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In order to improve reliability and fatigue life of cylinder gaskets in heavy duty diesel engine, several methods and algorithms
are applied to optimize operating factors of gaskets. Finite element method is utilized to figure out and analyze the temperature
fields, thermal-mechanical coupling stress fields, and deformations of gasket. After determining the maximum values of three
state parameters, the orthogonal experimental design method is adopted to analyze the influence rules of five operating factors
on three state parameters of the gaskets and four factors which most significantly affect these state parameters are determined.
)en, the method which uses operating factors to predict state parameters is established on the application of hybrid neuron
network based on partial least squares regression and deep neural network. )e comparison results between the predicted
values and real values verified the accuracy of the hybrid neuron network method. Based on artificial bee colony algorithm,
improvement is attached to the way three kinds of grey wolves locate preys in grey wolf algorithm and the way how using
different hierarchy wolfs in grey wolf algorithm to determine three weight coefficients and the location of prey is put forward
with. )e method using artificial bee colony algorithm to optimize the grey wolf algorithm is called ABC and GWO. )e
proposed HNN and the ABC and GWOmethod are applied to work out operating factors values which correspond to optimal
state parameters of gasket, and the gaskets are optimized according to the optimal values. It has been demonstrated by finite
element analysis results that maximum temperature, maximum coupling stress, and the maximum deformation decrease to
6 K, 12.57MPa, and 0.0925mm compared to the original values, respectively, which proves the accuracy of the algorithm and
the validity of the improvement.

1. Introduction

Cylinder gaskets are critical to reliable sealing and stable
operating of diesel engine. However, they are not only
subjected to the scour from high-temperature gas, but also
subjected to the pressure of cylinder heads, bodies, and the
bolt preload forces during operation, the operating envi-
ronment of which is very harsh. )e area between the
coolant flow channel and the combustor especially should
bear not only the heat transfer from high-temperature gas
and the heat dissipation of coolant, but also the explosive
pressure and the bolt preload. In consequence, it is much

likely for the gaskets to suffer fatigue damage failure. )us,
the detailed research on the temperature, stress, and de-
formation of the area mentioned is significant for ensuring
the safe and reliable work of gaskets so as to improve the
reliability and the performance index of diesel engine.

)ere are many researches which focus on the diesel
engine and its high-temperature components, the research
subject including combustion [1], engine performance [2],
injection [3], fault diagnosis [4], mixture fuel [5], and waste
heat recovery [6]. Kumar et al. [7] investigated the per-
formance (emission and quality of the fuel) of engine using
the diesel alcohol blend as the fuel. To compare the
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difference of the fuel, they conducted a series of experiment
in different situations to observe the performance of engine,
including different operating load, different fuel component,
and different operating speed. Results show that the diesel
alcohol blend fuel has a better performance than other fuels
and that methanol has a better emission performance than
other fuels. Wei et al. [8] researched the problem about soot
properties and its generating process. )ey investigated the
macroscopic shape, nanostructure, and thermophysical
properties of the soot. Results show that dimethyl carbonate
diesel blends can generate smaller soot than other fuels and
that macroscopic shape has less influence than nano-
structure on the soot generation process. Subramaniam et al.
[9] studied the properties of algae blend fuel and used the
single cylinder diesel engine to do the experiment about the
fuel. )e experimental condition includes various algae
volume, and the output parameters to be compared are
thermal efficiency of engine, fuel consumption per unit
output power, temperature of exhaust, and some properties
of combustion. Results show that A20 has the better
properties than the other blend fuels. Jabbr et al. [10]
researched the performance of dual fuel engine. In order to
figure out the influence rule of parameters and the balance of
the state factors, they used the method of analysis of variance
and genetic algorithm and neuron network. Results show
that increasing the ratio of hydrogenated oil can reduce the
soot generation and improve the performance of combus-
tion. Allam et al. [11] studied the economic efficiency and air
filter of the diesel engine. Zhang [12] studied the influence
rule of boiling heat transfer on the performance of diesel
engine. )ey verified the simulation results of boiling heat
transfer and the general heat transfer. )ey also used the
perturbation method to investigate parameters of diesel
engine.

As for the high temperature in the engine, the researches
focused on the cylinder liner [13], piston [14], cylinder head
[15], cylinders [16], crank [17], shaft [18], and so on. Zhaoju
et al. [19] studied the thermal-mechanical coupling stress of
the piston. Based on the calculated results, they optimized
the piston about its top height and its pin bore using the
response surface method. Results show that the geometry of
piston does not have obvious effect on the temperature and
stress of the piston. At last, to decrease the maximum stress
and mass of piston, they used the multiobjective optimi-
zation method to optimize the piston. Wang et al. [20]
studied the fatigue rule of the piston alloy and come up with
a life prediction method to evaluate the working state and
left life of the piston. )ey studied the properties of piston
among high and low temperature. Based on the model and
the calculation results, they provided the optimal strategy to
guarantee the reliability and working life of piston alloy.
Wang et al. [21] researched the seal of cone using the method
of finite element method.)ey established the model of cone
combing with gasket, considering the effect of relaxation and
long time working, and studied the leakage rule of the cone
at the different conditions. )is study can contribute to the
reliability of satellite and its seal performance. Liu et al. [22]
studied the experimental method to measure the heat
transfer coefficient of refrigerator gasket. )ey used the

reverse heat loss method to specify the heat flow through the
gasket. To guarantee the experimental results, they used
three gaskets and divided the heat transfer area small enough
to measure the heat transfer condition. By experiment and
analysis, they find some methods which could enhance the
seal ability and could decrease the heat transfer coefficients.
Rashnoo et al. [23] used two methods to optimize the alloy
used in cylinder gasket, which is different displacement rates
and reinforcement. To figure out the influence of these two
factors, they used the method of sensitivity analysis and
regression analysis. Results show that the reinforcement has
more influence on the alloy strength and that the alloy
microstructure will be better after the reinforcement.

)e orthogonal experiment method is applied in the
research widely; the related subject and issues are composite
material [24], road construction [25], plasma spray [26],
batteries [27], alloy powder [28], and concrete properties
[29]. Subramani et al. [30] explored the method to improve
the quality of exhaust and minimize the variation of per-
formance of engine. )ey selected a single cylinder engine
and its eight factors to perform the study. )e target ob-
jective of the research is the quality of the exhaust and engine
performance and the method used in this study are taguchi
design, analysis of variance, and the response surface
methodology. Nagasankar et al. [31] researched the welding
process of the exhaust value of engine. )ey used the or-
thogonal experiment to investigate the influence rule of
pressure, time, and other factors on the welding quality.
Based on the calculation results, they conducted the multiple
liner regression and variance analysis.

)e applied fields of hybrid neural network are more and
more wide with the development of the algorithm. )e
related research areas are stock market [32], language
identification [33], property prediction [34], life prediction
of component [35], emotion recognition [36], and so on.
Baklacioglu et al. [37] used a new method to establish the
mathematical model of engine; the method is hybrid genetic
algorithm artificial neuron network strategy. In the calcu-
lation process, five state parameters of engine are set as input
factors and the condition of the main components as output.
Results show that the method has a good prediction accu-
racy. Jiang et al. [38] conducted the output prediction of the
engine using artificial neuron network. )ey established two
improved artificial neuron networks for two engines and
used the extended database to train the model. Results show
that two improved networks have more prediction accuracy
than the original network and that the improved networks
have better robustness when facing different datasets.
Fagundez et al. [39] established the model of engine with the
methods of artificial neuron network and particle swarm
optimization artificial neuron network, respectively. Results
show that both algorithms are applicable for the prediction
of performance of engine. It can be concluded that the
particle swarm optimization artificial neuron network
method has more prediction accuracy in emissions com-
pared to artificial neuron network. Chen et al. [40] studied
the effectiveness of fault diagnosis using hybrid neuron
network based on the extensive experiment data. During the
process of training and diagnosis, they captured the feature
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of data by method of convolutional and recurrent com-
puting and trained the network by method of convolutional
and recurrent backpropagation algorithm. Results show that
the method is verified to do the diagnosis. Cui et al. [41]
studied the predictive method of fuel saving on the washing
engine; the method they used was singular value decom-
position, convolutional neural network, and empirical mode
decomposition. To improve the prediction accuracy, they
replaced the continuous flight data by discrete data to train
the model which would be used to predict the quantity of
fuel savings.

)ere are many researches that focus on grey wolf op-
timization, which are related to grid [42], fuel cell [43], robot
controlling [44], blend fuel [45], engines [46], forecasting of
investment [47], and so on. Gujarathi et al. [46] optimized
the engine with grey wolf algorithm for its performance and
emissions. In the optimization process, a wide range of
parameters are considered, including specific fuel con-
sumption, hydrocarbon, carbon monoxide, nitrogen oxide,
and particulate matters. Results show that grey wolf algo-
rithm can find the optimal values with least costs. Ileri et al.
[45] studied the optimization problem of cetane concen-
tration in blend fuel used in diesel engine. )ey conducted a
series of experiment under different conditions and using
the grey wolf algorithm to find the optimal results of the
blend. At the optimization process, they took the perfor-
mance of engine and emission of combustion into con-
sideration. At last they find the optimal fuel composition
under different conditions and calculate the performance
results. Luo et al. [48] come up with an improved grey wolf
algorithm by improving the weight of leader wolf location.
Considering the convergence speed and the optimization
accuracy, the new algorithm is better than the original one.
)e new algorithm has a low cost when calculating the actual
engineering problems. Vijay and Nanda [49] optimized the
grey wolf algorithm with three strategies which are prey
weight, control level, and both of them. )ey compared the
new algorithm’s performance with other five algorithms and
the compared parameters are data scalability, noise, and
algorithm parameter. Results show that the new algorithm
has advantage in solving engineering problems.

)e paper mainly optimizes the operating factors of
cylinder gaskets based on their maximum temperature,
maximum stress, and maximum deformation. )e methods
involved in the process mainly contain finite element
method, orthogonal experimental design, a hybrid neural
network model based on partial least squares regression and
deep neural network, and grey wolf optimization algorithm
based on an artificial bee colony algorithm. In different parts,
the corresponding research contents are described below. In
Part 1, FEM is utilized to figure out and analyze temperature
fields, thermal-mechanical coupling stress fields, and de-
formations of cylinder gaskets and to analyze areas where
operating conditions are comparatively poor. In Part 2,
orthogonal experimental design method is adopted to cal-
culate and analyze the influence rules of five operating
factors (i.e., the diameter of the combustion chamber circle,
the diameter of coolant channel, the length of thermal
insulation area between the 3rd and 4th cylinders, the

thickness of cylinder gasket, and bolt preload force) on three
state parameters of the cylinder gaskets (i.e., the maximum
temperature, maximum stress, and maximum deformation
of the gasket), and the four operating factors which most
significantly affect these state parameters are determined. In
Part 3, a hybrid neutral network based on partial least
squares regression and deep neural network is applied to
establish the corresponding relationship between 4 oper-
ating factors and 3 state parameters. In Part 4, on the
foundation of grey wolf algorithm, three different weight
coefficients are introduced to weigh the locations of three
kinds of grey wolves so as to figure out the preys’ location in
a more accurate way. In addition, artificial bee colony al-
gorithm is also adopted to calculate three weight coefficients.
In Part 5, the optimal operating factors of the gaskets can be
determined by the calculation in combination with the
hybrid neural network and the improved grey wolf
algorithm.

1.1. Analysis of Cylinder Gasket Working Condition. As the
most important sealing component in diesel engine [50],
cylinder gaskets function with the primary goals of reliable
combustor and coolant channel sealing by virtue of material
elasticity. In practice, not only are cylinder gaskets subjected
to bolt preload forces and scour from high-temperature and
high-pressure gases inside the cylinder, but some areas in
them exposed to the coolant may be corroded. In this
consideration, cylinder gaskets should meet the following
requirements [51].With certain flexibility and elasticity, they
are capable of compensating for roughness and deformation
on the interface; with sufficient mechanical strength, they
have the ability to support bolt preload forces and the
subsidiary loads generated by interface deformation, and
under actions of high-pressure gases, it is less likely for
gasket to be damaged; with heat and corrosion resistance,
they cannot be easily eroded by cooling liquid and no ab-
lation takes under actions of high-temperature gases; at last,
with convenient assembly and disassembly, they can be
capable of recycling and have a long service life.

According to the proposed working process model of
diesel engine and data achieved by experiments, boundary
conditions are figured out for temperature fields and
thermal-mechanical coupling stress fields of cylinder gas-
kets. As measured through experiment, bolt preload force of
gaskets on the diesel engine turns out to be 153.8 kN. To
calculate the temperature of gasket accurately, a coupling
heat transfer model is established specific to high-temper-
ature parts inside the diesel including cylinder head, cylinder
gasket, cylinder body, and cylinder sleeve. In this manner,
temperature field of the cylinder gasket is acquired.

Temperature fields of the cylinder gasket have been
presented in Figure 1. To validate accuracy of these results,
the real temperature of the cylinder gasket in engine is
measured. Considering that the gasket is located between
cylinder body and head, only its exterior area can be
measured under the circumstance that the diesel engine is
not dismantled. )e location of measuring points is shown
in Figure 2. Comparison between experimental values and
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the calculated values is listed in Table 1. As can be observed
from Table 1, the maximum error between the calculated
value and the experimental value is 7.1%, which satisfies the
accuracy requirement of engineering calculation.

As shown in Figure 1, maximum temperature (534.16K)
of the gasket is achieved at the middle position between the
3rd and the 4th cylinders, and such a position is in contact
with the combustor. Moreover, the minimum temperature is
365.52K, found nearby the coolant channel. Overall, cyl-
inder gaskets with moderate temperature values are faced
with a high-temperature gradient; with the conditions that
materials are soft and flexible, great importance should be
attached to their temperature and stress conditions.

)e thermal-mechanical coupling stress field of the
cylinder gasket at the moment of maximum explosion
pressure of first cylinder is presented in Figure 3. Clearly, it is
revealed by this figure that maximum thermal-mechanical
coupling stress of the gasket is 246.17MPa, found in the
position next to the coolant channel of first cylinder. Besides
the action of scour generated by the explosion pressure
within the cylinder, such an area is also under the influence
of heat transfer from high-temperature gas, heat dissipation
to the coolant, and heavy mechanical and thermal loads.
)erefore, its thermal-mechanical coupling stress is com-
paratively high. Additionally, this figure also reflects that the
influence of the maximum explosion pressure on cylinder
gaskets is only limited to areas close to the first cylinder.)is
signifies that bold preload force, together with interaction of
cylinder body and head, plays a favorable role in fixing and
supporting the cylinder gasket.

As for deformation of cylinder gasket, it is presented in
Figure 4. Here, maximum deformation of the cylinder gasket

is 0.3771mm, which principally takes place in exterior areas
of 1st and 6th cylinders. Moreover, the deformation is
appeared to gradually increase from the center towards both
sides of the gasket.

)rough analysis on temperature fields, thermal-
mechanical coupling stress fields, and the deformation
condition of cylinder gaskets, it is found that thermal-
mechanical coupling stress is rather high at the area near
the coolant channel. In addition, deformation condition
of both sides is still considerable. Considering that ma-
terials are soft, it is much likely for cylinder gaskets to
suffer fatigue failure and damage. Hence, research on
operating factors optimization is carried out in the fol-
lowing parts.

2. AnalysisofCylinderGasketOperatingFactors
based on Orthogonal Experiment

2.1. Experimental Design. As can be known from the above
analysis, coupling stress and deformations of cylinder gas-
kets are comparatively high in the process of their operation.
For this reason, orthogonal experimental design was con-
ducted to realize optimal design of such gaskets and further
identify the optimal operating factors. It is shown by cal-
culation result that gasket temperature reaches its maximum
value in the area nearby the “combustion chamber circle,”
and the maximum stress is found in the area between the
“combustion chamber circle” and the “coolant channel
circle.” )e most serious condition of gasket occurred at the
area between 3rd and 4th cylinders. In this context, the
following five factors are selected to be optimized, including
“radius of combustion chamber circle, A,” “radius of coolant

A: steady.state thermal
Cylnder gasket temperature
Type: temperature
Unit: K
Time: 1
Max: 534.16
Min: 365.52

534.16
522.11
510.07
498.02
485.98
473.93
461.89
449.84
437.79
425.75
413.7
401.66
389.61
377.57
365.52

Figure 1: )e results of gasket temperature field.

Figure 2: )e schematic diagram of experimental measuring point arrangement for gasket temperature fields.
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channel, B,” “length of insulation area between 3rd and 4th
cylinder, C,” “thickness of cylinder gasket, D,” and “bolt
preload force, E.”

)e experiment is concerned with 5 levels in total, which
means, for each factor, 5 values were selected for compu-
tational analysis. )e corresponding levels of different fac-
tors are listed in Table 2. Here, the table of L25(56) was
adopted to fulfill the experimental design. L25(56) means
that this table totally consists of 25 experiments, 6 factors in
each experiment and 5 values corresponding to each factor.
For details, please refer to the left section of Table 3.

2.2. Statistical Analysis of Experimental Results. As orthog-
onal experimental design is performed for cylinder gaskets,
corresponding maximum temperature Tmax, maximum
coupling stress Smax, and maximum deformation Dmax of
gasket were, respectively, figured out. )e computing results
have been listed in Table 3.

It is clear in Table 4 that the minimum value of Tmax is
524.16K, obtained from the experimental group 3, while

minimum values of Smax and Dmax, respectively, 225.18MPa
and 0.2075mm, are found in experimental groups 22 and 14,
respectively. Additionally, relevant results should be further
analyzed, which is shown in Table, because optimal values of
three state parameters are acquired from different groups of
experiments and it is impossible to evaluate influence rules
of various factors merely dependent on their optimal values.

Tables 1 to 5 represent sums of state parameters’ values
corresponding to levels 1–5 of various factors; Max and Min
stand for maximum and minimum values of 5 data in the
corresponding columns, and R is the difference between

Table 1: )e comparison between experimental and calculated temperature values of the gasket.

Measuring points 1 2 3 4 5 6
Experimental values 414.73 417.59 412.711 420.054 417.4528 422.839
Calculated values 391.81 414.75 432.88 446.83 447.10 440.32
Errors (%) 5.53 0.68 −4.89 −6.37 −7.10 −4.13

B: static structural
Cylnder gasket coupling stress
Type: equivalent (non-mises) stress
Unit: MPa
Time: 1
Max: 239.96
Min: 0.031136

239.96
222.82
205.68
188.55
171.41
154.27
137.13
119.99
102.86
85.719
68.582
51.444
34.306
17.169
0.031136

Figure 3: )e schematic diagram of thermal-mechanical coupling stress distribution of cylinder gasket.

B: static structural
Total deformation
Type: total feformation
Unit: mm
Maximum over time

3.77132e – 1 max
3.14912e – 1
2.62957e – 1
2.19573e – 1
1.83348e – 1
1.53098e – 1
1.27840e – 1
1.06748e – 1
8.91367e – 2
7.44306e – 2
6.21509e – 2
5.18970e – 2
4.33349e – 2
3.61854e – 2
3.02154e – 2 min

Figure 4: )e schematic diagram of cylinder gasket deformations.

Table 2: )e levels of different factors.

Factors A B C D E
1 153 23 1 2 133.8
2 154 24 1.25 2.5 143.8
3 155 25 1.5 3 153.8
4 156 26 1.75 3.5 163.8
5 157 27 2 4 173.8
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Max and Min. “Tem,” “Str,” and “Def” are temperature,
stress, and deformation of the gasket, respectively.

As observed from the table, factors A and D have great
influence on deformations of gasket; coupling stress of
gasket is dramatically affected by factor B, and temperature
of gasket is under high influence of factor D. Considering
that three parameters (i.e., temperature, stress, and defor-
mation) are associated with factors A, B, and D, it is difficult
to comprehensively confirm gasket’s optimization condi-
tions simply depending on the table. For this reason, ex-
perimental results are further analyzed by a variance analysis
method.

2.3. Variance Analysis of Experimental Results. During
variance analysis on experimental results, mathematical
statistics method is used to be sure whether differences in
experimental results are incurred by differences in levels
corresponding to factors or by experimental errors [52]. In
this way, influence of various factors on experimental results
may be analyzed in a more intuitive manner.

Firstly, the sum of squares of deviations can be expressed
in the following equation as far as various factors are
concerned:

S
2
i �

I2i + II2i + III2i + IV2
i + V2

i

nsp
−

T
2

nz

. (1)

In the above equation, i is the number of column and is
equal to 1–5; nsp is level repeat number and is 5 in this article;
T and nz, respectively, refer to summation and the total

number of data, where nz � 25. In this case, factors’ degree of
freedom that corresponds to the sum of squares of deviations
can be written into the following equation:

fi � nsp − 1. (2)

After sums of squares of deviations of all factors have
been worked out, error sums of squares of experimental
results can be obtained based on the following equation:

S
2
e � S

2
T − S

2
1 − S

2
2 − S

2
3 − S

2
4 − S

2
5. (3)

In line with the following formula:

S
2
T � 􏽘

​
S
2
i . (4)

)e error sum of squares here can be expressed as
follows:

S
2
e � S

2
6. (5)

Afterwards, mean square values are obtained in accor-
dance with the following equation:

Fi �
S
2
i /fi

S
2
e/fe

. (6)

If the critical value of F is close to 1, it indicates that
influence of level variations on state parameters is similar to
that of experimental errors on them. )erefore, it is deemed
that this factor has no significant influences on state pa-
rameters. Otherwise, it is believed that the factors enor-
mously affect state parameters. In this study, probability

Table 3: )e arrangement and computing results of experiment.

Number A B C D E F Tmax Smax Dmax

1 1 1 1 1 1 1 536.24 243.51 0.4844
2 1 2 2 2 2 2 534.47 242.7 0.285
3 1 3 3 3 3 3 524.16 230.02 0.3095
4 1 4 4 4 4 4 534.99 237.63 0.3509
5 1 5 5 5 5 5 536.12 250.01 0.4496
6 2 1 2 3 4 5 531.18 253.76 0.3629
7 2 2 3 4 5 1 536.85 226.73 0.4253
8 2 3 4 5 1 2 533.37 251.56 0.4963
9 2 4 5 1 2 3 536.45 225.64 0.3836
10 2 5 1 2 3 4 535.8 229.66 0.3501
11 3 1 3 5 2 4 531.38 256.49 0.3825
12 3 2 4 1 3 5 533.18 233.61 0.3853
13 3 3 5 2 4 1 531.62 243.36 0.2488
14 3 4 1 3 5 2 531.3 235.74 0.2075
15 3 5 2 4 1 3 534.81 245.86 0.4761
16 4 1 4 2 5 3 536.38 247.56 0.3223
17 4 2 5 3 1 4 531.18 244.87 0.4411
18 4 3 1 4 2 5 535.67 247.27 0.3581
19 4 4 2 5 3 1 535.87 232.76 0.3543
20 4 5 3 1 4 2 533.99 242.24 0.3447
21 5 1 5 4 3 2 536.4 261.49 0.2194
22 5 2 1 5 4 3 532.73 225.18 0.2978
23 5 3 2 1 5 4 531.76 233.14 0.3444
24 5 4 3 2 1 5 532.71 238.26 0.3775
25 5 5 4 3 2 1 533.86 243.55 0.3265
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distribution of factor F is selected to evaluate influence of
factors on state parameters. )e computing results are
presented in Table 5.

It is embodied by analysis results in the table that
temperature of cylinder gaskets suffers great influence of
factor D (thickness of cylinder gasket), and the corre-
sponding F value is 2.331. In terms of stress of cylinder
gaskets, factor B (radius of coolant channel) has a tre-
mendous influence on it and the corresponding F value
reaches 3.018. As for the cylinder gasket deformation, it is
under a significant influence of factor E (bolt preload
force) and the F value in this case turns out to be 2.5. As
proven by the results in Tables 4 and 5, three state pa-
rameters are considerably affected by factors A, B, D, and
E. On this account, only the influence of such four factors
on state parameters of cylinder gaskets is taken into
consideration during subsequent computational analysis.
)e above calculations and analyzation can only obtain
cylinder gasket optimization situations in several discrete
and limited conditions. Based on these situations, we

cannot optimize cylinder gaskets to find its optimal op-
erating factors accurately. )erefore, an approach based
on hybrid neural network is put forward so that the
existing optimization research on cylinder gaskets can be
extended from a limited point working condition to an
unlimited surface working condition.

3. Operating State Prediction for Cylinder
Gaskets Based on Hybrid Neural Network

Depending on the above analysis and calculations, an op-
erating state prediction method is proposed for cylinder
gaskets according to relatedness of 4 operating factors to be
optimized and 3 state parameters of diesel cylinder gaskets,
and the prediction method mainly based on partial least
squares regression (PLSR) and Deep Neuron Network
(DNN).

3.1. Hybrid Neural Network Based on PLSR and DNN.

Table 4: Further analysis of computing results.

Factor I II III IV V Max Min R

A
Temp 2665.98 2673.65 2662.29 2673.09 2667.46 2673.65 2662.29 11.36
Str 1203.87 1187.35 1215.06 1214.7 1201.62 1215.06 1187.35 27.71
Def 1.88 2.02 1.7 1.82 1.565 2.02 1.565 0.455

B
Temp 2671.58 2668.41 2656.58 2671.32 2674.58 2674.58 2656.58 18
Str 1262.81 1173.09 1205.35 1170.03 1211.32 1262.81 1170.03 92.78
Def 1.77 1.835 1.755 1.675 1.945 1.945 1.675 0.27

C
Temp 2671.74 2668.09 2659.09 2671.78 2671.77 2671.78 2659.09 12.69
Str 1181.36 1208.22 1193.74 1213.91 1225.37 1225.37 1181.36 44.01
Def 1.7 1.825 1.84 1.88 1.74 1.88 1.7 0.18

D
Temp 2671.62 2670.98 2651.68 2678.72 2669.47 2678.72 2651.68 27.04
Str 1178.14 1201.54 1207.94 1218.98 1216 1218.98 1178.14 40.84
Def 1.94 1.585 1.65 1.83 1.98 1.98 1.585 0.395

E
Temp 2668.31 2671.83 2665.41 2664.51 2672.41 2672.41 2664.51 7.9
Str 1224.06 1215.65 1187.54 1201.79 1222.91 1224.06 1187.54 36.52
Def 2.275 1.735 1.62 1.605 1.75 2.275 1.605 0.67

Table 5: )e variance analysis of results.

State parameters Factor S2i S2i /fi F value
Critical value of F

Significance
0.10 0.05 0.01

Tmax

A 18.717 4.679 0.540 2.250 2.870 4.430
B 39.300 9.825 1.133 2.250 2.870 4.430
C 24.133 6.033 0.696 2.250 2.870 4.430
D 80.837 20.209 2.331 2.250 2.870 4.430 ※
E 10.376 2.594 0.299 2.250 2.870 4.430

Smax

A 103.673 32.818 0.278 2.250 2.870 4.430
B 1124.412 126.088 3.018 2.250 2.870 4.430 ※※
C 237.836 42.609 0.638 2.250 2.870 4.430
D 211.473 42.408 0.568 2.250 2.870 4.430
E 185.625 67.386 0.498 2.250 2.870 4.430

Dmax

A 0.024 0.006 0.984 2.250 2.870 4.430
B 0.008 0.002 0.328 2.250 2.870 4.430
C 0.004 0.001 0.164 2.250 2.870 4.430
D 0.061 0.01525 1.025 2.250 2.870 4.430
E 0.12 0.03 2.500 2.250 2.870 4.430 ※
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)e neural network selected for this study is mainly divided
into two layers. While one layer is known as a feature se-
lection layer, the other layer is a mapping layer. In terms of
the former, a PLSR algorithm [53] is utilized to perform
feature selection for cylinder gasket operating factors to be
optimized; as for the latter, a DNN [54] is used to establish
mapping between features of operating factors to be opti-
mized and state parameters of cylinder gaskets. )rough
joint actions of such two layers, an operating state prediction
model is built for cylinder gaskets according to the hybrid
neural network based on PLSR and DNN. Additionally,
basic working process of the hybrid neural network based on
PLSR and DNN is shown in Figure 5 [55].

Next, both the feature selection layer and the mapping
layer are briefly described.

3.2. Feature Selection Layer. Four normalized operating
factors, to be optimized, of the cylinder gasket are selected as
input of the feature selection layer, and the purpose of re-
gression is to acquire extrema of state parameters related to
the cylinder gasket. Moreover, corresponding output result
can be seen as linear approximation of state parameters [56].
Respectively, input parameters and output targets can be
expressed as follows:

Pin � p
T
1 , p

T
2 , · · · , p

T
n􏽨 􏽩, (7)

Gout � g
T
1 , g

T
2 , · · · , g

T
m􏽨 􏽩, (8)

where Pin stands for the input data matrix, Gout for a feature
selection datamatrix, pT

1 for input sample vectors, and gT
1 for

a matrix of selected features.
Using these two equations to do the space projection of

the previous two data matrixes,

Pinω1 � p1ω11 + p2ω12 + · · · + pnω1n � t1, (9)

Goutυ1 � g1υ11 + g2υ12 + · · · gmυ1m � u1, (10)

where ω1 is eigenvector of PT
inGoutG

T
outPin and υ1 represents

eigenvector of GT
outPinPT

inGout.
Here, correlation of t1 and u1 is primarily investigated.

Once the spatial correlation reaches its maximum level, a
regression model is established as follows:

Pin � t1α1 + E1, (11)

Gout � t1β1 + F1, (12)

where α1 and β1 are parameter vectors and E1 and F1 are
residuals matrixes.

Furthermore, the following formulas can be acquired:

Pin � t1α1 + t2α2 + · · · + trαr + Er, (13)

Gout � t1β1 + t2β2 + · · · + trβr + Fr, (14)

αi �
P
T
inti

t
2
i

, (15)

βi �
G
T
outti

t
2
i

, (16)

ti � Pinωi, (17)

where r represents a rank of matrix Pin and both Er and Fr

are least-residuals matrixes.
By combining the above formulas simultaneously, the

PLSR equation is achieved as follows:

Gout � Pinω1β1 + Pinω2β2 + · · · + Pinωrβr + Fr. (18)

By virtue of the above equation, dimensionality reduc-
tion and feature selection can be fulfilled for data at the
minimum cost (i.e., the least residuals).

3.3. Mapping Layer. Here, output of the feature selection
layer acts as the input of the mapping layer. )rough the

Input

Feature selection
layer

Mapping layer

Output

Temperature

Stress

Deformation

Feature 1

Feature 2

Feature n

Factor A

Factor B

Factor D

Factor E

Figure 5: )e main process of hybrid neutral network.
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weighting operation which is based on DNN containing two
hidden layers, the data is eventually mapped on three state
parameters of cylinder gaskets. )e core of the mapping
layer is DNN which includes the multihidden layer. Com-
paring with other mapping structures, DNN is capable of
adapting to the nonlinear mapping process more accurately
[57].

)e proposed DNN framework is shown in Figure 6.
In the figure above, the output matrix of the first hidden

layer is expressed as follows:

a1 � g1 W
T
1x + b1􏼐 􏼑. (19)

)e output matrix of the second hidden layer is
expressed in another equation:

a2 � g2 W
T
2a1 + b2􏼐 􏼑. (20)

)e matrix of output values is denoted by the following
equation:

􏽢y � g0 W
T
3a2 + b3􏼐 􏼑. (21)

In the previous equation, g1(X), ,g2(X) and g0(X) are
activation functions; W1, W2, and W3 are corresponding
weight matrixes; and, b1, b2, and b3 represent deviation
matrixes.

When training using DNN, a loss function is introduced
to evaluate training effects so that optimal weight matrixes
and deviation matrixes can be achieved. For the purpose of
avoiding overfitting, regularization is performed for the loss
function. In this way, the final loss function can be written
into the following equation:

J(W, b) �
1
m

􏽘

m

i�1
􏽢y

i
− y

i
􏼐 􏼑

2
+

λ
2m

􏽘

n

j�1
W

T
W. (22)

In this equation, m refers to the number of sample sets,
􏽢yi to predicted values of data in group i, yi to calculated
values of data in group i, and λ to regularization parameters.

3.4. 7e Processing of Training Samples. Correspondence of
state parameters and operating factors was figured out.
Totally, 241 sets of data were obtained, among which 226 sets
(group A) serve as training samples to train the PLSR and
DNN based hybrid neural network model. As for the

remaining 15 sets (group B), they were used to check the
neural network. Some of these training samples are pre-
sented in Table 6.

To prevent data differences from affecting training re-
sults, the following equation was utilized to normalize
samples before training.

xl �
x − xmin

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

xmax − xmin
. (23)

In the above equation, xl refers to the processed data, x

to raw data, xm to the mean value of data, and xmax and xmin
to maximum and minimum values of data, respectively.

3.5. Validation of Training Results. Data of group B were
adopted to check prediction results which were generated
from the model of hybrid neural network based on PLSR and
DNN. Comparison between calculated and predicted values
is shown in Table 7.

As revealed from the table, all errors between the pre-
dicted and the calculated values are within 4.72%, which
satisfies engineering calculation requirements. )erefore,
this hybrid neural network is applicable to subsequent
calculations and analysis.

Next, this article will use this neural network to search
the operating factors corresponding optimal state parame-
ters combined with a new algorithm named artificial bee
colony based grey wolf optimizer (ABC and GWO).

4. ABC and GWO Algorithm

On account of the above analysis, a grey wolf optimization
(GWO) algorithm [58] was put forward based on artificial
bee colony (ABC) method [59] so as to perform compu-
tational analysis on optimal operating factors. )e proposed
algorithm aims to locate prey locations (optimal solutions)

Figure 6: DNN framework.

Table 6: Part of training samples for hybrid neural network.

Number A B D E Tmax Smax Dmax

1 153 23.1 2.05 134.8 532.3381 241.4961 0.46534
2 153 24.2 2.6 145.8 534.0272 240.6686 0.28951
3 153 25.5 3.25 158.8 529.6143 235.9869 0.329427
4 153 26.8 3.9 171.8 532.3895 246.3937 0.427519
5 154 23.1 3.05 164.8 528.7039 252.5735 0.366654
6 154 24.4 3.7 157.8 530.7526 238.5101 0.454281
7 154 25.7 2.6 140.8 530.554 235.3738 0.416173
8 154 27 2.5 153.8 535.8 229.66 0.3501
9 155 23.3 3.4 146.8 534.3776 251.1415 0.383875
10 155 24.6 2.3 159.8 534.8501 238.6299 0.302998
11 155 25.9 2.95 172.8 533.9187 237.7446 0.210332
12 155.2 26.2 3.3 141.8 532.5061 248.4274 0.44481
13 156 23.5 2.75 153.8 537.0808 244.8637 0.385204
14 156 24.8 3.4 141.8 536.8542 248.0838 0.371042
15 156 26.1 3.8 154.8 534.3468 232.0513 0.353681
16 156.4 25.4 2.6 159.8 530.9911 247.8942 0.291781
17 157 23.7 3.85 160.8 535.0463 237.8009 0.272666
18 157 25 2 173.8 531.76 233.14 0.3444
19 157 26.3 2.65 136.8 529.1457 242.2156 0.364453
20 157 27 3 143.8 533.86 243.55 0.3265
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by combining GWO with ABC. Here, this algorithm is
named ABC and GWO.

4.1. Grey Wolf Optimization Algorithm. Grey wolf is a kind
of social predators. Based on its methods of surrounding,
attacking, and hunting, Mirjalili raised GWO algorithm.
According to different command hierarchies, grey wolves
are divided into three major categories by the algorithm. In
line with hierarchical levels, such three categories are α
wolf, β wolf, and δ wolf. Among them, grey wolves in the
middle hierarchy are primarily in charge of assisting grey
wolves at higher levels and directing grey wolves at lower
levels [60].

During calculation, the population size of grey wolves is
denoted as N, the search space is set to be d-dimensional,
spatial position of grey wolf i is designed as
Xi � (x1, x2, · · · , xd), and spatial position of preys is set as
Xl � (x∗1 , x∗2 , · · · , x∗d ). Moreover, the spatial position of
preys is where grey wolves get together for hunting and it is
also a global optimal solution of GWO.

In the process of hunting, position of grey wolves is
updated by the following equations:

X(t + 1) � Xl(t) − A∗ C∗Xl(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (24)

A � 2 r1 − E( 􏼁∗ a, (25)

C � 2r2 ∗ a, (26)

where both r1 and r2 are random vectors, E refers to column
vectors with all elements equal to 1, and a represents a
convergence factor vector. As for the relational expression of
a andE, it can be written as follows:

a � 2
(1 − t)

tmax
􏼠 􏼡∗E

T
. (27)

For the convenience of subsequent representation,
|C∗Xl(t) − X(t)| is denoted by D. Regarding wolves

α, β and δ, their positions can be updated according to the
following equations:

X1 � Xα − A1 ∗Dα, (28)

Dα � C1 ∗Xα − X
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (29)

X2 � Xβ − A2 ∗Dβ, (30)

Dβ � C2 ∗Xβ − X
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (31)

X3 � Xδ − A3 ∗Dδ, (32)

Dδ � C3 ∗Xδ − X
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (33)

where X1, X2, and X3 are the latest positions of α, β and δ
wolves after present iterative computations. In this case,
position of preys can be figured out by the following formula:

X(t + 1) �
X1 + X2 + X3

3
. (34)

GWO has the capability to sufficiently utilize informa-
tion of wolves α, β and δ to carry out global search of optimal
solutions. In this way, occurrence of local optimal solutions
can be avoided to the greatest extent. However, influence of
different types of wolves on optimal solutions is left out of
consideration. Consequently, it is likely for excessive iter-
ations or overfitting to take place. On this basis, a modified
GWO based on ABC is proposed to calculate and analyze
optimal operating factors of cylinder gaskets.

4.2. Calculation of Prey Positions. Considering that GWO
fails to consider the influence of wolves α, β, and δ on prey
positions, weight coefficients were introduced for such
wolves in order to solve this defect; on this basis, the prey
position can be figured out.

)e modified prey position calculation formula is given
in the following:

Table 7: )e comparison between calculated and predicted values.

Num
Tmax Smax Dmax

Cal Pre Error (%) Cal Pre Error (%) Cal Pre Error (%)

1 534.47 518.88 2.92 242.70 244.30 −0.66 0.28500 0.28448 0.18
2 530.30 549.12 −3.55 230.07 238.88 −3.83 0.30835 0.30637 0.64
3 527.60 515.45 2.30 234.42 228.21 2.65 0.34017 0.34077 −0.18
4 536.12 550.72 −2.72 250.01 251.31 −0.52 0.44960 0.46605 −3.66
5 534.01 529.07 0.92 252.55 264.47 −4.72 0.41185 0.41937 −1.83
6 537.03 528.73 1.54 224.76 233.98 −4.10 0.37450 0.36216 3.29
7 537.19 529.54 1.42 231.43 230.75 0.29 0.35352 0.36466 −3.15
8 533.76 548.69 −2.80 256.38 266.05 −3.77 0.38435 0.40143 −4.44
9 534.85 513.51 3.99 238.63 227.39 4.71 0.30300 0.30813 −1.69
10 533.26 517.57 2.94 248.15 247.10 0.42 0.38401 0.40146 −4.55
11 539.84 536.30 0.66 248.46 259.93 −4.62 0.35915 0.37588 −4.66
12 537.53 536.07 0.27 237.79 228.44 3.93 0.34507 0.34217 0.84
13 537.21 519.08 3.37 232.47 229.89 1.11 0.28220 0.27699 1.85
14 536.81 528.71 1.51 230.70 221.02 4.19 0.33111 0.32097 3.06
15 528.34 509.59 3.55 237.52 240.49 −1.25 0.37087 0.36707 1.02
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􏽤X(t) �
η1X1 + η2X2 + η3X3

3
. (35)

In the previous equation, η1, η2, and η3 represent the
weight coefficients related to three types of grey wolves.

)e operating factors that correspond to optimal con-
ditions of three state parameters of cylinder gaskets were
obtained based on the results of orthogonal experiment. In
specific calculation procedures, these operating factors were
included into an optimal dataset DS; subsequently, data in
DS were adopted to solve values of η1, η2, and η3. After that,
data in DS were updated in conformity with these values and
corresponding cyclical iteration does not stop until data in
DS remain unchanged.

During cyclical iteration described above, ABC was
utilized to optimize values of η1, η2, and η3. In the ABC
algorithm, a bee colony is randomly produced using the
equation

xij � x
min
j + R

∗
x
max
j − x

min
j􏼐 􏼑, (36)

R
∗

� rand(0, 1), (37)

where xij represents ith bee in the bee colony, j is the
number of solutions to the optimized problems, and xmax

j

and xmin
j are maximum and minimum extrema of the op-

timization range.
)e bee colony begins to look for nectar sources:

vij � xij + R
∗

xij − xkj􏼐 􏼑, (38)

where vij is a new nectar source (a new solution) nearby the
current nectar source and xij and xkj, respectively, stand for
the current solution and a random solution next to the
current solution. Once quality of the new nectar source is
higher than that of the previous nectar source, the former
can be reserved. In the entire process, an observing bee may
identify where a new nectar source is at a certain probability
according to quality of nectar sources. In order to figure out
such a probability, the following equation should be
followed:

P �
fiti vij􏼐 􏼑

􏽐
N
n�1 fitn vij􏼐 􏼑

, (39)

where fiti is a fitness function corresponding to a position of
the ith nectar source.

4.3. Fitness Function. During practical calculations, a fitness
function for the above ABCBGWO algorithm is defined as
follows:

fiti vij􏼐 􏼑 �
􏽧

Tα vij􏼐 􏼑􏼒 􏼓
2

+
􏽧

Sα vij􏼐 􏼑􏼒 􏼓
2

+
􏽧

Dα vij􏼐 􏼑􏼒 􏼓
2
. (40)

In the previous equation, α represents serial numbers of
arrays for η1, η2, and η3; 􏽧Tα(vij), 􏽧Sα(vij), and 􏽧Dα(vij), re-
spectively, refer to normalized temperature, stress, and
deformations of cylinder gaskets under the circumstance
that α set data are taken from η1, η2, and η3.

4.4. 7e Main Procedure of ABC and GWO Algorithm. In
essence, the ABC and GWO algorithm is a process during
which three corresponding weight coefficients are intro-
duced when prey positions are working based on wolves
α, β and δ of the GWO, and then such three coefficients are
further optimized by means of ABC. To be specific, major
steps of this algorithm are described as follows.

Step 1: control variables of the grey wolf population are
initialized, including the population size, the number of
iterations, and the convergence factor vector.
Step 2: grey wolves are randomly generated, and the
number of which is N. )ey are used to figure out prey
positions which correspond to wolves α, β and δ.
Step 3: the number of iterations is set as t � 1 and
iteration starts.
Step 4: the convergence factor vector a is updated.
Step 5: parameters of ABC are initialized, and the initial
nectar source is randomly generated.
Step 6: the bee is directed to search for a new nectar
source, and if the nectar source is better than all of the
others, its position should be labelled as a potential one.
Step 7: the onlooker bee searches for and changes the
labelled nectar source.
Step 8: a scout bee is determined to be present or not; if
not, skip to Step 10.
Step 9: a new position is generated by the scout bee and
replaces the current nectar source; in this case, the
labelled nectar is changed.
Step 10: it is judged whether termination conditions are
satisfied; if not, skip to Step 7.
Step 11: position of the grey wolf is updated and prey
position is obtained by the combination of coefficients
and grey wolf position.
Step 12: the value of the fitness function is figured out in
this scenario.
Step 13: it is judged whether to continue the algorithm
or not; if yes, please go back to Step 3.
Step 14: iteration is terminated and relevant results are
output.

In this process, ABC is utilized in Steps 5–10 to calculate
and analyze three weight coefficients; as for other steps, they
represent an iteration framework of GWA.

Figure 7 presents a flow chart of the ABC and GWO
algorithm.

5. Multiobjective Optimization of Cylinder
Gasket Parameters

5.1. 7e Main Process. Regarding maximum temperature,
maximum stress, and maximum deformation of the cylinder
gasket, their least values are set as objects of multiobjective
optimization. As far as the proposed algorithm is concerned,
that described above is embodied in searching for the
minimum value of the corresponding fitness function. As for
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three state parameters of the cylinder gaskets, they are
optimized in line with hybrid neural network based on PLSR
and DNN as well as the ABC and GWO algorithm. Major
procedures of the algorithm have been shown in Figure 8.

ABC algorithm GWO algorithm

Start GWO

GWO end

if proceed or notYes

Yes

No

Calculate the fitness
function

Update the position of the
grey wolf and prey

Grey wolves are randomly generated
and figure out positionsStart ABC

ABC end and output the
coefficient

Let the scout bee out
or not

Chenge the labelled nectar

Update the convergence factor vector

Initialization of the control
parameters of GWO algorithm

�e onlooker bee
searches for new nectar

Initialization of the control
parameters of ABC algorithm

Initial nectar source is randomly
generated (weight coefficients)

Scout bee is let out

Search for new nector source

Labelled the new nectar source

Figure 7: )e flow chart of ABC and GWO algorithm.
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Figure 8: )e main process of optimization.

Table 8: Initial values of different factors selected formultiobjective
optimization.

Factors A B C D E
Initial values 154 24 1.75 2.5 143.8
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Figure 9: Variation rules of fitness function values.

Table 9: )e RMSE and NRMSE of different algorithms.

RMSE NRMSE
Training Evaluation Training Evaluation

HNN and
ABCBGWO 2.5134 2.3674 0.0720 0.0740

Genetic algorithm 5.5476 5.7400 0.1578 0.1795
Support vector
machine 3.4239 4.2288 0.0977 0.1322

Table 10: Optimal factors of cylinder gaskets calculated from the
optimization algorithm.

Factors A B C D E
Initial values 155 25 1.5 3 153.8
Optimal values 154 24.2 1.75 2.53 144.2
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5.2. 7e Computing Process. Depending on Figure 8, three
operating factors of the cylinder gaskets were optimized.
)en, initial values of operating factors were eventually
confirmed based on results of the orthogonal experiment;
see Table 8.

In the course of calculation, values of the fitness function
vary as the number of iterations changes. Corresponding
variation rules have been shown in Figure 9.

To validate the performance of the hybrid neural net-
work and ABCBGWO algorithm, the genetic algorithm and
support vector machine are adopted to compare the RMSE
and NRMSE of the predicted data with our algorithm. )e
detailed results are shown in Table 9.

From Table 9, we can conclude that, compared with
genetic algorithm and support vector machine, the hybrid
neural network and ABCBGWO can perform better in
RMSE and NRMSE which proves the performance of the
algorithm. In the next section, accuracy and effectiveness of
the algorithm are examined.

5.3.ComputingResults. In the light of hybrid neural network
based on PLSR and DNN and the ABCBGWO algorithm,
the optimal operating factors are figured out for diesel
cylinder gaskets (as shown in Table 10).

A: steady-state thermal
Temperature
Type: temperature
Unit: K
Time: 1

528.16 max
516.25
504.35
492.44
480.53
468.63
456.72
444.81
432.91
421
409.1
397.19
385.28
373.38
361.47 min

Figure 10: )e schematic diagram of temperature field distribution of cylinder gaskets after optimization.

B: static structural
equivalent stress
Type: equivalent (non-mises) stress
Unit: MPa
Time: 1

227.39 max
211.15
194.9
178.66
162.42
146.18
129.94
113.7
97.456
81.215
64.974
48.732
32.491
16.249
0.0079743 min

Figure 11: )e schematic diagram of thermal-mechanical coupling stress field of gaskets after optimization.

B: static structural
total deformation
Type: total deformation
Unit: mm
Maximum over time

2.84616e – 1 max
2.84608e – 1
2.84599e – 1
2.84591e – 1
2.84583e – 1
2.84575e – 1
2.84567e – 1
2.84559e – 1
2.84550e – 1
2.84542e – 1
2.84534e – 1
2.84526e – 1
2.84518e – 1
2.84510e – 1
2.84501e – 1 min

Figure 12: )e schematic diagram of cylinder gasket deformation after optimization.

Table 11: )e state parameters comparison before and after
optimization.

Parameters Tmax(K) Smax(MPa) Dmax(mm)

Before optimization 534.16 239.96 0.3771
After optimization 528.16 227.39 0.2846
Difference 6 12.57 0.0925
Percent of difference 1.12% 5.23% 24.52%
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Cylinder gasket is optimized using the values in Table 9.
Afterwards, corresponding boundary conditions are utilized
to establish FEM model of the gasket. )rough computing,
results of temperature fields, thermal-mechanical coupling
stress fields, and deformations of the cylinder gasket are
worked out, as shown in Figures 10–12.

Additionally, maximum temperatures, maximum ther-
mal-mechanical coupling stresses, and maximum defor-
mation of cylinder gaskets subsequent and prior to
optimization are compared in Table 11.

)rough the calculation results we can conclude that the
maximum temperature, maximum coupling stress, and the
maximum deformation of gasket are improved obviously.
)e maximum temperature, maximum coupling stress, and
the maximum deformation decrease 6 K, 12.57MPa, and
0.0925mm compared to the original values, respectively.)e
thermal stress load and the deformation are relieved after the
optimization, which proved the effectiveness of the
algorithm.

6. Conclusion

)e paper applies FEM, orthogonal experimental design,
HNN, and GWO to optimize the operating factors in
conjunction with state parameters of cylinder gaskets. )e
main tasks are described as follows:

(1) )e FEM model is adopted to perform computa-
tional analysis on temperature fields, thermal-me-
chanical coupling stress fields, and deformations of
cylinder gaskets; temperature field experiment is also
conducted to validate accuracy of the computing
model, and areas with comparatively high temper-
ature and stress as well as obvious deformations are
analyzed in line with computing results.

(2) Orthogonal experimental design is selected to in-
vestigate and analyze how operating factors of cyl-
inder gaskets affect state parameters. Totally, there
are 5 operating factors and 3 state parameters. In
detail, the former includes the radius of combustion
chamber circle, radius of coolant channel, length of
insulation area between 3rd and 4th cylinder,
thickness of cylinder gasket, and bolt preload force,
while the latter consists of maximum temperature,
maximum stress, and maximum deformation of the
cylinder gasket. It is found that temperature, stress,
and deformation of cylinder gaskets are under sig-
nificant influences of the radius of combustion
chamber circle, radius of coolant channel, thickness
of cylinder gasket, and the bolt preload force. For this
reason, subsequent analysis is made only specific to
such four operating parameters.

(3) In order to overcome the problem of correspondence
discontinuity between operating factors and state
parameters of the cylinder gasket, a method is
proposed to predict such a relation by virtue of a
hybrid neural network model. To be specific, the
hybrid neural network model consists of two layers
in total. On the first layer, features of 4 operating

factors are selected based on PLSR, and, on the
second layer, the correspondence of feature of op-
erating factors and state parameters is established
according to DNN. As demonstrated by validation
results, such prediction model of hybrid neural
network is provided with accuracy that is high
enough to meet engineering calculation
requirements.

(4) When GWO is adopted to identify the prey’s po-
sitions, differences in different grey wolves are
neglected. With the goal of settling such a defect,
three weight coefficients corresponding to three
kinds of grey wolves are introduced to figure out
prey positions, and ABC is also used to calculate
and analyze values of such three weight coefficients.
Not only is the defect of traditional GWA over-
come, but final result can be obtained through rapid
and accurate calculations by the proposed method.
)at is, such a method gives consideration to both
computational efficiency and computing result
accuracy.

(5) Orthogonal experimental design results, the pro-
posed “the hybrid neural network model based on
PLSR and DNN,” and “ABCBGWO algorithm” are
applied to figure out values of operating factors in the
case where optimal state parameters are achieved for
the cylinder gasket. Furthermore, operating factors
of the cylinder gasket are optimized by virtue of
computing results. Besides, the FEM model is uti-
lized again to calculate and analyze corresponding
temperature, stress, and deformations of the opti-
mized gasket. It is revealed by results that state
parameters of the optimized cylinder gasket are all
improved, which proves good optimization effects
and validity of the proposed algorithm.

Next, optimized cylinder gaskets will be subjected to
experimental verification, and the proposed algorithm
will be applied in optimization research on other high-
temperature components inside the diesel cylinder.
With respect to load reduction and reliability/service
life improvement for high-temperature components
and even the complete machine, such a study is of great
significance.
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