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+e total variation (TV) regularized reconstruction methods for computed tomography (CT) may lead to staircase effects in the
reconstructed images because of using the TV regularization. +is paper develops a total fractional-order variation regularized CT
reconstruction method, aiming at overcoming the weakness of the reconstruction methods based on the TV. Specifically, we propose
an optimization model for CT reconstruction, including a fidelity term, a regularization term, and a constraint term. Here, the
regularization is a total fractional-order variation arising from the fractional derivative of the underlying solution. To address the
nondifferentiability of the resultingmodel, we introduce a fixed-point characterization for its solution through the proximity operators
of the nondifferentiable functions. Based on the characterization, we further develop a fixed-point iterative scheme to solve the
resulting model and provide convergence analysis of the developed scheme. Numerical experiments are presented to demonstrate that
the developed method outperforms the TV regularized reconstruction method in terms of suppressing noise for CT reconstruction.

1. Introduction

Computed tomographic (CT) technology provides patients’
anatomical information through reconstruction of mea-
sured X-ray intensities (projection data). A main research
topic for CT is to improve the quality of the reconstructed
images. Mathematically, CT reconstruction requires solving
an ill-posed problem [1], described by the following linear
system:

Ax � b, (1)

where the measured projection data b ∈ Rm is related to an
unknown image x ∈ Rn through the system matrix
A ∈ Rm×n. +e conventional total variation (TV) regularized
reconstruction methods may lead to staircase effects in the
reconstructed images due to the use of the TV regularization.
To overcome the weakness of these methods, this paper
investigates a total fractional-order variation regularized CT
reconstruction method.

Regularization is necessary to CT reconstruction prob-
lem due to its ill-posedness. Many regularization methods
have been proven to be effective for CT reconstruction, for
instance, the TV [2, 3], total generalized variation [4, 5],
lp(0<p< 1) regularization [6], and physics based priors [7].
In particular, CT reconstruction methods based on the TV
regularization can effectively suppress noise and preserve
edges of the reconstructed images. However, using the TV
regularization may lead to the so-called staircase effects for
the reconstructed image.

Fractional derivative-based regularization methods are
studied for overcoming the difficulty of the TV in image
processing [8–11]. In particular, the authors of literatures
[12, 13] systematic analyzed the discretization of fractional
derivative. Zhang and Chen [10] studied a fractional de-
rivative-based regularizer and presented the fractional de-
rivative-based total fractional-order variation (TFV) model
for image restoration. As indicated in [10], the use of the
fractional derivative leads to a satisfactory compromise such
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as no staircasing and in preserving important fine-scale
features such as edges and textures.

+e goal of the paper is to develop a regularized CT
reconstruction method with a TFV regularization for im-
proving the quality of the reconstructed images. Specially,
we propose an optimization model for CT reconstruction,
including a fidelity term, a TFV regularization term, and a
nonnegativity constraint term. Here, the regularization is
based on the fractional derivative of the underlying solution.
+e main challenge to solve the resulting model arises from
its nondifferentiability. To address this challenge, we employ
the proximity operators of the two nondifferentiable terms
to formulate a solution of the resulting model as a system of
fixed-point equations. We further develop a preconditioned
fixed-point proximity scheme from the fixed-point char-
acterization and provide convergence analysis of the de-
veloped iterative scheme. We then conduct numerical
experiments to demonstrate the effectiveness of the devel-
oped method for CTreconstruction, in comparison with the
TV regularized reconstruction method. Numerical results
show that the developed method is superior to the com-
peting methods in suppressing noise for CT reconstruction.

+e paper is organized as follows: we recall in Section 2
the definition of fractional derivative for a function and its
discretization. In Section 3, we describe a TFV regularization
and develop an optimization model for CT reconstruction.
We introduce a fixed-point characterization for a solution of
the resulting model in Section 4. Section 5 is devoted to
developing an iterative scheme by the resulting character-
ization and analyzing its convergence. In Section 6, nu-
merical experiments are presented to demonstrate the
effectiveness of the developed method for CT reconstruc-
tion. We draw in Section 7 a conclusion for this paper.

2. Fractional Derivative

We describe in this section the definition of fractional de-
rivative for a function, which is a generalization of integer-
order derivative.

We now recall definitions of fractional derivative with
respect to a function. +ere are three popular definitions for
fractional derivative [12–14], including the Riemann–Liou-
ville (RL), the Grünwald–Letnikov, and the Caputo. In
particular, let f denote a function on [a, b] ⊂ R, and α be a
fraction satisfying 0≤ s − 1< α< s for a positive integer s. +e
left-sided RL derivative of f is defined for a< t< b by

aD
α
t f(t) ≔

1
Γ(n − α)

d
dt

 

s


t

a

f(τ)dτ
(t − τ)α− s+1, (2)

and the right-sided RL derivative of f is denoted by

tD
α
bf(t) ≔

(− 1)s

Γ(s − α)

d
dt

 

s


b

t

f(τ)dτ
(τ − t)α− s+1, (3)

where Γ(·) is the gamma function given by

Γ(s) ≔ 
∞

0
t
s− 1

e
− tdt, (4)

which has the basic property that Γ(s + 1) � sΓ(s). Subse-
quently the Riesz-RL derivative of f is given by

aD
α
bf(t) ≔

1
2

aD
α
t f(t)+tD

α
bf(t). (5)

For the other definitions, one can refer to [10, 14].
We further describe the discretization of the RL derivative

[12, 13]. We first yield d + 1 equidistant points with the step h
from the interval [a, b] through sampling; that is, tk ≔ kh (k �

0, 1, 2, . . . , d) with t0 ≔ a and td ≔ b. As indicated in [12],
using the backward fractional difference approximation for the
derivative aDα

t f(t) at the points tk, k � 0, 1, . . . , d, yields the
following formula:

aD
α
tk

f(t) ≈
∇αf tk( 

hα �
1
hα 

k

j�0
(− 1)

j α
j

 fk− j,

k � 0, 1, 2, . . . , d,

(6)

where fk− j ≔ f(tk − jh). To obtain a compact approxi-
mation form of the derivative aDα

t f(t) by equation (6), let

F ≔ h
− α∇αf tk( : k � 0, 1, 2, . . . , d ,

f ≔ fk: k � 0, 1, 2, . . . , d ,
(7)

and

B
α ≔

1
hα

ω(α)
0 0 0 0 · · · 0

ω(α)
1 ω(α)

0 0 0 · · · 0

ω(α)
2 ω(α)

1 ω(α)
0 0 · · · 0

⋱ ⋱ ⋱ ⋱ ⋱ ⋮

ω(α)
d− 1 ⋱ ω(α)

2 ω(α)
1 ω(α)

0 0

ω(α)
d ω(α)

d− 1 ⋱ ω(α)
2 ω(α)

1 ω(α)
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where

ω(α)
j ≔ (− 1)

j
α

j
 , j � 0, 1, 2, . . . , d. (9)

As a result, with equations (7)–(9), accumulating formula (6)
in column wise for each k ∈ 0, 1, 2, . . . , d{ } may lead to the
compact approximation form of the left-sided RL derivative
(2) for f as

F � B
αf , (10)

where Bα is the discrete analogue of the left-sided RL de-
rivative of order α [12]. Similarly to the above analysis, we
may have the approximation of the right-sided RL derivative
(3) of f, denoted by

F � C
αf , (11)

with the upper triangular matrix

C
α ≔ B

α
( 
⊤

. (12)
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By definition (5), the Riesz-RL derivative of order α for f can
be described as a combination of the approximations (10)
and (11) [13], defined by

F � S
αf , (13)

with the following matrix:

S
α ≔

1
2hα B

α
+ C

α
 . (14)

Moreover, the fractional derivative matrices suitable for an
image can be generated by the Kronecker product [10, 15] of
the above matrices and the identity matrix.

3. Optimization Model

We describe the total α-order variation and further develop
an optimization model for CT reconstruction problem in
this section.

We first recall the total α-order variation. Zhang and
Chen [10] studied the total α-order variation motivated by
the TV [2] and the total generalized variation [4]. In par-
ticular, let Wα

1(Ω) ≔ u ∈ L1(Ω): ||u||Wα
1(Ω) < +∞  be a

function space embedding with the norm

‖u‖Wα
1
≔ 
Ω

|u(x)|dx + 
Ω
∇αu(x)


dx,

∇αu(x) �
z αu

z x1
,

z αu

z x2
, . . . ,

z αu

z xd

 

⊤

, Ω ⊂ Rd
.

(15)

Asmentioned in [10], the total α-order variation (TVα) is
described by the following proposition.

Proposition 1. Assume that u ∈Wα
1(Ω), then

TVα
(u) � 

Ω
∇αu(x)


dx. (16)

Similarly to the pixel-based discrete form of the TV
[2, 15, 16], we consider the pixel-based piecewise constant
approximation of the anisotropic TVα due to the anisotropic
structures of CT images. In particular, the resulting ap-
proximation can be characterized as a composition structure
of the ℓ1-norm and the fractional derivative matrix suitable
for an image. Compared to the first-order difference matrix
involved in the discrete anisotropic TV, the fractional de-
rivative matrix is a lower triangular matrix. +is implies that
using the anisotropic TVαmay preserve important fine-scale
features of the reconstructed image through considering a
linear combination of more neighboring image intensities.

We then develop an optimization model based on the
anisotropic TVα for CT reconstruction problem. +e un-
derlying model includes a fidelity term with differentiability
and two nondifferentiable terms. Specially, the fidelity term
is defined by a weighted least square norm. Here, let
〈·, ·〉H ≔ 〈·, H·〉 be the weighted inner product with the
corresponding norm ‖·‖H ≔ 〈·, ·〉1/2H for an m × m sym-
metric positive definite matrixH. We further choose φ as the
ℓ1-norm on R2n and compute the anisotropic TVα by the
composition φ(Dα·) of the ℓ1-norm and the fractional

derivative matrix Dα suitable for an image. Note that the
attenuation coefficients are nonnegativity according to CT
physical properties, and this is applied as the nonnegativity
constraint [17] added to the cost function. Consequently, we
propose optimization model with the TVα and the non-
negativity constraint for solving (1), denoted by

min
1
2
‖Ax − b‖

2
H + μφ D

αx(  + ψ(x): x ∈ Rn
 , (17)

where Dα is the 2n × n matrix arising from the discrete
analogue of the left-sided RL derivative of order α, μ is a
regularization parameter, φ ∈ Γ0(R2n) (Γ0(R2n) denotes the
space of all proper lower semicontinuous convex function
mapping from R2n to R∪ +∞{ }, [18]), and ψ ∈ Γ0(Rn),
given by

ψ(x) ≔
0, if x ∈ Rn

+,

+∞, otherwise,
 (18)

is the indicator function of the nonnegativity constraint set
denoted by Rn

+ ≔ x ∈ Rn: x ≥ 0{ }.

4. Fixed-Point Characterization

We introduce in this section a fixed-point characterization
for a solution of model (17) through the proximity operators
of two nondifferentiable functions in the model.

We recall some basic definitions and notation for de-
scribing the fixed-point characterization. Denote the set of
p × p symmetric positive definite matrices by Sp

+. For a
function ϑ ∈ Γ0(Rp), its proximity operator with respect to
thematrix J ∈ Sp

+, denoted by proxϑ,J [17], is a mapping from
Rp to itself, defined for u ∈ Rp by

proxϑ,J(u) ≔ argmin
1
2
‖z − u‖

2
J + ϑ(z): z ∈ Rp

 . (19)

+e subdifferential of ϑ ∈ Γ0(Rp) is a set-valued operator
[18], defined by

z ϑ(u) ≔ z ∈ Rp
: ∀ω ∈ Rp

( ϑ(ω)≥ ϑ(u) +〈z,ω − u〉 .

(20)

+ere exists an equivalent relationship between the sub-
differential of the function ϑ and its proximity operator with
respect to J [19], described by

Jz ∈ z ϑ(u) if and only if u � proxϑ,J(u + z). (21)

Moreover, as mentioned in [18], define the conjugate of the
function ϑ as the following form:

ϑ∗(z) ≔ sup 〈u, z〉 − ϑ(u): u ∈ Rp
 , (22)

and denote an equivalent characterization of z ϑ and z ϑ∗ by

z ∈ z ϑ(u) if and only if u ∈ z ϑ∗(z), (23)

for u ∈ dom(ϑ) and z ∈ dom(ϑ∗). Using a way similar to
[17, 19], a solution of model (17) is characterized by a system
of fixed-point equations in the following theorem.

Theorem 1. Let φ ∈ Γ0(R2n), ψ ∈ Γ0(Rn), H ∈ Sm
+ ,

A ∈ Rm×n, Dα ∈ R2n×n, b ∈ Rm, and μ, λ> 0. If x ∈ Rn is a
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solution of model (17), then for any Q ∈ Sn
+ and P ∈ S2n

+ , there
exists a vector y ∈ R2n such that

x � proxλψ,Q x − λQ
− 1

A
⊤

HAx − Q
− 1

D
α

( 
⊤y + λQ

− 1
A
⊤

Hb ,

(24)

y � prox(λμφ)∗ ,P y + P
− 1

D
αx . (25)

Conversely, if there exist Q ∈ Sn
+, .P ∈ S

n
+, x ∈ R

n, and
y ∈ R2n satisfying (24) and (25), then x is a solution of model
(17).

Proof. Suppose that x is a solution of model (17), by Fermat’s
rule and the Chain rule of the subdifferential, we find that for
all λ> 0, the following inclusion relation holds

0 ∈ λA
⊤

HAx − λA
⊤

Hb + D
α

( 
⊤

z (λμφ) D
αx(  + z (λψ)(x).

(26)

Here, there exists y ∈ z (λμφ)(Dαx) such that

− λA
⊤

HAx − λA
⊤

Hb + D
α

( 
⊤y  ∈ z (λψ)(x). (27)

Following the characterization (23) for y ∈ z (λμφ)(Dαx),
we have Dαx ∈ z (λμφ)∗(y). Moreover, by the relation (21),
we know that for any P ∈ S2n

+ , PP− 1Dαx ∈ z (λμφ)∗(y), which
yields (26). For any Q ∈ Sn

+, multiplying the left-hand side of
(27) by QQ− 1 and using (21) lead to equation (24).

Conversely, if these exist Q ∈ Sn
+ and P ∈ S2n

+ such that
(x, y) ∈ Rn+2n satisfies (24) and (25), then all the arguments
discussed above are reversible. □

For the development and convergence analysis of the
underlying iterative scheme, we now reformulate the cou-
pled equations (24) and (25) as the following compact
formula:

w � T(Gw + R(w)), (28)

where the operator T: Rn × R2n⟶ Rn × R2n is defined at
a vector w ≔ (x, y) ∈ Rn × R2n as T(w) ≔ (proxλψ,Q(x),

prox(λμφ)∗ ,P(y)) and the operator R: Rn × R2n⟶ Rn × R2n

is denoted at w by

R(w) ≔ λQ
− 1

A
⊤

Hb − λQ
− 1

A
⊤

HAx, 0 , (29)

and denote

G ≔
In − Q− 1 Dα( )⊤

P− 1Dα I2n

 , (30)

with two identity matrices In and I2n. In particular, let
Ψ(w) ≔ λψ(x) + (λμφ)∗(y) and

E ≔ diag(Q, P), (31)

and we find that the operator T is considered as the
proximity operator of the functionΨwith respect to E, given
by T � proxΨ,E. As indicated in [19], the operator T is
firmly nonexpansive with respect to E, which implies that for
all u, v ∈ Rn+2n,

‖T(u) − T(v)‖
2
E ≤ 〈T(u) − T(v), u − v〉E. (32)

5. Iterative Scheme and Its Convergence

In this section, we develop an iterative scheme based on the
above fixed-point characterization and analyze its conver-
gence. We first develop a preconditioned fixed-point
proximity scheme to solve the resulting model from the
characterization. We then provide convergence analysis for
the developed iterative scheme.

We develop an iterative scheme based on the fixed-point
(28). As indicated in [15, 19], the explicit Picard iteration by
the fixed-point equation

wk+1
� T Gwk

+ R wk
  , k ∈ N0, (33)

may not yield a convergence sequence because of the ex-
pansiveness of the matrix G. Here, N0 ≔ 0, 1, 2, . . .{ }. To
overcome the difficulty, motivated by [19], we study an
implicit iteration form through employing a splitting
strategy to the matrix G, denoted by

wk+1
� T G0w

k+1
+ G1w

k
+ R wk

  , k ∈ N0, (34)

with

G0 ≔
0 0

2P− 1Dα 0
 ,

G1 ≔
In − Q− 1 Dα( )⊤

− P− 1Dα I2n

 .

(35)

We further rewrite (34) as the following preconditioned
fixed-point proximity scheme

xk+1 � proxλψ,Q xk − Q− 1 Dα( )⊤yk − λQ− 1A⊤HAxk(

+λQ− 1A⊤Hb,

yk+1 � prox(λμφ)∗ , P yk + P− 1Dα 2xk+1 − xk( ( .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

+e resulting iterative scheme overcomes the difficulty
arising from the nondifferentiability of model (17) and in-
volves the preconditioning matrices for developing the ef-
ficient algorithm.Moreover, it can be implemented explicitly
and guaranteed to converge under proper conditions.

We next analyze convergence of the developed scheme
through investigating the continuity of an underlying op-
erator and an underlying inequality motivated by [20, 21]. In
particular, the inequality may lead to a unique cluster point
of the iterative sequence through the Picard iteration of the
underlying operator, and it is easy to prove that the cluster
point is a fixed point of the operator via its continuity. Some
definitions are required to analyze that. As indicated in [19],
we can transform the implicit iterative scheme to an explicit
iteration through defining an operator. Suppose that for any
v ∈ Rn+2n, there exists a unique w ∈ Rn+2n such that

w � T G0w + G1v + R(v)( . (37)

We define the operator F: Rn+2n⟶ Rn+2n as
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F: v⟼w, (v,w) satisfies equation (37). (38)

+is means that the implicit iterative scheme (34) can be
characterized as an explicit iteration wk+1 � Fwk, k ∈ N0. As
indicated in [20], the explicit iteration is convergent if we can
prove thatF is continuous and the underlying inequality holds.
It is easy to prove the continuity of the operator F by [21].

Lemma 1. If F is the operator defined by (38), then F is
continuous.

We now introduce a lemma that the iterative sequence
by (34) satisfies an underlying inequality. To this end, we let

ϕ(x) ≔
1
2
‖Ax − b‖

2
H

(39)

and find that its gradient ∇ϕ is Lipschitz continuous with the
constant η ≔ ‖A⊤HA‖2. Furthermore, let W ≔ EG1 for the
above matrices E in (31) and G1 in (35) and W ≔W −

diag(2ληIn, 0) for the above parameter λ and the constant η.
+e lemma is described as follows.

Lemma 2. Let U be the fixed-point set of the operator F

defined by (38). If for Dα and η, two matrices Q, P and the
parameter λ satisfy

Q − 2ληIn ∈ S
n
+ and P

− 1/2
D

α
Q − 2ληIn( 

− 1/2
�����

�����2
< 1, (40)

then for any w ∈ U, the sequence wk � (xk, yk): k ∈ N0 

yielded by the iterative scheme (34) satisfies

wk+1
− w

�����

�����
2

W
≤ wk

− w
�����

�����
2

W
− wk

− wk+1
�����

�����
2
W

. (41)

Proof. We first prove the symmetric positive definiteness of
the involved matrices W and W for the following analysis.
For W and W, the symmetric positive definiteness of W

implies that ofW, and W is a symmetric matrix. We need to
prove that W is positive definite. Since Q − 2ληId is a
positive definite matrix, let

M ≔
Q − 2ληIn( 

− 1/2 0

K Q − 2ληIn( 
− 1/2

P− 1/2
⎡⎢⎢⎣ ⎤⎥⎥⎦with

K ≔ P
− 1/2

D
α

Q − 2ληIn( 
− 1/2

.

(42)

It can be verified that for W,

M WM
⊤

�
Id 0

0 I2n − KK⊤
 , (43)

that is, W and diag(In, I2n − KK⊤) are congruent. +is
implies that W is positive definite if and only if ‖K‖2 < 1.
Hence, W and W are symmetric positive definite matrices.

We then verify that (41) holds as follows: Since the
operatorT is firmly nonexpansive with respect to E, by (32),
we have that

wk+1
− w

�����

�����
2

E
≤ 〈wk+1

− w, G0 wk+1
− w  + G1 wk

− w 

+ R wk
  − R(w) 〉E,

(44)

for any w � (x, y) ∈ U. By G0 � G − G1 and W � EG1, it can
be verified that

wk+1
− w

�����

�����
2

W
≤ 〈wk+1

− w, G1 wk
− w 〉E + 〈wk+1

− w, R wk
  − R(w)〉E.

(45)

For the last term in (45) with R(w) � (− λQ− 1∇ϕ(x), 0), we
let L ≔ diag(2ληIn, 0) and find that

2〈wk+1
− w, R(w) − R wk

 〉E ≤ 〈wk
− wk+1

, L wk
− wk+1

 〉,
(46)

since the following inequality holds

〈xk+1
− x,∇ϕ(x) − ∇ϕ xk

 〉 � 〈xk
− xk+1

,∇ϕ xk
  − ∇ϕ xk+1

 〉
+ 〈xk

− xk+1
,∇ϕ xk+1

 〉 + 〈x − xk
,∇ϕ xk

 〉
+〈xk+1

− x,∇ϕ(x)〉,

≤ η xk
− xk+1

�����

�����
2
,

(47)

due to the convexity of ϕ and Litschitz continuity of its
gradient. Multiplying (45) by 2 and combining it with (46)
yield

2 wk+1
− w

�����

�����
2

W
≤ 2〈wk+1

− w, G1 wk
− w 〉E

+ 〈wk
− wk+1

, L wk
− wk+1

 〉.
(48)

Moreover, it can be verified that

wk+1
− w

�����

�����
2

W
≤ wk

− w
�����

�����
2

W
− 〈wk

− wk+1
, (W − L) wk

− wk+1
 〉.

(49)

Recalling W � W − L and its symmetric positive definite-
ness, it yields (41).

Using the above lemmas, we can prove that the iterative
sequence yielded by the iterative scheme (36) is
convergence.

Theorem 2. Let wk � (xk, yk) ∈ Rn+2n: k ∈ N0  be the se-
quence yielded by the iterative scheme (36) for any initial
w0 ∈ Rn+2n and U be the fixed-point set of the operator F
defined by (38). If two matrices Q, P and the parameter λ
satisfy (40), then the sequence wk: k ∈ N0  converges to a
fixed point of the operatorF and xk: k ∈ N0  converges to a
solution of model (17).

Proof. Since two matrices Q, P and the parameter λ satisfy
(40), it can be verified that inequality (41) holds for the
sequence wk: k ∈ N0  by Lemma 2.

We first prove that the sequence wk  converges a cluster
point of the sequence. Using inequality (41), we find that

wk
�����

�����W
≤ wk

− w
�����

�����W
+‖w‖W ≤ w0

− w
����

����W
+‖w‖W, (50)

for any w ∈ U. +is means that the sequence wk  is
bounded. As a result, there is a subsequence wkp : p ∈ N0 
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that converges to a cluster point w∗ ∈ Rn+2n. Summing
inequality (41) for k from 0 to N − 1, we have that

wN
− w

����
����
2
W

+ 

N− 1

k�0
wk

− wk+1
�����

�����

2

W

≤ w0
− w

����
����
2
W

, (51)

which implies that

lim
k⟶+∞

wk
− wk+1

�����

�����W
� 0. (52)

Hence, the sequence wk  has at most one cluster point.
We further prove that the cluster point is a fixed point of

the operator F. Since the operator F is continuous and
wk+1 � F(wk), the cluster point w∗ is a fixed point ofF and
w∗ ∈ U.

As a result, the sequence wk  converges to a fixed point
of F, and xk  converges to a solution of model (17).

6. Numerical Experiments

Numerical experiments are presented to show the superi-
ority of the developed method over other competing
methods for simulating low-dose CT reconstruction. We
first obtain the simulated projection data from clinic CT
image. We then compare the developed method to the si-
multaneous algebraic reconstruction technique (SART) with
the nonnegative constraint and the TV regularized recon-
struction method. We further conduct an experiment to
demonstrate the effectiveness of the developed method with
different values of order α.

We first simulate projection data from clinic CT image.
Specially, we obtain noise-free parallel-beam projection data
(Figure 1(b)) with 120 angles and 729 bins from clinic CT
image with size 512 × 512 (Figure 1(a)) through Radon
transform in MATLAB. We further have projection data
with noise (Figure 2) by adding Gaussian noise (with var-
iance� 25, mean� 0, and standard deviation� 1) to the
simulated projection data. +e scatter and other image
degradation factors are not simulated in the experiments.

We then apply different methods to reconstruct the
images (Figure 2) from projection data with different noise
levels. +e methods include the SART with the nonnegative
constraint, the TV regularized reconstruction method, and
the developed method. Here, the first method is to apply the
first step of the iterative scheme (36) to solve model (17)
without the regularization; the second method is to employ
the developed iterative scheme to solve the model yielded by
replacing the regularization term φ(Dαx) in model (17) with
the pixel-based anisotropic TV [15]; and the last one is the
TFV regularized reconstruction method which applies the
developed iterative scheme to solve model (17). In particular,
the system matrix A is yielded by using Siddon’s algorithm

[22], and the matrix Dα ≔ I512 ⊗Bα

Bα ⊗ I512
 , where Bα is the

matrix with d � 511 given in (8) and I512 ⊗Bα is the Kro-
necker product of matrices I512 and Bα. As indicated in [23],
for the implementation of the scheme we may let P ≔ I2n,
Q ≔ β∗ diag(A+,1, A+,2, . . . , A+,n), and H ≔ diag(1/A1,+,

1/A+,2, . . . , 1/Am,+), where Ai,+ ≔ 
n
j�1Aij, i � 1, 2, . . . , m,

A+,j ≔ 
m
i�1Aij, j � 1, 2, . . . , n. Moreover, as mentioned in

[15, 17], we have that for x ∈ Rn,

proxλψ,Q(x) 
j

� max xj, 0 , j ∈ Nn, (53)

and for y ∈ R2n,

prox(λμφ)∗,P(y) 
i
� yi − max yi


 − λμ, 0 sign yi( , i ∈ N2n.

(54)

We then set λ � 0.8 and β � 1 and choose μ � 0.05 for
the noise-free case and μ � 0.2 for the case with noise in the
experiment. Iterations stop when

xk+1 − xk
����

����2
xk+1���

���2
< 10− 4

, (55)

for the iterative sequence xk: k ∈ N0 .
+e normalized mean square error (NMSE) and the peak

signal-to-noise ratio (PSNR) are used to evaluate the
reconstructed images by the above reconstruction methods
(Figure 3). NMSE is defined by

NMSE ≔ 100 ×


512
i�1

512
j�1[X(i, j) − Z(i, j)]2


512
i�1

512
j�1X(i, j)2

⎛⎝ ⎞⎠, (56)

where X is the reference image with size 512 × 512 and Z is
the reconstructed image. +e smaller the NMSE, the better
the reconstructed image. PSNR is denoted by

PSNR(X, Z) ≔ 10 log10
max(X)2

MSE(X, Z)
, (57)

with mean squared error

MSE ≔
1

5122


512

i�1


512

j�1
|X(i, j) − Z(i, j)|

2
, (58)

where max(X) is the maximum value of X. +e bigger the
values for PSNR, the better the quality of the reconstructed
image.

We further conduct an experiment by using different
values of order α for showing the effectiveness of the
developed method, as compared to the TV regularized
reconstruction method. In particular, with the above
parameters λ and β, we choose three different regulari-
zation parameters (i.e., μ � 0.15, 0.20, 0.35) for such two
reconstruction methods and set different values of order α
(i.e., α ∈ 1.1, 1.2, 1.3, 1.4, 1.5, 1.6{ }) for the developed
method. +e above metrics, NMSE and PNSR, are applied
to evaluate the reconstructed images by these recon-
struction methods from projection data with noise
(Figure 4).

+e above experiment results show that the developed
method is better than the competing methods in sup-
pressing noise for CT reconstruction. Specially, quanti-
tative analyses in Figure 4 shows that the TFV and the TV
yield the best PSNR and NMSE when μ � 0.2, and the
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former is superior to the latter. Furthermore, the TFV
with α � 1.2 leads to the best PSNR for the developed
method when μ � 0.2 and μ � 0.15. When the regulari-
zation parameter μ is too large, the TFV outperforms the

TV in the aspects of NMSE and noise suppression. +is
means that using the TFV regularization can overcome
the staircase effects in the reconstructed images, com-
pared with the TV regularization.

19.30

2.60 2.50

NR TV TFV2

NMSE

18.87

27.57 27.76

NR TV TFV2

PSNR

Figure 3: Quantitative analysis for the reconstructed images from projection data with noise.

(a) (b)

Figure 1: (a) Clinic CT image; (b) the simulated projection data.

(a) (b) (c) (d)

Figure 2: Reconstruction images: (a) projection data without noise and with noise in the top and bottom rows, respectively; (b) results
by the SARTwith no regularization (NR); (c) results by the TV regularized reconstruction method (TV); (d) results by the total fractional-
order variation regularized reconstruction method with α � 1.2 (TFV2).
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7. Conclusions

We developed in this paper the total fractional-order
variation regularized reconstruction method for CT. +e
method includes an optimization model with the fractional
derivative-based regularizer and a preconditioned fixed-
point proximity scheme to solve the resulting model.
Numerical results showed that the developed method
performs better than the competing methods in terms of
NMSE and noise suppression (PSNR). In particular, the
total fractional-order variation regularization is superior to
the total variation regularization in suppressing noise
(PSNR) for CT reconstruction.
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