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In this paper, we propose the stochastic Lotka–Volterra model with delay disturbed by G-Brownian motion
dx � diag(x1, x2, . . . , xn)[(Ax(t − τ) + b)d〈B〉(t) + σxdB(t)]. Under a natural assumption on noise, we study existence and
uniqueness of the global positive solution for the system and its asymptotic pathwise moment behavior and prove that the solution
does not explode to infinity in a finite time.

1. Introduction

Since the Lotka–Volterra model (LVM in short) was pro-
vided by Lotka [1] and Volterra [2], there were extensive
works concerned with the dynamics of this system and
global stability and the stochastic Lotka–Volterra population
model, and in here, we only mention [3, 4] (for deterministic
situation) and [5–8] (for stochastic situation). -e well-
known two-dimensional delay Lotka–Volterra ecological
population model driven by Brownian motion is

dx1 � x1 a1 + b11x1(t − τ) + b12x2(t − τ)( 􏼁dt􏼂

+ c11x1 + c12x2( 􏼁dW(t)􏼃,

dx2 � x2 a2 + b21x1(t − τ) + b22x2(t − τ)( 􏼁dt􏼂

+ c21x1 + c22x2( 􏼁dW(t)􏼃.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

Bahar and Mao in [9] proved that the solution of (1) is
almost surely nonnegative and finite. Wu and Xu in [10]
investigated stochastic LVM with infinite delay. Global as-
ymptotic stability for a stochastic delay LVMwas obtained in
[11].

Peng first established the stochastic analysis theory
under the G-expectation framework in references [12–14].
Peng’s G-expectation space is an essential extension for
probability measure space. Since then, many important

theoretical results in this field are obtained, for example, SLL
for sublinear expectations are obtained in [15], capacity
theory results are discussed in [16] and [17–19], and other
related technologies in [20–22]. Inspired by these results, we
investigate a stochastic delay Lotka–Volterra model dis-
turbed by G-Brownian motion:

dx � diag x1, x2, . . . , xn( 􏼁[(b + Ax(t − τ))d〈B〉(t) + σxdB(t)],

(2)

with x(s): − τ ≤ s≤ 0{ } ∈ C([− τ, 0]; Rn
+), where x � (x1,

. . . , xn)T is a n-dimensional vector, xi(t) is the population
size of species i at time t(t≥ 0), b � (b1, b2, . . . , bn)T, bi is the
species i’s growth rate, A � (aij)n×n is a n× n community
matrix, aij(I≠ j) is the interspecific interaction effect, and aii
is the intraspecific interaction effect. We assume that the
interaction effect in this system was disturbed by a G-
Brownian motion with 􏽢E[B(t)2] � σ2t and
􏽢E[− B(t)2] � − σ2t, where σ � (σij)n×n is a constant matrix,
representing the total interference intensity matrix for the
system; B(t) has a variance-uncertainty but not mean-un-
certainty; 〈B〉(t) has a mean-uncertainty property. -ere-
fore, (〈B〉, B) is used to characterise the disturbed growth
rate, disturbed interspecific, or intraspecific interactions
and interference intensity at the same time. We think the
model (2) considers the stochastic interference from both
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mean-uncertainty and variance-uncertainty, but the tradi-
tional stochastic model cannot describe this property. In-
deed, we prove the solution of (2) is quasi-surely
nonnegative and finite. Some asymptotic pathwise moment
estimations for the solutions of this system are presented.

2. Stochastic Delay Lotka–Volterra Model
Driven by G-Brownian Motion

Definitions about sublinear expectations, G-Brownian
motions, and quadratic variation process 〈B〉(t) and
notations, as well as more details can also be found in
[12–14]. For a matrix A, we denote |A| �

������
(ATA)

􏽰
and

‖A‖ � sup{|Ax|: |x| � 1}. C([− τ, 0]; Rn
+) denotes the family of

continuous functions from [− τ, 0] to Rn
+. We assume the

matrix σ satisfies the following assumption:

(A)
σii > 0, i ∈ [1, n],

σij ≥ 0, i≠ j ∈ [1, n].

⎧⎨

⎩ (3)

-e assumption (A) was first assumed by Mao et al. in
[5], and it is also necessary in our framework.

Theorem 1. If the matrix σ in system (2) satisfies assumption
(A), then ∀A ∈Rn×n, b ∈Rn and {x(s): s ∈ [− τ, 0]}, then there
exists a unique solution x of equation (2). Furthermore,
x(s) ∈ Rn

+ for all s≥ − τ quasi-surely, namely,
v(ω: x(s) ∈ Rn

+, s ∈ [− τ,∞)) � 1.

Proof. Because the coefficients of equation (2) are locally
Lipschitz continuous, there exist a unique local solution x(s)
on s ∈ [− τ, τe), where τe is called explosion time. To see it is
also global, we must show τ∞�∞ q.s. Suppose k0(k0> 0) is
large enough s.t. x(t)(t ∈ [− τ, 0]) satisfies 1/k0<min |x(t)|,
max |x(t)|< k0. For any k(k≥ k0), set τk � inf{s ∈ [0, τe):
xi(s)∉(1/k, k), 1< i≤ n}, where inf ∅�∞. Noting that τk is
increasing when k⟶∞, let τ∞ � limk⟶∞τk, then τ∞≤ τe
q.s. If we can prove τ∞�∞ q.s., then τe �∞ q.s. and
x(t) ∈ R+

n q.s., t≥ 0. If τ∞≠∞ q.s., then ∃ a constant
T> 0 s.t. V(ω: τ∞(ω)≤T)≥ ε for any ε> 0, namely, ∃ an
integer k1(k1≥ k0) s.t. V(Ak)≔V(ω: τk(ω)≤T)≥ ε for all
k≥ k1. Let U: R+

n⟶ R+ be U(x) � 􏽐
n
i�1(

��
xi

√
−

0.5 log(xi) − 1). Set k≥ k0 and T> 0. Using the G-Itô lemma
for �V(t, x) � : U(x) + 􏽒

t

t− τ |x(s)|2d〈B〉(s), t ∈ [0, τk ∧ T], we
get

d�V(x, t) � 􏽘
n

i�1
0.5x

0.5
i − 0.5􏼐 􏼑 􏽘

n

j�1
aijxj(t − τ) + bi

⎛⎝ ⎞⎠d〈B〉(t) + − 0.125x
0.5
i + 0.25􏼐 􏼑 􏽘

n

j�1
σijxj

⎛⎝ ⎞⎠

2

d〈B〉(t)
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

+ 􏽘
n

i�1
0.5x

0.5
i − 0.5􏼐 􏼑 􏽘

n

j�1
σijxjdB(t) + |x|

2
− |x(t − τ)|2􏼐 􏼑d〈B〉(t),

(4)

and noting that

􏽘

n

i�1
0.5x

0.5
i − 0.5􏼐 􏼑 bi + 􏽘

n

j�1
aijxj(t − τ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦≤

1
2

􏽘

n

i�1
x
0.5
i − 1􏼐 􏼑bi +|x(t − τ)|

2
+ 􏽘

n

i�1
􏽘

n

j�1

na2
ij

16
x
0.5
i − 1􏼐 􏼑

2
, (5)

and􏽐
n
i�1(􏽐

n
j�1σijxj)

2 ≤􏽐
n
i�1|σ|2x2

i � |σ|2|x|2, as well as
􏽐

n
i�1x

0.5
i (􏽐

n
j�1σijxj)

2 ≥􏽐
n
i�1σ

2
iix

2.5
i by the assumption (A).

-us,

d�V(t, x(t))≤ 􏽘
n

i�1

1
2

x
0.5
i − 1􏼐 􏼑bi +|x(t)|

2
+ 􏽘

n

i�1
􏽘

n

j�1

na2
ij

16
x
0.5
i − 1􏼐 􏼑

2⎡⎢⎢⎣ ⎤⎥⎥⎦d〈B〉(t) + − 0.125􏽘
n

i�1
σ2iix

2.5
i + 0.25|σ|

2
|x|

2⎡⎣ ⎤⎦d〈B〉(t)

+ 􏽘
n

i�1
0.5x

0.5
i − 0.5􏼐 􏼑 􏽘

n

j�1
σijxjdB(t).

(6)
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Denote

f(x, a, b, σ) � 􏽘

n

i�1

1
2

x
0.5
i − 1􏼐 􏼑bi +|x|

2 1 +
1
4
|σ|

2
􏼒 􏼓

+ 􏽘
n

i�1
􏽘

n

j�1

na2
ij

16
x
0.5
i − 1􏼐 􏼑

2
−
1
8

􏽘

n

i�1
σ2iix

2.5
i ,

(7)

since we note that there is K s.t. f(x, a, b, σ) is bounded,
namely, f(x, a, b, σ)<K, then

􏽢E 􏽚
T∧τk

τk∧T− τ
|x|

2d〈B〉(s) + U x T∧τk( 􏼁( 􏼁􏼢 􏼣≤ 􏽢E 􏽚
0

− τ
|x|

2d〈B〉(s)􏼢 􏼣 + U x0( 􏼁 + Kσ2􏽢E T∧τk􏼂 􏼃

≤ σ2 􏽚
0

− τ
􏽢E |x|

2
􏽨 􏽩ds + U x0( 􏼁 + Kσ2􏽢E T∧τk􏼂 􏼃,

(8)

then 􏽢E[U(x(τk∧T))]≤U(x0) +σ2 􏽒
0
− τ

􏽢E[|x(s)|2]ds + Kσ2T<
∞. From the definition of τk, we know ∀ω∈Ak, ∃ some i s.t.
xi(τk, ω)∉ (1/k, k), namely, xi(τk)≤1/k, or xi(τk)≥k<∞.
Noting that the function U(xi) is decreasing when 0<xi≤1
and is increasing when xi>1, henceU(x(τk))≥U(1/k, . . ., 1/k)
and U(x(τk))≥U(k, . . ., k), namely, U(x(τk))≥
max

�����
(1/k)

􏽰
− 0.5log(1/k) − 1,

�
k

√
− 0.5log(k) − 1􏽮 􏽯. -ere-

fore, we have

εCk ≤CkV Ak( 􏼁≤ 􏽢E IAk
U x τk( 􏼁( 􏼁􏽨 􏽩≤ 􏽢E U x T∧τk( 􏼁( 􏼁􏼂 􏼃

≤U x0( 􏼁 + σ2 􏽚
0

− τ
􏽢E |x|

2
􏽨 􏽩dt + Kσ2T.

(9)

Setting k⟶∞, we have the contradiction
∞≤ 􏽢E[U(x(τk∧T))]<∞; therefore, we have τ∞�∞ q.s.,
namely, τe �∞ q.s., so v(ω: x(t) ∈ Rn

+, t≥ 0) � 1.

3. Asymptotic Behaviors of the Solution

Theorem 2. Under the assumption (A), if 􏽢E[B(1)2] � σ2 ≤ 1,
for any β ∈ (0, 1) and δ ∈ (0, 1), ∃C0 �C(δ)> 0 s.t. the solution
x(t) of equation (2) is as follows:

lim sup
t⟶∞

V e
〈B〉(t)− σ2t( )/β|x(t)|≤C0􏼒 􏼓≥ 1 − δ. (10)

Proof. Let

U(x) � 􏽘
n

i�1
x
β
i . (11)

Using the G-Itô lemma for U(x) and noting

dxi(t) � xi 􏽘

n

j�1
aijxj(t − τ) + bi

⎛⎝ ⎞⎠d〈B〉(t) + 􏽘
n

j�1
σijxjdB(t)⎡⎢⎢⎣ ⎤⎥⎥⎦,

(12)

we have

dU(x) � 􏽘

n

i�1
βx

β
i bi + 􏽘

n

j�1
aijxj(t − τ)⎛⎝ ⎞⎠d〈B〉(t) + 􏽘

n

j�1
σijxjdB(t)⎡⎢⎢⎣ ⎤⎥⎥⎦

+
1
2
β(β − 1) 􏽘

n

i�1
x
β
i 􏽘

n

j�1
σijxj

⎡⎢⎢⎣ ⎤⎥⎥⎦

2

d〈B〉(t).

(13)

Since

􏽘

n

i�1
􏽘

n

j�1
βx

β
i aijxj(t − τ)≤ 􏽘

n

i�1
􏽘

n

j�1

n

4
βaijx

β
i􏼐 􏼑

2
+

xj(t − τ)2

n
⎡⎣ ⎤⎦,

(14)

and from equation (13), we get

dU(x) ≤ 􏽘
n

i�1
βbix

β
i +

n

4
􏽘

n

i�1
􏽘

n

j�1
βaijx

β
i􏼐 􏼑

2⎡⎢⎢⎣ ⎤⎥⎥⎦d〈B〉(t) +
1
2
β(β − 1) 􏽘

n

i�1
x
β+2
i σ2ii +|x(t − τ)|

2⎡⎣ ⎤⎦d〈B〉(t) + 􏽘
n

i�1
βx

β
i 􏽘

n

j�1
σijxj

⎛⎝ ⎞⎠dB(t),

(15)
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then

d e
〈B〉(t)

U(x(t))􏼐 􏼑 � e
〈B〉(t)

U(x(t))d〈B〉(t) + e
〈B〉(t)dU(x(t))

≤ e
〈B〉(t)

􏽘

n

i�1
βbi + 1( 􏼁x

β
i +

n

4
􏽘

n

i�1
􏽘

n

j�1
βaijx

β
i􏼐 􏼑

2⎡⎢⎢⎣ ⎤⎥⎥⎦d〈B〉(t) + exp(〈B〉(t)) |x(t − τ)|
2

+ 0.5β(β − 1) 􏽘

n

i�1
x
β+2
i σ2ii⎡⎣ ⎤⎦d〈B〉(t)

+ e
〈B〉(t)

􏽘

n

i�1
βx

β
i 􏽘

n

j�1
σijxj

⎛⎝ ⎞⎠dB(t).

(16)

We set

F1(x) � 􏽘
n

i�1
1 + βbi( 􏼁x

β
i +

n

4
􏽘

n

i�1
􏽘

n

j�1
βaijx

β
i􏼐 􏼑

2

+ e
τ
|x|

2
−
1
2
β(1 − β) 􏽘

n

i�1
x
β+2
i σ2ii,

(17)

then F1(x) is bounded in Rn
+ , say K1, from (16),

d e
〈B〉(t)

U(x(t))􏼐 􏼑≤ e
〈B(t)〉

K1 − e
τ
|x(t)|

2
+ |x(t − τ)|

2
􏽨 􏽩d〈B〉(t)

+ e
〈B〉(t)

􏽘

n

i�1
βx

β
i 􏽘

n

j�1
σijxj

⎛⎝ ⎞⎠dB(t),

(18)

namely,

􏽢E e
〈B〉(t)

U(x(t))􏽨 􏽩≤U0 + 􏽢E 􏽚
t

0
e

〈B〉(s)
K1 − e

τ
|x(s)|

2
+|x(s − τ)|

2
􏼐 􏼑d〈B〉(s)􏼢 􏼣

≤U0 + 􏽢E 􏽚
t

0
e
σ2s

K1 − e
τ
|x(s)|

2
+|x(s − τ)|

2
􏼐 􏼑d〈B〉(s)􏼢 􏼣

≤U0 + σ2􏽢E 􏽚
t

0
e
σ2s

K1 − e
τ
|x(s)|

2
+|x(s − τ)|

2
􏼐 􏼑ds􏼢 􏼣

≤U0 + K1e
σ2t

+ σ2􏽢E 􏽚
t

0
e
σ2s

|x(s − τ)|
2

− e
σ2s+τ

|x(s)|
2ds􏼢 􏼣

� U0 + K1e
σ2t

+ σ2􏽢E 􏽚
t− τ

− τ
e
σ2(s+τ)

|x(s)|
2

− e
σ2s+τ

|x(s)|
2ds􏼢 􏼣,

(19)

where U0 �U(x(0)), and noting that σ2 satisfies σ2 ≤ 1, by
(19), then

􏽢E e
〈B〉(t)

U(x(t))􏽨 􏽩≤U0 + K1e
σ2t

+ σ2􏽢E 􏽚
0

− τ
e
σ2(s+τ)

|x(s)|
2ds􏼢 􏼣,

(20)

therefore,

lim sup
t⟶∞

􏽢E e
〈B〉(t)− σ2t

U(x(t))􏼔 􏼕≤K1. (21)

In addition, we note

|x|
β

� 􏽘
n

i�1
x
2
i

⎛⎝ ⎞⎠

β/2

≤ n
β/2 max

1≤i≤n
x
β
i ≤ n

β/2
U(x), (22)

so

lim sup
t⟶∞

􏽢E e
〈B〉(t)− σ2t

|x|
β

􏼔 􏼕≤K0, (23)

∀δ > 0, let C0 � (K0/δ)1/β, then

v exp
〈B〉(t) − σ2t

β
􏼠 􏼡|x|>C0􏼠 􏼡≤

􏽢E exp 〈B〉(t) − σ2t( 􏼁|x|β􏽨 􏽩

C
β
0

≤
K0

C
β
0

� δ.

(24)

Hence,

lim sup
t⟶∞

V e
〈B〉(t)− σ2t( )/β|x|≤C0􏼒 􏼓≥ 1 − δ. (25)

Theorem 3. Suppose the (A) is true, and there exists K(K> 0)
is independent of {x(s): s ∈ [− τ, 0]}, then
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lim sup
T⟶∞

− 1
T

􏽢E 􏽚
T

0
− |x|

2d〈B〉(s)􏼢 􏼣≤Kσ2. (26)

Proof. Write (7) as g(x, a, b, σ) � g1(x, a, b, σ) − |x|2, where

g1(x, a, b, σ) ≔ 􏽘
n

i�1
0.5 x

0.5
− 1􏼐 􏼑bi + 􏽘

n

i�1
􏽘

n

j�1

na2
ij

16
x
0.5

− 1􏼐 􏼑
2

− 0.125􏽘
n

i�1
σ2iix

2.5
i +|x|

2 2 + 0.25|σ|
2

􏼐 􏼑,

(27)

then g(x, a, b, σ)≤K − |x|2, where K :� maxx∈Rn
+
g1(x)<∞.

Taking expectation from 0 to τk ∧ Ton both sides of equation
(6), we have

0≤ 􏽢E 􏽚
0

− τ
|x|

2d〈B〉(s)􏼢 􏼣 + U x0( 􏼁

+ 􏽢E 􏽚
τk∧T

0
K − |x|

2
􏼐 􏼑d〈B〉(s)􏼢 􏼣

≤ σ2 􏽚
0

− τ
􏽢E |x|

2
􏽨 􏽩ds + U x0( 􏼁 + Kσ2􏽢E T∧τk􏼂 􏼃

+ 􏽢E 􏽚
T∧τk

0
− |x|

2d〈B〉(s)􏼢 􏼣.

(28)

Letting k⟶∞ yields

− 􏽢E 􏽚
T

0
− |x|

2d〈B〉(s)􏼢 􏼣≤ σ2 􏽚
0

− τ
􏽢E |x|

2
􏽨 􏽩ds + U x0( 􏼁 + Kσ2T.

(29)

-erefore, setting T⟶∞,

lim sup
T⟶∞

− 1
T

􏽢E 􏽚
T

0
− |x|

2d〈B〉(s)􏼢 􏼣≤Kσ2. (30)

4. Asymptotic Moment Estimations

Theorem 4. If condition (A) is true, then ∀ {x(s): s ∈ [− τ, 0]},
x(t) in (2) satisfies

lim sup
t⟶∞

1
t

􏽢E log
|x(t)|

�
n

√􏼠 􏼡 +
􏽢σ2

4n
􏽚

t

0
|x(s)|

2d〈B〉(s)􏼢 􏼣≤ σ2K,

(31)

where 􏽢σ � min1≤i≤nσii.

Proof. Let 􏽥V(x) � 􏽐
n
i�1xi(t) forx ∈ Rn

+, then by G-Itô’s
lemma of Reference [13], we have

log(􏽥V(x)) � C0 + 􏽚
t

0

xT(s)

V(x(s))
(b + Ax(s − τ))d〈B〉(s)

+ 􏽚
t

0

xT(s)σx(s)

􏽥V(x(s))
dB(s) − 􏽚

t

0

xT(s)σx(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2􏽥V
2
(x)

d〈B〉(s),

(32)

where C0 � log(Ṽ(x(0))). Noting that

􏼪 􏽚
t

0

xTσx

􏽥V(x)
dB(s), 􏽚

t

0

xTσx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽥V
2
(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
d〈B〉(s)􏼫 � 􏽚

t

0

xTσx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽥V
2
(x)

d〈B〉(s),

(33)

∀ε ∈ (0, 1/2), from Lemma 3.1 in reference [19], for any
integer k≥ 1, we have

V sup
0≤t≤k

􏽚
t

0

xTσx

􏽥V(x)
dB(s) −

ε
2

􏽚
t

0

xTσx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽥V
2
(x)

d〈B〉(s)⎡⎣ ⎤⎦>
2
ε
ln k⎛⎝ ⎞⎠≤

1
k2

,

(34)

so

􏽘

∞

k�1
V sup

0≤t≤k
􏽚

t

0

xTσx

􏽥V(x)
dB(s) −

ε
2

􏽚
t

0

xTσx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽥V
2
(x)

d〈B〉(s)⎡⎣ ⎤⎦>
2
ε
ln k⎛⎝ ⎞⎠<∞,

(35)

applying Lemma 2 in [15], we know for all but finitely many
k,

sup
0≤t≤k

􏽚
t

0

xTσx

􏽥V(x)
dB(s) −

ε
2

􏽚
t

0

xTσx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽥V
2
(x)

d〈B〉(s)⎡⎣ ⎤⎦≤
ln k2

ε
,

(36)

quasi-surely true, i.e., ∃Ωi⊂Ω (v(Ωi) �1) s.t. ∀ω ∈Ωi and
ki � ki(ω) s.t.

􏽚
t

0

xT(s)σx

􏽥V(x)
dB(s) −

ε
2

􏽚
t

0

xTσx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽥V
2
(x)

d〈B〉(s)≤
ln k2

ε
, 0≤ t≤ k,

(37)

k≥ ki(ω). From equation (32) and inequality (37),

log(􏽥V(x))≤C0 +
ln k2

ε
+ 􏽚

t

0

�
n

√
(|x(s − τ)|‖A‖ +|b|)􏼂

− 􏽢σ2|x|
2(1 − ε)

2n
􏼣d〈B〉(s),

(38)

t ∈ [0, ki(ω)], k≥ ki(ω), in other words,

log(􏽥V(x)) + 􏽢σ2
(1 − 2ε)

4n
􏽚

t

0
|x|

2
d〈B〉(s)

≤C0 +
ln k2

ε
+ 􏽚

t

0

�
n

√
(|x(s − τ)|‖A‖ +|b|) − |x|

2􏽢σ2

4n
􏼢 􏼣d〈B〉(s),

(39)

where 􏽢σ � min σii(i ∈ [1, n]). Taking G-expectation 􏽢E for
(39), and then ∀ω ∈ ∩ni�1Ωi, from (39), we get
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􏽢E 􏽢σ2
(1 − 2ε)

4n
􏽚

t

0
|x|

2d〈B〉(s) + log(􏽥V(x))􏼢 􏼣

≤
ln k2

ε
+ σ2􏽢E 􏽚

t

0
(|x(s − τ)|‖A‖ +|b|)

�
n

√
−

􏽢σ2

4n
|x|

2ds􏼢 􏼣 + C0

≤C0 +
ln k2

ε
+

�
n

√
‖A‖σ2􏽢E 􏽚

0

− τ
|x|ds􏼢 􏼣

+ σ2􏽢E 􏽚
t

0

�
n

√
(|b| +‖A‖|x|) −

􏽢σ2

4n
|x|

2ds􏼢 􏼣

≤C0 +
2 ln k

ε
+

�
n

√
‖A‖σ2􏽢E 􏽚

0

− τ
|x|ds􏼢 􏼣 + σ2Kt,

(40)

where
�
n

√
(‖A‖|x| + |b|) − (􏽢σ2/4n)|x(s)|2 ≤K. Set max{ki(ω),

i ∈ [1, n]}� k0(ω), then ∀ω ∈ ∩ni�1Ωi, t ∈ [k − 1, k], k≥ k0(ω), it
gets from (40):

lim sup
t⟶∞

1
t

􏽢E log(􏽥V(x)) +
􏽢σ2(1 − 2ε)

4n
􏽚

t

0
|x|

2
d〈B〉(s)􏼢 􏼣≤ σ2K.

(41)

Letting ε tend to zero and noting that |x|≤
�
n

√
V(x) yield

lim sup
t⟶∞

1
t

􏽢E log
|x(t)|

�
n

√􏼠 􏼡 +
􏽢σ2

4n
􏽚

t

0
|x(s)|

2
d〈B〉(s)􏼢 􏼣≤ σ2K.

(42)

-e proof is complete.
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