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Vendor managed inventory (VMI) is an improved sustainable inventory management system, but it is difficult to establish and
solve an integrated Stackelberg game model under the complicated practical environment. In this paper, a bilevel programming
model is proposed to formulate the VMI system by taking into account the uncertainty of demand, the competition among
retailers, the cooperative advertising, the shortage and holding costs, and the practical constraints. For the established stochastic
model being associated with continuously random demands, a deterministic mathematical program with complementarity
constraints (MPCC) is first derived by expectation method and the first-order optimality conditions of the lower-level problem.
+en, with a partially smoothing technique, the MPCC is solved by transforming it into a series of standard smooth optimization
subproblems. Finally, owing to complexity caused by evaluating the integrals with unknown decision variables in the objective
function, an efficient algorithm is developed to solve the problem based on the gradient information of model. Sensitivity analysis
has been employed to reveal a number of managerial implications from the constructed model and algorithm. (1) +e par-
ticipation rate depends on advertising expenditures from both the manufacturer and the retailer.+ere exists an optimal threshold
of participation rate for the manufacturer, which can be provided by the intersection point of the manufacturer and retailer’s cost-
profit curves. (2) +e manufacturer’s advertising policy is less sensitive to uncertainty of demand than the change of the retailer’s
advertising policy. (3) +e manufacturer in the VMI system should concern about the differences caused by symmetric or
asymmetric retailers.

1. Background

Vendor managed inventory (VMI) is an improved sus-
tainable inventory management system with cooperative
strategy between vendors (manufacturers) and buyers (re-
tailers) [1]. When the information flows from the retails to
the manufacturers, the VMI system can reduce fluctuation
amplification of the customers’ demand. More precisely, it
mitigates the bullwhip effect. Actually, owing to benefits of
the VMI mode, it has been a well-known industry practice
for supply chain collaboration such as in Walmart,
Campbell, and Intel [2, 3].

Different from an ordinary supply chain, the vendor in the
VMI system would like to take greater responsibility for
operational costs of the system than the buyers such that the

total profit of system can be maximized. +erefore, instead of
centralized decision-making in an ordinary supply chain, how
tomake an optimal operational strategy for the VMI system is
basically in a framework of the Stackelberg game, in which the
vendor is the leader and the buyers are the followers [4, 5].
However, in the research of VMI system based on the game
theory, the following issues need to be further addressed:

(i) It is clear that the demand of customers is the basis
of making-decision in the VMI system. Since the
demand is a coherent result of interrelation and
interaction of many factors, such as pricing and
advertising policies, and consumer behavior, how to
establish an integrated model to incorporate these
factors is worthy of deeper investigation.
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(ii) In the case that the establishedmodel of VMI system
is complicated as it is more in line with the practical
operational process of this system, the question is
how to develop an algorithm to efficiently find its
solution?

(iii) Is the proposed complicatedmodel more valuable in
practice than the existing ones or not?

In the next section, we will summarize the results
available in the literature related to these questions. In
particular, from the viewpoint of more applicability of
models, we concern what are the deficiencies of these results.

2. Literature Review

2.1. Bilevel ProgrammingModels of VMI. Generally, vendors
and buyers are the independent entities in a typical VMI
system, who own their respective costs and profits [2].
Different from an ordinary supply chain, the vendor (also
called a manufacturer) in such a system is primarily re-
sponsible for determining the ordering policy for its buyers
(also called the retailers), including reorder items, related
replenishment quantities, delivery times, and safety inven-
tory [6]. Each retailer provides its real-time inventory level to
the vendor via physical or electronic messaging. In the case
that there are multiple retailers for the same vendor,
transaction behavior among these retailers is also critical to
achieve efficient supply chain [7, 8]. Owing to the inherent
features of the VMI system, as done bymany researchers (see
the articles listed in Table 1), it is natural to use the
Stackelberg game to describe the relationship between the
vendor and retailers, where the vendor is the leader and the
retailers are the followers.

Specifically, with assumption of fixed demands, Alaei
et al. [9] discussed how the vendor (manufacture) coordi-
nates the channel, in which two identical retailers compete
on local advertising investment. Wang et al. [10] also studied
two possible models of the Stackelberg game with the co-
operative advertising issues of a monopolistic manufacturer
with competing duopolistic retailers in the VMI system,
where the selling prices of the retailers are assumed to be
exogenously determined. For a VMI system composed of
one vendor and multiple retailers, Almehdawe and Mantin
[11] modeled the VMI framework by two scenarios of the
Stackelberg game: either the manufacturer is the leader or
one of the retailers acts as the dominant player. However, the
demand in [11] is not random and only depends on the
retailing price. SeyedEsfahani et al. [12] also described the
relationship between the manufacturer and the retailer by
the similar Stackelberg-manufacturer or Stackelberg-retailer
games. Although the demand depends on both of vertical
cooperative advertising strategy and pricing decisions in
[12], no competition between the retailers was studied, and
the optimal decisions were derived without any practical
constraints.

2.2. VMI System with Cooperative Advertising. Since ad-
vertising investment is often an efficient way to provide
customers with the brand knowledge of products and

services in time, cooperative (coop) advertising strategy
between the vendor and the retailers is often adopted in a
practical VMI system. It was shown [13] that the offer from
the vendor to bear a certain percentage of his/her retailers’
advertising expenditures can encourage the retailers into
more promotional initiatives.

To the best of our knowledge, Berger [14] was the first to
discuss coop advertising in a vendor-retailer channel. Based
on his work, many results were obtained under different
coop advertising settings (see, e.g., [15–17]). However,
Herrington and Dempsey [18] argued that the vendor’s
global advertising could create a brand image and makes for
publicity and reputation of the product but does not nec-
essarily lead to real consumer demand, while the retailer’s
local advertising treats more of promotions and prices.
Somers et al. [19] thought that it might occur that the re-
tailer’s advertising level is not sufficient from the vendor’s
point of view.

In practice, the vendor would not like to undertake all
the costs of local advertising which may bring additional
revenue to the retailers. Taking into consideration the
vendor’s global advertising besides the retailer’s local ad-
vertising, Giri and Sharma [20] developed a two-level
supply chain model under coop advertising setting. Xie and
Wei [21] assumed that the customer demand depends on
retail prices as well as advertising efforts of channel
members. Gerhard and Udo [22] constructed a manufac-
turer-retailer supply chain model by optimizing the coop
advertising and pricing decisions. A bargaining model was
established by considering the four scenarios of symmetric
and noncooperative relationship, asymmetric relationship
with manufacturer-leadership, and asymmetric relation-
ship with retailer-leadership and cooperation. Karray and
Zaccour [23] also suggested that the demand depends not
only on his/her own advertising but also on the advertising
of competitors. De Giovanni [24] assessed the effects of
cooperative advertising programs in bilateral monopolies.
For more details, one can see [25, 26] and the references
therein. However, in these articles, effect of interaction
between advertising and pricing policies has not been
modeled in the demand functions. To improve applicability
of models, it is desirable to incorporate the interaction of
pricing strategy and advertising investment into the de-
mand model.

2.3. VMI System with Random Demand. Owing to asym-
metry information and market uncertainty, the customers’
demand is often time-varying, especially being faced with
variants of selling policies [27, 28].

Kiesmüller and Broekmeulen [3] studied a supply chain
management problem of multiproduct serial two-echelon
inventory system with stochastic demand by three different
VMI strategies to reduce the order picking cost at the up-
stream location and the transportation costs resulting in
reduced total supply chain costs. A detailed numerical study
was used to show the differences between the VMI strategies
and the retailer managed inventory strategy. Lee and Ren
[29] proposed a periodic-review inventory model with
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stochastic exchange rate to examine the benefits of VMI in
a global environment. Compared with the case of no un-
certain exchange rate, the total cost of supply chain always
decreases under VMI and its reduction is larger when there
exists uncertainty of exchange rate. By assuming that the
vendor replenishes all the retailers at the same time, Mateen
et al. [1] studied an integer programming model of a VMI
system with a single vendor and multiple retailers under
stochastic demand. +en, an approximate expression for
minimizing the expected total cost of the VMI system was
given such that it can be solved by a software package. In a
three-echelon supply chain system with multiple loss-
averse retailers, risk-neutral manufacturers, and risk-
neutral distributer, Ming et al. [30] constructed a decen-
tralized decision model under stochastic demand, but the
optimal solution was given without considering any
practical constraints. Under random demand, Huynh and
Pan [31] presented a model of operational strategies for a
VMI system of one retailer and one manufacturer. Since no
practical constraint was considered and the demand does
not depend on the retailing price, an optimal solution of the
model was analytically derived in [31]. Govindan [32]
studied a model of minimizing the total cost of VMI system
with one vendor and multiple retailers under time-varying
stochastic demand. Huang et al. [33] considered that the
stochastic demand depends on product quality level and
marketing effort level. Haji et al. [34] assumed that the
retailer’s demand satisfies the Poisson distribution. Zhang
et al. [35, 36] proposed two stochastic programming
models to formulate the management problem of global
supply chains in the case that product demands are con-
tinuous random variables. Wei et al. [37] studied two
different inventory management models with considering
stochastic learning effect. Owing to the complexity caused
by evaluating the integrals with the unknown decision
variables in the objective function, it was pointed out in
[35] that the existing optimization algorithms, or the
software packages such as MATLAB, CPLEX, and LINGO,
cannot be directly used to solve the models. +erefore, for
the stochastic models with continuous random demands, it

is valuable to develop an efficient algorithm to solve them
based on the gradient information of the objective function
and constraints.

However, all of the above mentioned VMI (or supply
chain) models are not based on the Stackelberg game theory.
Moreover, in these models, effects of (coop) advertising
policies and interaction of pricing and advertising policies
have not been considered in the demand models.

2.4. Intentions of &is Research. Motivated by improving
applicability of model and overcoming the deficiency of the
existing results on the VMI problems, we attempt to propose
a new Stackelberg game model to formulate the VMI
management problem under assumption of continuous
random demands (see the comparison made in Table 1). In
our model, all of the delivered quantities, advertising in-
vestments, and prices of products are treated as the en-
dogenous variables of the model, and the demand is price-
and-advertisement-dependent and is supposed to be a
continuous random variable such that it is more in line with
the practical marketing environment. Owing to uncertainty
in our model, it is necessary to incorporate shortage loss and
holding cost into this model.

More importantly, different from the models available in
the literature [5], possible competition among the multiple
retailers is considered in the new model. In other words, the
product demand of one retailer in this VMI system depends
not only on its own pricing and advertising policies but also
on those of the other retailers. Moreover, possible interac-
tion between pricing and advertising policies will also be
modeled in the demand function of this research.

Apart from establishment of a new model, we also need
to answer the following questions:

(i) For the complicated bilevel programming model,
how can we develop an efficient algorithm to find its
equilibrium solution? Particularly, without as-
sumption of simplification as in [11, 38–40], we need
to first derive a deterministic equivalent formulation
by expectation method for the stochastic nonlinear

Table 1: Relevant results on VMI by the Stackelberg game.

Authors Stackelberg game Interaction of
retailers

Random
demand

Constrained or
not Solution methods

Berger (1972) 1 vendor and 1 retailer ✓ × ✓ Lagrange function
method

Karray et al. (2007) 2 vendors and 2 retailers ✓ × ✓ Noncooperative game
Almehdawe et al. (2010) 1 vendor and n retailers × × ✓ KKT conditions
Kiesmüller et al. (2011) n vendors and n retailers × ✓ × Expectation method
Bylka (2011) 1 vendor and 1 retailer × × ✓ Noncooperative game
Tsao et al. (2014) 1 vendor and n retailers × × ✓ Piecewise linearization
Giri et al. (2014) 1 vendor and 2 retailers ✓ × × Second-order conditions
Mateen et al. (2014) 1 vendor and 4 retailers × ✓ ✓ Simulation method

Haji et al. (2018) 1 supplier, 1 vendor, and 1
retailer × ✓ × Enumerative algorithm

Wei et al. (2019) 1 vendor and 1 retailer × ✓ × Backward induction
Huang et al. (2019) 1 vendor and 1 retailer × ✓ × First-order conditions

Our study 1 vendor and n retailers ✓ ✓ ✓ Gradient-based and
smoothing
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bilevel programmingmodel [41, 42].+en, similar to
the approach in [5], it is necessary to convert the
bilevel programming problem into the mathematical
program with complementarity constraints (MPCC)
such that a series of standard smooth optimization
subproblems can be solved [43, 44]. Since the ex-
pected profit in the new model is involved in
computing integrals being associated with the un-
known decision variables, an efficient algorithm,
rather than heuristic algorithms, is more desirable to
find an equilibrium of this complicated nonlinear
model.

(ii) What are the valuable managerial implications
revealed from the new model? Specifically, (1) what
are the impacts of the market parameters on the
profit of retailers and the demand? (2) What are the
impacts of the uncertainty in the demand function
on the profit of retailers? (3) As the manufacturer’s
profit reaches the maximum, what is the value of
participation rate (the advertising expenditure ratio
of retailer to that born by the manufacturer)? (4)
What are the impacts of the advertising coefficient of
sensitivity on the participation rate? (5)What are the
impacts of the manufacturing cost and shortage cost
on the manufacturer’s profit?

+e rest of this paper is organized as follows. +e next
section is devoted to formulation of the bilevel programming
model for the VMI system. +en, the bilevel programming
model is reformulated as a series of standard smooth op-
timization problems in Section 4. In Section 5, gradient-
information based algorithm for solving the model is de-
veloped. Sensitivity analysis of the model is conducted in
Section 6. Some conclusions are drawn in the last section.

3. Bilevel Programming Model for
VMI Problems

In this section, we will model the VMI problem as a bilevel
mathematical programming problem.

We first make the following settings to specify the
handled problem in this paper:

(i) +e VMI system is composed of a manufacturer
(vendor) and multiple retailers. All of them are risk-
neutral to uncertainty of product demands.

(ii) +e manufacturer produces only one type of fin-
ished products and distributes them to its retailers at
the same wholesale price.

(iii) Each retailer can sell the finished products to the
consumers at different retail prices. Among the
retailers, there exists competition in terms of pricing
and advertising polices. In other words, for each
retailer, the demand depends not only on his/her
own advertising expenditure and retail price but
also on those of the other retailers.

(iv) +emarket demand may depend on the retail prices
and the advertising expenditures from both the
manufacturer and all the retailers and is of random

nature (see, e.g., [9, 12, 13]). Mathematically, if we
denote by p−i and a−i the retail prices and the ad-
vertising expenditures of all the retailers except for
retailer i, respectively, then the demand of retailer i
reads

Di pi, ai; A, p−i, a−i, ξi(  � di pi, ai; A, p−i, a−i(  + ξi, (1)

where di: R+⟶ R is a function with respect to the retail
prices pi and p−i, the advertising expenditures of all the
retailers ai and a−i, and the advertising expenditures of the
manufacturer A, and ξi is a random variable.

3.1. Notations. For readability, we list the notations used in
this paper as follows:

Indices

i: Index of retailers, i � 1, 2, . . ., m
m: Number of retailers.

Parameters

cm: Unit manufacturing cost of the manufacturer
($/unit)
cp: Unit wholesale price of finished products ($/unit)
HR

i : Unit holding cost paid by the manufacturer at the
location of retailer i ($/unit/time)
Ii: Unit inventory cost paid by retailer i ($/unit/time)
LR

i : Unit shortage cost paid by the manufacturer to
retailer i ($/unit/time)
P: Production capacity of the manufacturer
SM: Fixed operational cost of the manufacturer
SR

i : Fixed operational cost of retailer i
Ti: Unit transportation cost of the finished products
shipped from the manufacturer to retailer i ($/unit)
ti: Advertising expenditure ratio of retailer i to that
born by the manufacturer ($/unit)
TDC: Total direct cost for the manufacturer ($/time)
TIDC: Total indirect cost of themanufacturer ($/time)
πR

i : Profit of retailer i ($/time)
πM: Profit of the manufacturer ($/time)
p−i: Price profile of all the other retailers except for
retailer i
a−i: Advertisement profile of all the other retailers
except for retailer i
α: +e basic minimum demand
βi: +e retail price sensitivity coefficient of retailer i
ρij: +e sensitivity coefficient of competitor j to the
retail price for retailer i
τij: +e sensitivity coefficient of competitor j to the
advertising expenditure for retailer i
k: +e basic market size
ki: +e advertising sensitivity coefficient of retailer i
km: +e advertising sensitivity coefficient of the
manufacturer.

Decision variables of the retailers

pi: Unit retail price in the market of retailer i ($/unit)
p: A vector of retail prices, p � (p1, p2, . . ., pm)
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ai: Advertising expenditure of retailer i ($/time)
a: Vector of advertising expenditures of retailers, a �

(a1, a2, . . ., am).

Decision variables of the manufacturer

qi: Distributed quantity from the manufacturer to
retailer i
q: Vector of distributed quantities, q � (q1, q2, . . ., qm)
A: Advertising expenditure of the manufacturer
($/time).

3.2. Demand Function. In order to specify the profit func-
tions, we assume that the demand in (1) is defined by

di pi, ai; A, p−i, a−i(  � α − βipi + 
j≠i

ρijpj
⎛⎝ ⎞⎠

k + km

��
A

√
+ ki

��
ai

√
− 

j≠i
τij

��
aj

⎛⎝ ⎞⎠,

ξi∽fi ξi( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where α > 0, βi > 0, ρij > 0, k > 0, km > 0, ki > 0, and τij > 0 are
given constants, and fi is the density function of the con-
tinuous random variable ξi with a support set [0, +∞). In
practice, α and k determine the basic minimum demand and
the market size, respectively. βi and ρij stand for the own price
sensitivity and that of the competitor j, respectively. Clearly,
for each retailer, the decrease in its own price and the in-
creasing price of its competitor j often result in the increasing
market demand of this retailer. km is the advertising ex-
penditure sensitivity coefficient of the manufacturer. ki and τij
stand for the sensitivity to the own advertising expenditures
(ki) and that to the competitor j, respectively. It is easy to see
that the consumer demand increases as the own advertising
expenditure goes up and that of the competitor j goes down. pi
and pj are the retail prices of retailer i and its competitor j,
respectively. ai and aj are the advertising expenditures of
retailer i and its competitor j, respectively. A is the advertising
expenditure of the manufacturer.

As for randomness of demand, we suppose that ξi is
subject to normal distribution. In particular, if
ξi ∼ N(μi, σ2i ), i � 1, 2, . . ., m, the cumulative distribution
function of ξi, denoted by Fi, is specified by

Fi(x) � Fi x; μi, σi(  � 
x

−∞
fi ξi( dξi

� 
x

−∞

1
���
2π

√
σi

e
− ξi− μi( )

2/2σ2
i dξi,

(3)

which will be used to maximize the profits. In general, μi � 0
(see [36, 45]).

It should be pointed out that there are different available
approaches to describing the demands in the literature.
Random multiplicity and additive demands are the two
main formations, being used to address particular product
markets and consumer demands (see [35, 36]). In this paper,
we mainly focus on the random additive demand associated
with the retail prices and the advertising expenditures such

that a number of managerial implications are drawn from
the constructed model and the developed algorithm.

3.3. Lower-Level Optimization Model for Retailers.
Retailer i faces the problem of determining the unit retail
price pi and the advertising expenditure ai to maximize his/
her profit. +e profit of retailer i is given by

πR
i pi, ai; qi, A, p−i, a−i, ξi(  � pi min qi, Di  − cpqi

− Ii min qi, Di  − 1 − ti( ai − S
R
i .

(4)

+e first term in equation (4) is the total revenue of
retailer i. +e remaining terms in equation (4) are the
products’ procurement cost, the inventory cost, the adver-
tising expenditure, and the fixed operational cost, respec-
tively. It is noted that the unit inventory cost for retailer i, as
the VMI partnership, is only proportional to the quantity of
products that have been sold by retailer i. In addition, in the
coop advertising framework, the manufacturer would share
a fraction of advertising expenditure of retailer i.

As the decision variables of retailer i, the unit retail price
and the advertising expenditure should satisfy the following
constraints:

pi ≥ cp + Ii, ai ≥ 0. (5)

Consequently, the lower-level optimization model for
retailer i, i � 1, 2, . . ., m, is given by

max πR
i pi, ai; qi, A, p−i, a−i, ξi(  � pi − Ii( min qi, Di 

− cpqi − 1 − ti( ai − SR
i

s.t. pi ≥ cp + Ii, ai ≥ 0.

(6)

3.4. Upper-Level Optimization Model for Manufacturer.
+e manufacturer faces the problem of determining op-
timal distributed quantities qi and an advertising expen-
diture A to maximize his/her profit, a difference between
the total revenue and the total cost.

+e total revenue is



m

i�1
cpqi. (7)

+e total cost is divided into two parts: direct and in-
direct costs. +e direct cost (TDC) includes the production
cost, the transportation cost from the manufacturer to re-
tailers, his/her own advertising expenditure, the burdened
advertising expenditures for his/her retailers, and the fixed
operational cost. Its mathematical expression is


m

i�1
qi cm + Ti(  + A + 

m

i�1
tiai + S

M
. (8)

Since the inventory level is managed by the manufac-
turer, the manufacturer must be responsible for the retailers’
holding costs and shortage costs caused by the variation in
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the replenishment cycle, which is a punishment for the
manufacturer. +us, the total indirect cost (TIDC) is the
holding costs or shortage costs:

TIDC � 
m

i�1
H

R
i qi − Di( 

+
+ L

R
i Di − qi( 

+
 , (9)

where (Di − Qi)
+ � max Di − Qi, 0 . Consequently, we get

the profit of the manufacturer as follows:

πM
(q, A; p, a, ξ) � 

m

i�1
cpqi − TDC − TIDC

� 
m

i�1
cp − Ti − cm qi − A − 

m

i�1
tiai − S

M

− 
m

i�1
H

R
i qi − Di( 

+
+ L

R
i Di − qi( 

+
 .

(10)

Limited by production capacity and advertising ex-
penditure, the manufacturer’s decision variables should
satisfy the following constraints:



m

i�1
qi ≤P, A≥ 0. (11)

With the above analysis, we obtain the following upper-
level optimization model for the manufacturer:

max πM(q, A; p, a, ξ) � 
m

i�1
cp − Ti − cm qi − A − 

m

i�1
tiai

− SM − 
m

i�1
H

R
i qi − Di( 

+
+ L

R
i Di − qi( 

+
 

s.t. 
m

i�1
qi ≤P, A≥ 0.

(12)

3.5. Bilevel ProgrammingModel forVMIProblems. In light of
Models (6) and (12), it is easy to establish a stochastic bilevel
programming model for the handled VMI problem as follows:

max πM(q, A; p, a, ξ) � 
m

i�1
cp − Ti − cm qi − A − 

m

i�1
tiai

− SM − 
m

i�1
H

R
i qi − Di( 

+
+ L

R
i Di − qi( 

+
 

s.t. 
m

i�1
qi ≤P, A≥ 0.

(13)

(pi, ai) is the solution of the following optimization
problem:

max πR
i pi, ai; qi, A, p−i, a−i, ξi(  � pi − Ii( 

min qi, Di  − cpqi − 1 − ti( ai − SR
i

s.t. pi ≥ cp + Ii, ai ≥ 0, i � 1, 2, . . . , m.

(14)

Owing to existence of the random demand in (13), we
first transform (13) into a deterministic equivalent formu-
lation by expectation method. For simplification, denote

zi � qi − di, (15)

where di is defined in (1). +en, the expected profit of the
manufacturer reads

E
M

� E πM
  � 

m

i�1
cp − Ti − cm qi − A − 

m

i�1
tiai − S

M

− 
m

i�1
H

R
i 

zi

0
qi − Di( f ξi( dξi + L

R
i 

+∞

zi

Di − qi( f ξi( dξi ,

(16)

and the expected profit of retailer i is rewritten as

E
R
i � E πR

i  � pi − Ii(  
zi

0
Dif ξi( dξi + 

+∞

zi

qif ξi( dξi 

− cpqi − 1 − ti( ai − S
R
i .

(17)

+us, the deterministic equivalent formulation of Model
(13) is given by

min GM(q, A; p, a) � −EM � 
m

i�1
cm + Ti − cp qi + A + 

m

i�1
tiai + S

M
+ 

m

i�1
H

R
i 

zi

0
qi − Di( f ξi( dξi + L

R
i 

+∞

zi

Di − qi( f ξi( dξi 

s.t. 
m

i�1
qi ≤P, A≥ 0.

(18)

(pi, ai) is the solution of the following optimization
problem:

min GR
i pi, ai; qi, A(  � −ER

i � Ii − pi(  
zi

0
Dif ξi( dξi + 

+∞

zi

qif ξi( dξi  + cpqi + 1 − ti( ai + SR
i

s.t. pi ≥ cp + Ii, ai ≥ 0, i � 1, 2, . . . , m.

(19)
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Remark 1. Different from an ordinary bilevel programming
problem, Model (18) contains two objective functions with
complicated definite integrals, which are associated with the
unknown decision variables. +us, how to develop efficient
algorithms, other than heuristic algorithms, to find the
equilibrium point of Model (18) is an interesting issue.

4. Reformulation of Bilevel
Programming Model

It is well known that (18) is a bilevel mathematical pro-
gramming problem. With some mild assumptions, any two-
level mathematical programming problem can be refor-
mulated as a mathematical program with complementarity
constraints (MPCC) (see, e.g., [43, 44]). In this section, we
will transform the bilevel programming problem into an

MPCC based on the Karush-Kuhn-Tucker (KKT) conditions
of the lower-level optimization model.

For the lower-level optimization model in (18), let λi and
ci be the Lagrangian multipliers corresponding to the two
types of constraints in Model (6). +en, the Lagrangian
function of the lower-level optimization model is written as

Li pi, ai; λi, ci(  � Ii − pi(  
zi

0
Dif ξi( dξi

+ 
+∞

zi

qif ξi( dξi + cpqi + 1 − ti( ai

+ S
R
i − λi pi − cp − Ii  − ciai.

(20)

To simplify the calculation, denote

pi
′ � pi − Ii − cp,

ai
′ � ai,

di
′ � α − βi pi

′ + Ii + cp  + 
j≠i

ρijpj
⎛⎝ ⎞⎠ k + km

��
A

√
+ ki

��

ai
′



− 
j≠i

τij

��
aj

⎛⎝ ⎞⎠,

zi
′ � qi − di

′.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

+en, Li has a more compact form:

Li � − pi
′ + cp  

zi
′

0
Di
′f ξi( dξi + 

+∞

zi
′

qif ξi( dξi 

+ cpqi + 1 − ti( ai
′ + S

R
i − λipi
′ − ciai
′.

(22)

In virtue of (22), any optimal solution of the lower-level
problem satisfies the following KKTconditions with suitable
constraint qualification [43, 44]:

k + km

��
A

√
+ ki

��

ai
′



− 
j≠i

τij

��
aj

⎛⎝ ⎞⎠ βi 2 pi
′ + cp  + Ii  − α 

zi
′

0
f ξi( dξi,

− 
zi
′

0
ξif ξi( dξi − 

+∞

zi
′

qif ξi( dξi − λi � 0,

−
ki

2
��

ai
′

 pi
′ + cp  α − βi pi

′ + Ii + cp  + 
j≠i

ρij

��
pj

⎛⎝ ⎞⎠ 
zi
′

0
f ξi( dξi + 1 − ti − ci � 0,

λi ≥ 0, pi
′ ≥ 0, λipi

′ � 0,

ci ≥ 0, ai
′ ≥ 0, ciai

′ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)
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Set

yi �

pi
′

ai
′

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠,

f1 yi(  � k + km

��
A

√
+ ki

��

ai
′



− 
j≠i

τij

��
aj

⎛⎝ ⎞⎠ βi 2 pi
′ + cp  + Ii  − α  

zi
′

0
f ξi( dξi,

− 
zi
′

0
ξif ξi( dξi − 

+∞

zi
′

qif ξi( dξi,

f2 yi(  � −
ki

2
��

ai
′

 pi
′ + cp  α − βi pi

′ + Ii + cp  + 
j≠i

ρij

��
pj

⎛⎝ ⎞⎠ 
zi
′

0
f ξi( dξi + 1 − ti,

F yi(  �

f1 yi( 

f2 yi( 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

+en, the KKT condition (23) is rewritten as the fol-
lowing standard complementarity problem:

yi ≥ 0,

F yi( ≥ 0,

y
T
i F yi(  � 0,

i � 1, 2, . . . , m.

(25)

Clearly, (25) is involved in the unknown upper-level
decision variables.

Remark 2. Due to the presence of multiple retailers who
make decisions simultaneously, the retailers’ decisions affect
each other’s objective functions/utilities. +us, the lower-
level problem asks for finding a Nash equilibrium in the
follower’s game for any given decision of the manufacturer.
In general, Nash equilibrium problems may admit many
equilibria. In this paper, by a KKT reformulation, it is
supposed that all the followers collectively choose an
equilibrium that maximizes the leader’s (the manufacturer’s)
utility.

Remark 3. Since the constraints in the lower-level problem
are only associated with simple bound constraints and are
not related to the upper-level decision variables, it is easy to
see that linear independence constraint qualification (LICQ)
holds at any point of its feasible region. +us, each upper-
level solution satisfies the KKT conditions (25). In [46, 47],
some sufficient conditions were given to ensure that a locally
optimal solution of the original bilevel programming
problem translates bijectively into a locally optimal solution
of the associated single-level KKT-based reformulation.

As done in [44], we further replace (23) with the fol-
lowing smooth inequality constraints:

yi ≥ 0,

F yi( ≥ 0,

Φε yi( ≤ 0,

i � 1, 2, . . . , m,

(26)

where

Φε yi(  �

ϕε,1 yi( 

ϕε,2 yi( 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

ϕε,1 yi(  �
1
2

pi
′ + f1 yi(  − ψε pi

′ − f1 yi( ( ( ,

ϕε,2 yi(  �
1
2

ai
′ + f2 yi(  − ψε ai

′ − f2 yi( ( ( ,

ψε(t) �
2t

π
arctan

t

ε
 .

(27)

Consequently, the bilevel programming model (18) is
reformulated as a standard smooth optimization problem:

min Gm(x),

s.t. 

m

i�1
qi ≤P

A≥ 0

yi ≥ 0, F yi( ≥ 0,Φε yi( ≤ 0, i � 1, 2, . . . , m,

(28)
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where

x � q, A, p′, a′( ,

Gm(x) � 
m

i�1
cm + Ti − cp qi + A + 

m

i�1
tiai
′ + S

M
+ 

m

i�1
H

R
i 

zi
′

0
qi − Di
′( f ξi( dξi + L

R
i 

+∞

zi
′

Di
′ − qi( f ξi( dξi .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(29)

Remark 4. Although Model (28) is a smooth nonlinear
optimization problem, it is a difficult task to evaluate the
objective function because it is associated with computing
the complicated integrals being dependent on the unknown
decision variables in the case that the demand is the con-
tinuous random variable. Generally, standard optimization
techniques or the existing software packages such as
MATLAB, CPLEX, and Lingo cannot be directly used to
solve Model (28).

Remark 5. For a complicated optimization model, heuristic
algorithms are often designed to approximate its solution.
However, any heuristic algorithm needs more expensive
computation cost due to the random search of iterative
points, as well as being difficult to establish its convergence
theory. One of our research intentions in this paper is to
develop an efficient algorithm to solve (28) based on the
gradient information of the objective and constraints.

5. Development of Gradient-Based Algorithm

Heuristic algorithms or analytic methods such as the
backward induction procedure in [4] are the popular
methods available in the literature to solve the bilevel
programming problems. However, on the one hand, there
does not exist any analytic method to solve Model (28)

owing to its complexity. On the other hand, numerical ef-
ficiency of any heuristic algorithm for solving Model (28) is
often not satisfactory since no analytic property of Model
(28) is employed to search for the optimal solution. For these
mentioned reasons, we attempt to develop an efficient al-
gorithm to solve Model (28) in this section, similar to the
idea of [35]. Actually, it has been shown that the algorithm
developed in [35] is efficient to solve the stochastic model of
global supply chain management problem by numerical
experiments, especially in comparison with the heuristic
algorithm.

Basically, similar to the way presented in [35], we first
approximate Model (28) by a series of linear programming
problems based on the gradient information of the objective
function and constraints. +en, by solving the linearized
subproblem, we will obtain a search direction at any given
approximate solution of Model (28). Finally, by a suitable
line search rule, a step length along the search direction is
computed such that a better approximate solution of Model
(28) is obtained.

By directly taking the derivative, we get the following
results.

Proposition 1. Let f1(yi) and f2(yi) be defined in (24). &en,

zf1 yi( 

zqi

� k + km

��
A

√
+ ki

��

ai
′



− 
j≠i

τij

��
aj

⎛⎝ ⎞⎠ 2βi pi
′ + cp +

1
2
Ii  − α f zi

′( 

+ di
′ − 2qi( f zi

′(  + 
+∞

zi
′

f ξi( dξi,

zf1 yi( 

zA
� 2βi pi

′ + cp +
1
2
Ii  − α 

km

2
��
A

√ 
zi
′

0
f ξi( dξi

− βi pi
′ + cp di

′ km

2
��
A

√ f zi
′( ,

zf1 yi( 

zpi
′

� di
′ + βi k + km

��
A

√
+ ki

��

ai
′



− 
j≠i

τij

��
aj

⎛⎝ ⎞⎠

2

2βi pi
′ + cp +

1
2
Ii  − α ⎛⎝ ⎞⎠f zi

′( 

+ 2βi k + km

��
A

√
+ ki

��

ai
′



− 
j≠i

τij

��
aj

⎛⎝ ⎞⎠ 
zi
′

0
f ξi( dξi,
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zf1 yi( 

zai
′

� 2βi pi
′ + cp +

1
2
Ii  − α 

ki

2
��

ai
′

 
zi
′

0
f ξi( dξi

− βi pi
′ + cp di

′ ki

2
��

ai
′

 f zi
′( ,

zf2 yi( 

zqi

� −
ki

2
��

ai
′

 pi
′ + cp  α − βi pi

′ + cp + Ii  f zi
′( ,

zf2 yi( 

zA
�

kikm

4
���

Aai
′

 pi
′ + cp  α − βi pi

′ + cp + Ii  
2
f zi
′( ,

zf2 yi( 

zpi
′

�
ki

2
��

ai
′

 2βi pi
′ + cp +

1
2
Ii  − α  

zi
′

0
f ξi( dξi −

ki

2
��

ai
′

 βi pi
′ + cp di

′f zi
′( ,

zf2 yi( 

zai
′

�
kia
′(−3/2)
i

4
pi
′ + cp  α − βi pi

′ + cp + Ii  + 
j≠i

ρij

��
pj

⎛⎝ ⎞⎠ 
zi
′

0
f ξi( dξi

+
k2

i

4ai
′

pi
′ + cp  α − βi pi

′ + cp + Ii  + 
j≠i

ρij

��
pj


⎛⎝ ⎞⎠

2

f zi
′( . (30)

Proposition 2. Let ϕε,1(yi) and ϕε,2(yi) be defined in (27).
&en,

zϕε,1 yi( 

zqi

�
1
2

zf1

zqi

+
zf1/zqi( arctan pi

′ − f1( /ε( 

π
+
ε pi
′ − f1(  zf1/zqi( 

π ε2 + pi
′ − f1( 

2
 

,

zϕε,1 yi( 

zA
�
1
2

zf1

zA
+

zf1/zA( arctan pi
′ − f1( /ε( 

π
+
ε pi
′ − f1(  zf1/zA( 

π ε2 + pi
′ − f1( 

2
 

,

zϕε,1 yi( 

zpi
′

�
1
2

1 +
zf1

zpi
′

  − 1 −
zf1

zpi
′

 
arctan pi

′ − f1( /ε( ( 

π
−
ε pi
′ − f1i(  1 − zf1/zpi

′( ( 

π ε2 + pi
′ − f1( 

2
 

,

zϕε,1 yi( 

zai
′

�
1
2

zf1

zai
′

+
zf1/zai
′( arctan pi

′ − f1( /ε( 

π
+
ε pi
′ − f1(  zf1/zai

′( 

π ε2 + pi
′ − f1( 

2
 

,

zϕε,2 yi( 

zqi

�
1
2

zf2

zqi

+
zf2/zqi( arctan ai

′ − f2( /ε( 

π
+
ε ai
′ − f2(  zf2/zqi( 

π ε2 + ai
′ − f2( 

2
 

,

zϕε,2 yi( 

zA
�
1
2

zf2

zA
+

zf2/zA( arctan ai
′ − f2( /ε( 

π
+
ε ai
′ − f2(  zf2/zA( 

π ε2 + ai
′ − f2( 

2
 

,

zϕε,2 yi( 

zpi
′

�
1
2

zf2

zpi
′

+
zf2/zpi
′( arctan ai

′ − f2( /ε( 

π
+
ε ai
′ − f2(  zf2i/zpi

′( 

π ε2 + ai
′ − f2( 

2
 

,

zϕε,2 yi( 

zai
′

�
1
2

1 +
zf2

zai
′

  − 1 −
zf2

zai
′

 
arctan ai

′ − f2( /ε( 

π
−
ε ai
′ − f2(  1 − zf2/zai

′( ( 

π ε2 + ai
′ − f2( 

2
 

.

(31)
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Proposition 3. Let Gm(x) be defined in (29). &en,

zGm(x)

zqi

� cm + Ti − cp + H
R
i 

zi
′

0
f ξi( dξi − L

R
i 

+∞

zi
′

f ξi( dξi,

zGm(x)

zA
� 1 + L

R
i α − βi pi

′ + cp + Ii  + 
j≠i

ρij

��
pj

⎛⎝ ⎞⎠
km

2
��
A

√

− H
R
i + L

R
i  α − βi pi

′ + cp + Ii  + 
j≠i

ρij

��
pj

⎛⎝ ⎞⎠
km

2
��
A

√ 
zi
′

0
f ξi( dξi,

zGm(x)

zpi
′

� H
R
i βi k + km

��
A

√
+ ki

��

ai
′



− 
j≠i

τij

��
aj

⎛⎝ ⎞⎠,

zGm(x)

zai
′

� ti + L
R
i α − βi pi

′ + cp + Ii  + 
j≠i

ρij

��
pj

⎛⎝ ⎞⎠

− H
R
i + L

R
i  α − βi pi

′ + cp + Ii  + 
j≠i

ρij

��
pj


⎛⎝ ⎞⎠

ki

2
��

ai
′

 
zi
′

0
f ξi( dξi.

(32)

Remark 6. For a given point xk, Propositions 1 and 2 are
useful to compute the gradients of f1(yi), f2(yi), ϕε,1(yi), and
ϕε,2(yi), being referred to as ∇f1(yi), ∇f2(yi), ∇ϕε,1(yi), and
∇ϕε,2(yi), respectively.+us, the gradients of F(yi) andΦε(yi),
being referred to as ∇F(yi) and ∇Φε(yi), are obtained, re-
spectively. Proposition 3 presents the gradient of the ob-
jective function at xk.

In view of Propositions 1–3, we can construct a linear
approximate model of (28) at a given point xk. Specifically,
denote d = x − xk; then any nonzero solution of the following
linear programming problem determines a feasible descent
direction of Model (28) at xk (see [48]):

min z,

s.t. ∇Gm xk( 
T

d − z≤ 0



m

i�1
q

k
i + dqi

− z≤P,

(DF(x)) Ak + dA + z≥ 0, yk
i + dyi

+ z≥ 0,

F yk
i(  + ∇F yk

i( 
T
d + z≥ 0,

Φε yk
i(  + ∇Φε yk

i( 
T
d − z≤ 0,

‖d‖∞ ≤ 1, i � 1, 2, . . . , m,

(33)

where dqi
, dA, and dyi

are the components of d corre-
sponding to the variables qi, A, and yi, respectively. +us,
(33) is called the linearized subproblem in solving Model
(28). Determination of a search direction by solving (33) is
one of the main steps in the following Algorithm 1.

Algorithm 1. (Modified Topkis-Veinott Algorithm)

Step 0. Choose an initial point x0 ∈D and z0 large enough. ϵ1
> 0 is a given constant. Set k≔0.

Step 1. If |zk| < ϵ1, the algorithm stops. Otherwise, go to Step
2.

Step 2. For the given xk, solve the subproblem (33). Its
solution is referred to as dk.

Step 3. With dk, compute αmax
k � max α | xk + αdk ∈ D .

+en, find an optimal step length by solving the following
single-variable optimization model:

min
0≤α≤αmax

k

Gm xk + αdk( . (34)

Denote by αk the optimal solution of (34).

Step 4. Set xk+1≔xk + αkdk. Update k≔k + 1. Return to Step 1.

Remark 7. Since it is often difficult to calculate the optimal
step length αk in Step 3 of Algorithm 1, instead of solving
problem (34), we find αk � ηiαmax

k satisfying the following
inequality:

Gm xk + αkdk( ≤Gm xk(  + δαk∇Gm xk( 
T
dk, (35)

where i is the largest integer such that the above inequality
holds; η, δ ∈ (0, 1) are two given constants.

Remark 8. Algorithm 1 can be regarded as a special version
of the Topkis-Veinott method in [48, 49] as it is used to solve
Model (28), which is complicated. Unlike more popular
SQP-type algorithms for solving smooth nonlinear con-
strained optimization problems, the Topkis-Veinott method
does not require the second-order information of the ob-
jective function to generate a search direction. As done in
Step 2 of Algorithm 1, we obtain the search direction dk by
solving the linearly approximate Model (33). Actually, for
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Problem (28), it is difficult to obtain the second-order in-
formation of its objective function. +us, the SQP-type al-
gorithms are not suited for solving Model (28).

Remark 9. Another advantage of Algorithm 1 is that it can
globally converge to a Fritz John point even if Model (28) has
no KKT point (see [49]). In other words, Algorithm 1 may
work well for solving Model (28) in the case that the SQP-
type methods do not.

From Propositions 1–3, it is clear that the complexity of
Model (28) does not eliminate its first-order smoothness.
+erefore, similar to the proofs in [48, 49] for the Topkis-
Veinott method, we can prove the following property of
Algorithm 1.

Theorem 1. Let {xk} be a sequence generated by Algorithm 1
in solving Model (28). &en, any accumulation point of {xk} is
a Fritz John point of (28).

6. Sensitivity Analysis

In this section, we intend to investigate the impacts of some
primary model parameters on decision-making by sensi-
tivity analysis.

Consider a VMI supply chain with one manufacturer
and two competitive retailers. Similar to [4], we choose the
values of the parameters in Model (28) as follows:

m � 2, α � 35, βi � 2, ρij � 1.5, K � 10, km � 0.5, ki � 1.5,

τij � 0.8, ti � 0.7, HR
i � 12, LR

i � 500, cp � 100, cm � 20,

SM � 20, SR
i � 10, Ti � 5, Ii � 2, P � 10000, μi � 1, σi � 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

Our main concerns include the following: (1) What are
the impacts of the market parameters (βi, ρij, ki) on the profit
of retailers and the demand? (2) What are the impacts of the
uncertainty in the demand function on the profit of retailers?
(3) What is the value of participation rate ti (the advertising
expenditure ratio of retailer i to that born by the manu-
facturer ($/unit)) as the manufacturer’s profit reaches the
maximum? (4) What are the impacts of the advertising
coefficient of sensitivity on the participation rate ti? (5)What
are the impacts of the manufacturing cost cm and shortage
cost LR

i on the manufacturer’s profit?
All the computer codes of Algorithm 1 are written in

MATLAB 2012b and run on a personal computer with the
operation system of Windows 7, 1.8 GHZ CPU, and 4.00GB
RAM.

6.1. Impacts of Sensitivity Coefficients on Demand. Since one
of the main contributions in this paper is the construction of
the new demand function given by (1) and (2), we first reveal
what are the underlying effects of competition between the
different retailers on the demand by numerical method.

For one retailer, we change its own price coefficient of
sensitivity and that of its competitors with a step size 0.2;
then we solve Model (28) by Algorithm 1 to compute the
corresponding values of demand. In Figures 1(a) and 1(b),

we present the dependence of the demand on the concerned
retailer’s retail price coefficient of sensitivity and that of its
competitors.

6.2. Impacts of Critical Model Parameters on Vendors.
Since the manufacturer is the leader of the VMI system, we
concern how his optimal decision and the corresponding
profit are affected by the model parameters. In particular, we
want to study what are the critical roles of those parameters
in the new demand function given by (1) and (2).

In Figure 2, we plot the impacts of the advertising co-
efficients of sensitivity on the participation rate, including
the sensitivity coefficient (km) of the manufacturer’s ad-
vertising expenditure and that (ki) of the retailers’ adver-
tising expenditure.

From Figure 2, it follows that the advertising sensitivity
coefficients of the manufacturer and retailer are critical
factors that affect the decision-making of VMI system.
Actually, higher advertising sensitivity results in greater
participation rate, and the manufacturer’s participation rate
depends more on its own advertising sensitivity coefficient.
In other words, in the case that the effect of the retailer’s
advertising is higher than that of manufacturer’s effort; lower
participation rate is preferred by the manufacturer. Just like
intuitive judgement, Figure 2 also demonstrates that lower
values of km and ki result in smaller participation rate.

We next analyze how the manufacturer’s profit is af-
fected by the ratio of advertising investment done by the
retailers and that by the manufacturers. Figure 3 presents the
numerical results.

From Figure 3, it follows that the impact of the ratio of
advertising expenditure between retailers and manufac-
turers on profits meets the law of diminishing marginal
effect [50]. Actually, in the initial stage, when the manu-
facturer continuously increases the retailing advertising
expenditure, its profit also increases, but when the retailing
advertising investment increases to certain threshold (ti≈0.7
in Figure 3), the profit declines. In short, the margin for the
ratio of advertising investments spent by the retailers and the
manufacturer diminishes at a critical ratio. Clearly, for the
manufacturer (the leader of the VMI system), he can find
this optimal retailing advertising ratio by the aid of the
developed model and algorithm in this paper.

In Figure 4, we further plot the effect of participation
rate, ti, on the ratio of the maximal profit to the total cost.

Figure 4 demonstrates the following:

(1) +e ratio of the manufacturer’s maximal profit to the
total cost decreases with an increasing ti, while the
conclusion is opposite for the retailers.

(2) For the VMI system, in line with the principle of the
highest utilization of capital, the manufacturer is
willing to choose the smaller values of ti, but the
retailers hope that it is as big as possible. In light of
our model and algorithm in this paper, an optimal
participation rate can be obtained by choosing the
intersection point of the cost-profit curves given for
the manufacturer and the retailers.
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We are in a position to study the impacts of unit op-
erational costs.

By changing the unit manufacturing cost and the unit
holding cost with a step size of 0.5, we attempt to explore
how they affect the total profit of the manufacturer, the
leader of the VMI system.+e obtained numerical results are
described in Figure 5.

From Figure 5, we conclude the following:

(1) +e manufacturer’s profit is (approximately) linearly
decreasing as the unit manufacturing cost (the main
components of the direct cost) increases (see
Figure 5(a)).

(2) As the unit holding cost (themain components of the
indirect costs) increases, the profit earned by the
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Figure 1: Impacts of price sensitivity coefficients on demand. (a) +e concerned retailer’s price sensitivity. (b) +e competitor’s price
sensitivity.
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manufacturer is increasing (see Figure 5(b)). +e
reason lies in the fact that higher unit holding cost
may inhibit inappropriate ordering, which is helpful
to make the profit rise up.

(3) From the slopes of the curves plotted in Figures 5(a)
and 5(b), it can be seen that the manufacturer’s profit
is more sensitive to the unit manufacturing costs,
compared with the unit holding cost.

6.3. Impacts of CriticalModel Parameters onRetailers. As the
follower of the VMI system, the retailer’s maximal profit is
also affected by the model parameters. In Figure 6(a), we
present the relationship between the retailer’s profit and the
demand parameters (βi and ki) being associated with retailer
i. Since there exists competition between the two retailers, in
Figure 6(b), we also plot the relationship between the profits
of the retailers and the retail price sensitivity coefficient of
each retailer and its competitor’s. In Figure 6(b), ρi denotes
the competitor’s price sensitivity coefficient for retailer i.

From Figure 6, we have the following:

(1) For the retailer, higher sensitivity of advertising
investment and prices results in greater profit (see
Figure 6(a)).

(2) +e slopes of the surface along the two axes in
Figure 6(a)) also indicate that the retailer’s profit is
more sensitive to the advertising sensitivity coeffi-
cient (ki), compared with the price sensitivity coef-
ficient (βi). In other words, for the retailer who wants
to earn more profit, increasing the advertising in-
vestment may be a more efficient way than the
pricing policy. +ese results support importance of
jointly incorporating the advertising and pricing
effects in the demand model proposed in this paper.

(3) For each retailer, its competitors’ policy of retailing
prices significantly affects the maximal profit of this
retailer (see the slopes of the surface along the axis ρi

in Figure 6(b)). A little reduction of the competitor’s
unit retail price can lead to a sharp decrease of the
concerned retailer’s profit.

Since the retailer directly faces the market volatility in
the VMI system, we finally investigate the impacts of the
demand uncertainty on the retailer’s maximal profit.

By choosing different standard deviations for the ran-
dom demand, we solve Model (28) by Algorithm 1 so as to
obtain different equilibrium solutions of the VMI system.
Corresponding to the three standard deviations σ � 1, 1.5,
and 2, the maximal profits of the retailer are presented in
Figure 7, respectively.

Figure 7 indicates the following:

(1) Corresponding to the same standard deviation, the
manufacturer’s optimal advertising policy is less
sensitive to the uncertainty of demand than that of
the retailer.

(2) Greater deviation of demand generates more profit
of the retailer (the follower of the VMI system). It
says that, in the case of greater market volatility, the
follower of the VMI system would like to report this
situation to the leader (manufacturer). It also sug-
gests that, for a practical VMI system, the established
Stackelberg game model in this paper is helpful in
light of efficient cooperation between the manu-
facturer and the retailers.

6.4. Impacts of Retailers’ Competition. To explore the impact
of competition on decision-making of VMI system, we take
different coefficients of the cross price sensitivity, ρij, so as to
observe the change of the profits of themanufacturer and the
retailers.

In Tables 2 and 3, we report the numerical results
corresponding to two different cases: symmetric and
asymmetric retailers.

+e results in Tables 2 and 3 demonstrate the following:
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Figure 5: Impacts of unit operational cost on profit of the leader. (a) Impacts of manufacturing cost. (b) Impacts of holding cost.
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(1) When the retailers are symmetric, the profits of the
competitive manufacturer and the retailers are
greater than those of the cooperative ones, respec-
tively. In addition, with an increasing cross price
sensitivity, ρij, the manufacturer’s profit goes up,
while the retailers’ profits initially increase and then
decrease. +e reason lies in the fact that the demands
firstly increase and then decrease (see Figure 1(b)). In
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Figure 6: Impacts of demand parameters on the retailer’s profit. (a) Impacts of own sensitivity parameters in demand. (b) Impacts of
competition.
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Table 2: Profits in symmetric case.

ρij 0 0.3 0.5 0.7 1 1.2 1.4 1.5 1.8 2.0
πM 19.92 21.11 25.89 30.03 34.42 36.40 38.13 39.88 43.50 46.61
πR

i 13.10 15.55 17.93 20.05 25.56 28.00 30.66 32.75 31.78 29.60

Table 3: Profits in asymmetric case.

ρ12 ρ21 d1 d2 πR
i πR

2

0.1 0.7 153 174 28.05 32.06
0.3 1 233 191 24.46 29.60
0.5 1.3 260 229 17.93 24.87
0.7 1.6 285 251 14.13 20.05
1 2 298 322 12.55 17.56
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other words, the manufacturer should encourage the
competition among the retailers by an effective
approach.

(2) In the case of asymmetric retailers, the competition is
more intense (corresponding to larger cross price
sensitivity, ρij), and the demands and the retailers’
profits are less. Actually, as the competition between
the retailers becomes fierce, the two competitive
retailers have to reduce the retail prices in order to
obtain greater market shares. However, the market
demand generated by the reduction of prices may
not sufficiently increase to balance the loss of profits
caused by the lower retail prices.

7. Conclusions and Directions of
Future Research

In this paper, we have constructed a stochastic bilevel
programming model to formulate the VMI problems. +e
holding cost, shortage cost, competition of retailers, and
randomness of demand have been taken into consideration
such that optimal policies of distributed quantities, coop
advertising expenditures, and pricing are obtained for the
VMI problems.

For the established stochastic model, a deterministic
equivalent formulation has been obtained by expectation
method. +en, by reformulating the bilevel programming
problem into an MPCC, we transform the MPCC into a
series of standard constrained optimization subproblems in
virtue of smoothing techniques such that an efficient al-
gorithm is developed to solve the original model.

By sensitivity analysis, a number of practical managerial
implications have been revealed in view of the model and
algorithm:

(1) +e participation rate depends on advertising ex-
penditures from both the manufacturer and the re-
tailer. +ere exists an optimal threshold of
participation rate for the manufacturer, where the
maximum profit of the manufacturer can be attained.
+erefore, for the manufacturer, he/she should
properly control his/her advertising expenditures to
get the optimal participation rate. Furthermore, this
optimal participation rate can be obtained by the
proposed model and algorithm in this paper, which is
specified by the intersection point of themanufacturer
and retailer’s cost-profit curves.

(2) +emanufacturer’s advertising policy is less sensitive
to uncertainty of demand than the change of the
retailer’s advertising policy. +e uncertainty of de-
mand generates a great impact on the retailers’ profit.
+e higher the degree of uncertainty, the greater the
retailer’s profit. +erefore, in the VMI system, the
manufacturer should pay great attention to uncer-
tainty of demand to avoid competitive inferior
equilibrium in the VMI system.

(3) +emanufacturer in the VMI system should concern
about the differences caused by symmetric or

asymmetric retailers. In the case of symmetric re-
tailers, the profits of the competitive manufacturer
and retailers are bigger than those of the cooperative
ones. +e manufacturer should encourage the
competition between the retailers. In the case of
asymmetric retailers, competition among the re-
tailers leads to lower retail prices such that they can
obtain greater market share, but the profit obtained
from the increased market demand may be less than
the loss caused by the lower retail prices. +erefore,
the total profit of the VMI system may reduce.

In the future research, our model can be further ex-
tended to multiproduct and multimanufacturer VMI sys-
tems, instead of a single product and a single manufacturer.
In addition, if the wholesale price is an endogenous decision
variable and is a function with respect to the order quan-
tities, it is valuable to develop new efficient algorithms to
solve the constructed complicated model.
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[8] Z. H. Gümüs and C. A. Floudas, “Global optimization of
nonlinear bilevel programming problems,” Journal of Global
Optimization, vol. 20, no. 1, pp. 1–31, 2001.

[9] S. Alaei, R. Alaei, and P. Salimi, “A game theoretical study of
cooperative advertising in a single-manufacturer-two-re-
tailers supply chain,” International Journal of Advanced
Manufacturing Technology, vol. 74, no. 1–4, pp. 101–111, 2014.

[10] S.-D. Wang, Y.-W. Zhou, J. Min, and Y.-G. Zhong, “Coor-
dination of cooperative advertising models in a one-manu-
facturer two-retailer supply chain system,” Computers and
Industrial Engineering, vol. 61, no. 4, pp. 1053–1071, 2011.

[11] E. Almehdawe and B. Mantin, “Vendor managed inventory
with a capacitated manufacturer and multiple retailers: re-
tailer versus manufacturer leadership,” International Journal
of Production Economics, vol. 128, no. 1, pp. 292–302, 2010.

[12] M. M. SeyedEsfahani, M. Biazaran, and M. Gharakhani, “A
game theoretic approach to coordinate pricing and vertical
co-op advertising in manufacturer-retailer supply chains,”
European Journal of Operational Research, vol. 211, no. 2,
pp. 263–273, 2011.

[13] J. Chaab and M. Rasti-Barzoki, “Cooperative advertising and
pricing in a manufacturer-retailer supply chain with a general
demand function: a game-theoretic approach,” Computers
and Industrial Engineering, vol. 99, pp. 112–123, 2016.

[14] P. D. Berger, “Vertical cooperative advertising ventures,”
Journal of Marketing Research, vol. 9, no. 3, pp. 309–312, 1972.

[15] P. D. Berger and T. Magliozzi, “Optimal Co-operative ad-
vertising decisions in direct-mail operations,” &e Journal of
the Operational Research Society, vol. 43, no. 11, pp. 1079–
1086, 1992.

[16] C. Fulop, “+e role of advertising in the retail marketing mix,”
International Journal of Advertising, vol. 7, no. 2, pp. 99–117,
1988.

[17] M. Khouja and S. S. Robbins, “Linking advertising and
quantity decisions in the single-period inventory model,”
International Journal of Production Economics, vol. 86, no. 2,
pp. 93–105, 2003.

[18] J. D. Hettington andW. A. Dempsey, “Comparing the current
effects and carryover of national-, regional-, and local-sponsor
advertising,” Journal of Advertising Research, vol. 45, no. 1,
pp. 60–72, 2005.

[19] T. M. Somers, Y. P. Gupta, and S. R. Harriot, “Analysis of
cooperative advertising expenditures: a transfer-function
modeling approach,” Journal of Advertising Research, vol. 30,
no. 5, pp. 35–49, 2012.

[20] B. C. Giri and S. Sharma, “Manufacturer’s pricing strategy in a
two-level supply chain with competing retailers and adver-
tising cost dependent demand,” Economic Modelling, vol. 38,
pp. 102–111, 2014.

[21] J. Xie and J. C. Wei, “Coordinating advertising and pricing in
a manufacturer-retailer channel,” European Journal of Op-
erational Research, vol. 197, no. 2, pp. 785–791, 2009.

[22] A. Gerhard and B. Udo, “Vertical cooperative advertising and
pricing decisions in a manufacturer-retailer supply chain: a
game-theoretic approach,” European Journal of Operational
Research, vol. 223, no. 2, pp. 473–482, 2012.

[23] S. Karray and G. Zaccour, “Effectiveness of coop advertising
programs in competitive distribution channels,” International
Game &eory Review, vol. 9, no. 2, pp. 151–167, 2007.

[24] P. De Giovanni, S. Karray, and G. Mart́ın-Herrán, “Vendor
management inventory with consignment contracts and the
benefits of cooperative advertising,” European Journal of
Operational Research, vol. 272, no. 2, pp. 465–480, 2019.

[25] G. Aust and U. Buscher, “Game theoretic analysis of pricing
and vertical cooperative advertising of a retailer-duopoly with
a common manufacturer,” Central European Journal of Op-
erations Research, vol. 24, no. 1, pp. 127–147, 2016.

[26] J. A. Ahmadi and P. Hoseinpour, “A game-theoretic analysis
for coordinating cooperative advertising in a supply chain,”
Journal of Optimization &eory and Applications, vol. 149,
no. 1, pp. 138–150, 2011.

[27] G. Tian, M. C. Zhou, and P. Li, “Disassembly sequence
planning considering fuzzy component quality and varying
operational cost,” IEEE Transactions on Automation Science
and Engineering, vol. 15, no. 2, pp. 748–760, 2017.

[28] M. Xu, B. Zhou, and J. He, “Improving truncated Newton
method for the logit-based stochastic user equilibrium
problem,” Mathematical Problems in Engineering, vol. 2019,
Article ID 7313808, 15 pages, 2019.

[29] J.-Y. Lee and L. Ren, “Vendor-managed inventory in a global
environment with exchange rate uncertainty,” International
Journal of Production Economics, vol. 130, no. 2, pp. 169–174,
2011.

[30] J. Ming, A. Rajapov, and S. Hayrutdinov, “+ree-echelon
supply chain contractual coordination with loss-averse
multiple retailer preference,” Mathematical Problems in En-
gineering, vol. 2019, Article ID 4927302, 11 pages, 2019.

[31] C. H. Huynh and W. Pan, “Operational strategies for supplier
and retailer with risk preference under VMI contract,” In-
ternational Journal of Production Economics, vol. 169,
pp. 413–421, 2015.

[32] K. Govindan, “+e optimal replenishment policy for time-
varying stochastic demand under vendor managed inven-
tory,” European Journal of Operational Research, vol. 242,
no. 2, pp. 402–423, 2015.

[33] F. Huang, J. He, and J. Wang, “Coordination of VMI supply
chain with a loss-averse manufacturer under quality-depen-
dency and marketing-dependency,” Journal of Industrial and
Management Optimization, vol. 15, no. 4, pp. 1753–1772,
2019.

[34] A. Haji, M. Afzalabadi, and R. Haji, “Pricing and inventory
decisions in a vendor managed inventory system with revenue
sharing contract,” Uncertain Supply Chain Management,
vol. 6, no. 3, pp. 299–320, 2018.

[35] X. B. Zhang, S. Huang, and Z. Wan, “Optimal pricing and
ordering in global supply chain management with constraints
under random demand,” Applied Mathematical Modelling,
vol. 40, no. 23-24, pp. 10105–10130, 2016.

[36] X. Zhang, S. Huang, and Z. Wan, “Stochastic programming
approach to global supply chain management under random
additive demand,” Operational Research, vol. 18, no. 2,
pp. 389–420, 2018.

Mathematical Problems in Engineering 17



[37] Q. Wei, J. Zhang, G. Zhu, R. Dai, and S. Zhang, “Retailer vs.
vendor managed inventory with considering stochastic
learning effect,” Journal of the Operational Research Society,
pp. 1–19, 2019.

[38] J. Zhao and Y. Zhou, “Bi-level programming model of cloud
manufacturing services based on extension theory,” Mathe-
matical Problems in Engineering, vol. 2018, Article ID
9702910, 13 pages, 2018.

[39] Y.-C. Tsao, J.-C. Lu, N. An, F. Al-Khayyal, R. W. Lu, and
G. Han, “Retailer shelf-space management with trade al-
lowance: a Stackelberg game between retailer and manufac-
turers,” International Journal of Production Economics,
vol. 148, pp. 133–144, 2014.

[40] Y. Yuang, L. Liang, and G. Huang, “Leader-follower game in
vendor-managed inventory system with limited production
capacity considering wholesale and retail prices,” Interna-
tional Journal of Logistics: Research and Applications, vol. 9,
no. 4, pp. 335–350, 2006.

[41] Z. Wan, S. Zhang, and K. L. Teo, “Polymorphic uncertain
nonlinear programming approach for maximizing the ca-
pacity of V-belt driving,” Optimization and Engineering,
vol. 15, no. 1, pp. 267–292, 2014.

[42] Z. Wan, H. Wu, and L. Dai, “A polymorphic uncertain
equilibrium model and its deterministic equivalent formu-
lation for decentralized supply chain management,” Applied
Mathematical Modelling, vol. 58, pp. 281–299, 2018.

[43] Z. Q. Luo, J. S. Pang, and D. Ralph, Mathematical Programs
with Equilibrium Constraints, Cambridge University Press,
Cambridge, UK, 1996.

[44] Y. Chen and Z. Wan, “A locally smoothing method for
mathematical programs with complementarity constraints,”
ANZIAM Journal, vol. 55, no. 3, pp. 299–315, 2015.

[45] T. A. Burgin, “Inventory control with normal demand and
Gamma lead times,” Operational Research Quarterly
(1970–1977), vol. 23, no. 1, pp. 73–80, 1972.

[46] S. Dempe and J. Dutta, “Is bilevel programming a special case
of a mathematical program with complementarity con-
straints?” Mathematical Programming, vol. 131, no. 1-2,
pp. 37–48, 2012.

[47] D. Aussel and A. Svensson, “Is pessimistic bilevel program-
ming a special case of a mathematical program with com-
plementarity constraints?” Journal of Optimization &eory
and Applications, vol. 181, no. 2, pp. 504–520, 2019.

[48] D. M. Topkis and A. F. Veinott, Jr., “On the convergence of
some feasible direction algorithms for nonlinear program-
ming,” SIAM Journal on Control, vol. 5, no. 2, pp. 268–279,
1967.

[49] J. R. Birge, L. Qi, and Z. Wei, “A variant of the Topkis-Veinott
method for solving inequality constrained optimization
problems,” Applied Mathematics and Optimization, vol. 41,
no. 3, pp. 309–330, 2000.

[50] X. Chen, Q. Du, X. Xiong et al., “Redefinition of cost-benefit
efficiency of land-use projects: focusing on environmental
cost,” Mathematical Problems in Engineering, vol. 2019, Ar-
ticle ID 3126172, 14 pages, 2019.

18 Mathematical Problems in Engineering


