with respect to time, the following
equation is obtained:

_yn � −
yn

τn

+ Bn, (48)

where Bn(z1, . . . , zn+1, y1, . . . , yn, r, _r, €r) is a continuous
function and the maximum of |Bn(·)| is set to be Dn.

-e Lyapunov function is defined as Vn � Vn− 1+

(z2
n/2) + (􏽥θ

T

n− 1
􏽥θn− 1/2c) + (y2

n/2).

According to (44), (46), (48), and Young’s inequality, we
have

_Vn ≤ _Vn− 1 − cnz
2
n −

zfn− 2

zxn− 1
zn− 1zn +

zfn− 1

zxn

znzn+1

+
zfn− 1

zxn

ynzn +
δy2

n

2
+

D2
n

2δ

+ 􏽥θn− 1 􏽘

n− 1

j�1

zϕn− 1

zxj

_xjzn − Projd μn− 1,
􏽢θn− 1􏼐 􏼑⎛⎝ ⎞⎠

+ 􏽘
n− 1

j�1

zdn− 1

zxj

_xjzn − (n − 1)
d xn− 1( 􏼁

2
n− 1

2ε
z
2
n −

y2
n

τn

.

(49)

By the properties (2) of the sufficiently smooth projec-
tion algorithm [20], the following equation is obtained:

_Vn ≤ − c1 −
1
2

􏼒 􏼓z
2
1 − 􏽘

n

j�2
cj −

A2
j

2
⎛⎝ ⎞⎠z

2
j − 􏽘

n

j�1

1
τj

−
1 + δ
2

􏼠 􏼡y
2
j

+ 􏽘
n

j�1

D2
j

2δ
+

zfn− 1

zxn

znzn+1 +
n(n − 1)

4
ε,

(50)

where |yn| · |Bn|≤ (δy2
n/2) + (D2

n/2δ).

Step n + 1. According to (1) and (11), we can obtain

_zn+1 �
zfn

zxn+1
_xn+1 + 􏽘

n

j�1

zfn

zxj

_xj + 􏽘
n

j�1

zϕn

zxj

_xjθn + 􏽘
n

j�1

zdn

zxj

_xj − _qn

�
zfn

zxn+1
_u + 􏽘

n

j�1

zfn

zxj

_xj + 􏽘
n

j�1

zϕn

zxj

_xjθn + 􏽘
n

j�1

zdn

zxj

_xj − _qn.

(51)

Remark 5. -e control coefficient b is included in zfn/zxn+1,
so it is unnecessary to analyze the unknown parameter b

independently, which is also the advantage of introducing
nonconventional coordinate transformation in this paper.

Design the actual controller as

w � N(ξ)αn+1, (52)

αn+1 � cn+1zn+1 +
zfn− 1

zxn

zn + 􏽘

n

j�1

zfn

zxj

_xj + 􏽘

n

j�1

zϕn

zxj

_xj
􏽢θn

+ n
d xn( 􏼁

2
n

2ε
zn+1 − _qn,

(53)

where cn+1 is a positive design constant, 􏽢θn is the estimation
of θn, and nzn+1d(xn)2n/2ε is the nonlinear damping term
which is used to process the disturbance term in (51).

-e adaptive law of the parameter ξ is designed as
_ξ � zn+1αn+1. (54)

-e adaptive law of parameter 􏽢θn is designed to be
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_􏽢θn � cProjd μn, 􏽢θn􏼐 􏼑, (55)

μn � 􏽘
n

j�1

zϕn

zxj

_xjzn+1. (56)

Substituting (52) into (51) yields

_zn+1 � N(ξ)αn+1 + 􏽘
n

j�1

zfn

zxj

_xj + 􏽘
n

j�1

zϕn

zxj

_xjθn + 􏽘
n

j�1

zdn

zxj

_xj − _qn.

(57)

where 􏽥θn � θn − 􏽢θn.

Theorem 1. For system (1), under the condition that As-
sumptions 1–5 are satisfied, the first-order low-pass filter (13),
the control law (52), and the parameter adaptive laws (26),
(35), (44), (54), and (55) are adopted to make the tracking
error of the system converge to a region of the origin, and all
signals in the closed-loop system are uniformly and ultimately
bounded.

Proof. -e Lyapunov function is defined as V � Vn+

(z2
n+1/2) + (􏽥θ

T

n
􏽥θn/2c).

According to (50), (55), (57) and Young’s inequality, we
can get

_V � _Vn + _ξ − _ξ + zn+1N(ξ)αn+1 + 􏽘
n

j�1

zfn

zxj

_xjzn+1

+ 􏽘
n

j�1

zϕn

zxj

_xjθnzn+1 + 􏽘
n

j�1

zdn

zxj

_xjzn+1 − _qnzn+1 −
1
c

􏽥θ
T

n

_􏽢θn

≤ − c1 −
1
2

􏼒 􏼓z
2
1 − 􏽘

n

j�2
cj −

A2
j

2
⎛⎝ ⎞⎠z

2
j − 􏽘

n

j�1

1
τj

−
1 + δ
2

􏼠 􏼡y
2
j

− cn+1z
2
n+1 + 􏽘

n

j�1

D2
j

2δ
+

n(n − 1)

4
ε + N(ξ) _ξ + _ξ + 􏽥θn

· 􏽘
n

j�1

zϕn

zxj

_xjzn+1 − Projd μn, 􏽢θn􏼐 􏼑⎛⎝ ⎞⎠ +
nε
2

.

(58)

Based on the property (2) of the sufficiently smooth
projection algorithm, we can obtain

_V≤ − c1 −
1
2

􏼒 􏼓z
2
1 − 􏽘

n

j�2
cj −

A2
j

2
⎛⎝ ⎞⎠z

2
j − 􏽘

n

j�1

1
τj

−
1 + δ
2

􏼠 􏼡y
2
j

+ 􏽘
n

j�1

D2
j

2δ
+

n(n + 1)

4
ε + N(ξ) _ξ + _ξ − cn+1z

2
n+1,

(59)

where the parameter is designed to satisfy

δ > 0, ε> 0,

c1 >
1
2
,

ci >
A2

i

2
, i � 2, . . . , n,

1
τi

>
1 + δ
2

, τi > 0, i � 1, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

Make

a0 � min

c1 −
1
2
, cj −

A2
j

2
, cn+1

1
τ1

−
1 + δ
2

,
1
τj

−
1 + δ
2

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, j � 2, . . . , n,

b0 � 􏽘
n

j�1

D2
j

2δ
,

(61)

then (59) can be rewritten to

_V≤ − a0 􏽘

n+1

i�1
z
2
i + 􏽘

n

i�1
y
2
i

⎛⎝ ⎞⎠ + b0 +
n(n + 1)

4
ε + N(ξ) _ξ + _ξ

≤ − k0V + 􏽘
n

i�1

θT
i θi

2c
+

n(n + 1)

4
ε + N(ξ) _ξ + _ξ + b0,

(62)

where k0 � min 2a0, 1􏼈 􏼉.

When both ends of (62) are multiplied by the exponent
ek0t, we can get

d
dt

e
k0t

V(t)􏼐 􏼑≤ 􏽘
n

i�1

θT
i θi

2c
+

n(n + 1)

4
ε + N(ξ) _ξ + _ξ + b0

⎛⎝ ⎞⎠e
k0t

.

(63)

After the integration of both ends of (63) in [0, t], we can
get

V(t) ≤ e
− k0t

V(0) + e
− k0t

􏽚
t

0

· 􏽘
n

i�1

θT
i θi

2c
+

n(n + 1)

4
ε +(N(ξ) + 1) _ξ + b0

⎛⎝ ⎞⎠e
k0τdτ

� e
− k0t

V(0) + e
− k0t

􏽚
t

0
(N(ξ) + 1) _ξe

k0τdτ

+ 􏽚
t

0
􏽘

n

i�1

θT
i θi

2c
+

n(n + 1)

4
ε + b0

⎛⎝ ⎞⎠e
− k0(t− τ)dτ.

(64)
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Since the adaptive law _􏽢θi utilizes a sufficiently smooth
projection algorithm, it can be known from the properties of
a sufficiently smooth projection algorithm (1) that 􏽢θi is
bounded and thus 􏽥θi is also bounded, which means the
􏽒

t

0(􏽐
n
i�1θ

T
i θi/2c + ((n(n + 1)))/4ε + b0)e

− k0(t− τ)dτ is
bounded.

It is noted that (64) can be written as

V(t)≤V(0) + e
− k0t

􏽚
t

0
(N(ξ) + 1) _ξe

k0τdτ + C0. (65)

According to Lemma 2, it can be known that in the
interval [0, tf), V(t), ξ(t), and e− k0t 􏽒

t

0(N(ξ) + 1) _ξek0τdτ are
bounded, and it can be known from Lemma 1 that
f1, . . . , fn are bounded and satisfies assumption 4; thus,
x1, . . . , xn+1 are bounded. When tf tends to∞, all signals in
the closed-loop system are uniformly and ultimately
bounded. -e upper bound of e− k0t 􏽒

t

0(N(ξ) + 1) _ξek0τdτ is
set to be CN, then (64) can be written as

V(t)≤ e
− k0t

V(0) + CN + C0. (66)

For arbitrarily given v≥
��������������������

2(V(0)e− k0t + CN + C0)

􏽱

, there
is T; make it when t≥T, ‖z‖≤ v, z � [z1, . . . , zn+1]

T. Ap-
propriate parameters are selected so that the tracking error
z1 can be adjusted to small region of the origin:

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
��������������������

2 V(0)e− k0t + CN + C0( 􏼁

􏽱

. (67)
□

4. Illustrative Example

Consider the following second-order nonlinear pure-feed-
back system:

_x1 � x1 + x2 +
x3
2
5

+ θ11x
2
1 + θ12x

3
1 + d1 x1, t( 􏼁,

_x2 � x1x2 + b u +
u3

7
􏼠 􏼡 + θ21x1x2 + d x2, t( 􏼁,

z1 � x1 − r.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(68)

Corresponding to system (1), we have

ϕT
1 x1, t( 􏼁 � x

2
1, x

3
1􏽨 􏽩,

θ1 � θ11; θ12􏼂 􏼃,

ϕT
2 x2, t( 􏼁 � x1x

2
2, 0􏽨 􏽩,

θ2 � θ21; θ22􏼂 􏼃,

d1 x1, t( 􏼁 � 0.5x
2
1 cos(1.5t),

d2 x2, t( 􏼁 � 0.7 x
2
1 + x

2
2􏼐 􏼑sin3(t),

r � 0.5 sin(πt) + 0.5 sin(t).

(69)

Set the design parameters in the above control scheme as

r
y
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Figure 1: -e curve of tracking performance.
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Figure 2: Actual control law u(t).
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Figure 3: -e estimated curve of parameter θ1.
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c1 � 2.2,

c2 � 5,

c3 � 5,

τ1 � 0.01,

τ2 � 0.01,

δ � 0.1,

ε � 0.1,

A1 � 2,

D1 � D2 � 2,

x1(0) � 0.5,

x2(0) � 0.3,

θ0 � 2,

θ1 � [0.2 sin(t); 0.2 cos(1.5t)],

θ2 � [0.1 sin(t); 0.1],

􏽢θ1(0) � [0.1; 0.1],

􏽢θ2(0) � [0.1; 0.1],

ζ(0) � 0,

u(0) � 0,

q1(0) � 0,

q2(0) � 0.

(70)

-e control coefficient is set to be b �
1, t≤ 5
− 1, others􏼨 .

-e simulation results are shown in the following figures.
Figure 1 shows the system output y and the reference signal
r. It can be seen that the system output y can track the
reference signal r well even when the parameters θ1, θ2, and
control coefficient b change. Figure 2 shows the control
input u, indicating that the system input curve is asymp-
totically bounded. Figure 3 shows the estimated curve of the
parameter θ1. Figure 4 shows the estimated curve of the
parameter θ2. Figure 5 shows that functions ξ and N(ξ) are
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Figure 4: -e estimated curve of parameter θ2.
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bounded. Figure 6 shows the system state variables x1 and
x2. Figure 7 shows the error between the system output y

and the reference signal r.
It can be seen from Figures 1–7 that system state vari-

ables x1 and x2 are bounded, actual controller u is bounded,
􏽢θ11 and 􏽢θ12 are bounded, 􏽢θ21 and 􏽢θ22 are bounded, ξ and
N(ξ) are bounded, and error is bounded, so all signals in the
closed-loop system are bounded.

5. Conclusion

In this paper, the adaptive tracking control for a class of
nonlinear pure-feedback systems is studied to solve the
parameter drift problem. Different from the conventional
backstepping method, the nonconventional coordinate
transformation is introduced and the nonconventional
dynamic surface algorithm is designed to solve the problem
“calculation expansion” in the pure-feedback system, and
the sufficiently smooth projection algorithm is introduced to
solve the unknown parameter drift problem in the pure-
feedback system so that the designed controller can make all
signals of the closed-loop system globally bounded. Finally,
the correctness of the algorithm in this paper is verified by
simulation. -e nonlinear pure-feedback system considered
in this paper has the defect, that is, fi(xi+1, xi) are known
functions, but fi(xi+1, xi) are often not accurately modeled
in engineering applications, so fi(xi+1, xi) are smooth un-
known functions. In future, the radial basis function (RBF)
will be used to approximate the unknown functions
fi(xi+1, xi), so that the adaptive control for a class of
nonlinear pure-feedback systems with parameter drift is
more extensive and practical.
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