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Automatic train operation (ATO) system is one of the important components in advanced train operation control systems.
Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of
the systems, an NSGA-II-based parameter tuning method for the fuzzy immune PID (FI-PID) controller and a grey model
GM(1,1)-based fuzzy grey immune PID (FGI-PID) controller were proposed. Taking a maglev train’s model as the control
object and a velocity-time curve as the input, the feasibility of the parameter tuning method for the FI-PID controller and the
applicability of the FI-PID controller and the FGI-PID controller for the ATO system were tested. ,e results showed that
the optimized parameters were ideal, the two controllers all showed good performance on the indicators of traceability and
comfort level, and the FGI-PID controller performed better than the FI-PID controller. ,e results exhibited the effec-
tiveness of the proposed methods.

1. Introduction

Railways have the advantages of large volume, speed, safety,
and low pollution. Many countries in the world have complex
railway networks, and many cities also have developed subway
networks, which greatly facilitate a person’s travel. ,e railway
technology worldwide tends to develop in the directions of
seriation, specialization, and diversification. ,e types of the
trains are also diverse, such as wheel/rail trains, maglev trains,
and trams. Advanced passenger trains have automatic driving
capabilities that can improve operation efficiency and reduce
driver’s workload, and the automatic train operation (ATO)
system is vital to achieve these functions. For improving
comfort and stopping accuracy, and energy saving, a driverless
train needs a very stable ATO system.

,e speed curve and the speed curve tracking ability are
two keys to optimize ATO systems [1–3]. ,e accuracy of
speed curve tracking is related to the adopted control
method. ,e proportion-integration-differentiation (PID)
controller is widely used in industrial control, due to its
advantages of simple control structure, wide application, and
easy to implement. In order to ensure a good control effect,
repeated tuning of control parameters is a common pro-
cedure in the current field of engineering. However, most
industrial processes, including the ATO systems, have dy-
namic characteristics. Once the control parameters are fixed,
the ideal stopping accuracy and comfort cannot be com-
pletely guaranteed. ,erefore, the tuning and self-tuning of
the PID controller or other controllers have attracted much
attention.
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With the rapid advancement to fully automatic opera-
tion (FAO) mode of railways, the key role of ATO systems
[4, 5] has become more and more prominent in the control
layer. Practically, safety, comfort, and energy saving are
significant problems concerned by railway operators and
manufacturers. ,e purpose of this study is to find an ef-
fective controller for an ATO system, including its tuning
and development.

1.1. Literature Review. A large number of industrial pro-
cesses belong to the control processes, and the proper
control parameters are the guarantee for a good control
effect. ,e Ziegler–Nichols (Z-N) method and the Tyr-
eus–Luyben (T-L) method are classical methods for the
tuning of the PID controller. Using intelligent algorithms to
tune control parameters offline is also an efficient way. Xue
et al. [6] used particle swarm optimization (PSO), Z-N
method, and advanced fireworks (AFW) algorithm to tune a
PID controller and found that AFW algorithm was more
effective than the others. Mahdavian et al. [7] used non-
dominated sorting genetic algorithm-II (NSGA-II) to op-
timize the control parameters of a PID controller and found
that NSGA-II had more advantages than Z-N method.
Behroozsarand and Shafiei [8] also designed NSGA-II to
tune a PID controller and obtained better control param-
eters than the T–L method. Chen et al. [9] used chaotic
NSGA-II to tune the five parameters of the fractional-order
PID controller. Özdemir et al. [10] developed a bacterial
swarm optimization (BSO) algorithm based on PSO algo-
rithm and bacterial foraging optimization (BFO) algorithm
to optimize the control parameters of the PID controller and
the fractional-order PID controller. Zhao et al. [11] designed
a two-lbest multiobjective PSO algorithm to tune the
multiobjective robust PID controller, and the simulation
result showed a relatively better performance. Reynoso-
Meza et al. [12] used an algorithm based on the differential
evolution technique and spherical pruning to tune the pa-
rameters of the PI controller. Rahmani et al. [13] tuned a
novel supertwisting PID sliding mode controller based on
the multiobjective bat algorithm. Wang et al. [14] applied a
mutative scale chaos optimization method to optimize
control parameters of the fuzzy immune PID (FI-PID)
controller. Ma andGu [15] designed a PSO algorithm to tune
the FI-PID controller.

With the help of added parameters and introduced al-
gorithms, adaptive controllers or self-tuning controllers
have attracted many attentions because they can effectively
deal with dynamic control processes. Wang and Xiao [16]
implemented the PID controller’s self-tuning through the
pole assignment optimal prediction algorithm. Kim [17]
designed a PID controller with an analyser of gain/phase
margin and immune algorithm. Mendes et al. [18] discussed
several self-tuning controllers (STCs) with PID form based
on explicit and implicit identification algorithms. Wai and
Lee [19] designed an adaptive fuzzy-neural-network control
(AFNNC) scheme to overcome the highly nonlinear and
unstable characteristics of a control object. Majdabadi-
Farahani et al. [20] introduced a method for the PID

controller self-tuning online based on model predictive
control and used NSGA-II for parameter tuning of the
predictive model. Wang and Bian [21] combined BP neural
network and genetic algorithm (GA) to tune three param-
eters of the PID controller online.

,e process of train operation is also a typical control
process. ,e PID controller is used widely in current ATO
systems. Many advanced controllers have been tested for the
applicability in ATO systems. Oshima et al. [22] and
Yasunobu et al. [23] proposed two controllers based on fuzzy
theory. Gao et al. [24] proposed an adaptive fault-tolerant
control algorithm by RBF neural networks. Mo et al. [25]
designed an ATO automatic speed control algorithm in
conjunction with a prediction algorithm and a multivariable
fuzzy control algorithm. Fu et al. [26] proposed a PSO-B-BP-
PID controller by combining a reparametric b-spline neural
network and PSO algorithm. Wu [27] proposed a method
named adaptive terminal sliding mode control. Cao et al. [1]
and Liu et al. [2] designed a sliding mode controller and a
predictive control algorithm, respectively, for the ATO
systems to track the optimized target speed curve and found
that they have superiority compared with the PID controller.
Ke et al. [3] used the MAX–MIN ant system to optimize the
target speed curve and designed a fuzzy PID controller to
track the speed curve. Shi [28] introduced a model-free
adaptive control method to track the ATO target speed curve
and exhibited a good speed curve tracking effect. Hou et al.
[29] designed a predictive fuzzy adaptive PID controller for a
high-speed train’s speed control. Long et al. [30] proposed
an auto-disturbance-rejection control algorithm for a
maglev ATO system.

1.2. Proposed Approaches. As an intelligent algorithm, the
fuzzy algorithm is widely used in control processes
[15, 19, 22, 29]. ,e general fuzzy control method needs a
number of fuzzy conditional statements in the form “if . . .

then . . .” with fuzzy sets, but the fuzzy immune PID (FI-
PID) controller can achieve ideal control with few fuzzy
conditional statements [3, 31–33]. To the best of our
knowledge, the applicability of the FI-PID controller in ATO
systems and its tuning based on nondominated sorting
genetic algorithm-II (NSGA-II) have not been discussed.
,e FI-PID controller is considered to optimize ATO sys-
tems, and its tuning problem is also discussed in this study.
Meanwhile, the maglev train is one of the latest trends in
railways around the world, more and more studies focus on
the safe operation of the promising train [19, 30, 34, 35], and
a model of the maglev train’s ATO system is used as a
controlled object. ,e main contributions of this paper are
summarized as follows:

(1) In order to assist the tuning of the FI-PID controller,
a framework based on NSGA-II was proposed. ,e
optimization of parameters is very important for the
performance of the PID controller or the FI-PID
controller [32, 36]. ,e problem is often multi-
objective, and NSGA-II can solve almost any mul-
tiobjective optimization problem [7]. Multiple
optimal solution sets of control parameters are
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solved based on NSGA-II and three objective
functions. ,e sets of optimal parameters are further
processed by post Pareto-optimal to determine the
final optimal solutions for decision makers. ,e
simulation results show that the optimal parameters
are helpful for good control performances.

(2) Considering the superiority of self-tuning controllers
and the possibility for further optimizing the FI-PID
controller, a novel FGI-PID controller integrating
the FI-PID controller and a prediction algorithm is
proposed. Predictive control methods can usually
achieve better control effects [20, 29, 37, 38], and this
study attempts to expand the FI-PID controller with
the prediction algorithm named GM(1,1) [39, 40]. In
the FGI-PID controller, a grey adjuster based on the
GM(1,1) is added to the FI-PID controller. ,e
simulation results show that, compared to the FI-
PID controller, the FGI-PID controller has a better
performance with the same optimized parameters.

,e remainder of this paper is organized as follows.
Section 2 describes the general automatic train control
(ATC) system, the existing train’s dynamic models, and the
dynamic model used in the study. In Section 3, the principle
of the FI-PID controller is described, the NSGA-II based FI-
PID parameter tuning framework is proposed, and 10 op-
timized parameter sets are obtained. In Section 4, the grey
model GM(1,1) is summarized, and the principle of the FGI-
PID controller is proposed. ,en, in Section 5, the FI-PID
controller and the FGI-PID controller with the optimized
parameters are used for tracking tests with a velocity-time
curve, and the performances of the FI-PID controller and the
FGI-PID controller are compared from traceability and
comfort. Sections 6 and 7 are discussion and conclusion of
the study, respectively.

2. ATO System and Train’s Dynamic Model

As a key subsystem of an operation control system, ATO
system is the basis for the automatic driving, the efficient
operation, and the safe operation of a train. As demonstrated
in Figure 1, for general automatic train control (ATC)
system of wheel/rail vehicle, onboard ATO system receives
ground information and driving control commands from
automatic train protection (ATP) system and automatic
train supervision (ATS) system and performs a task of
traction or braking automatically [41, 42].

It is worth mentioning that the operation of wheel/rail
vehicles is driven by onboard rotary motors, but the traction
of normal maglev vehicles comes from tracks based on linear
synchronousmotors. ATO systems realize automatic driving
by mutual linkage with traction systems.,erefore, there are
differences in the composition of maglev transportation
operation control systems and wheel/rail transportation
operation control systems, especially on the locations and
names of ATO-related equipment. Although there are dif-
ferences between the two modes of transportation, their
functions are similar and can be referred to each other.

As one kind of complex system covering a broad range of
professional fields, the operation process of a train is
nonlinear and uncertain, which needs a controller to keep
stable. ,e existing train’s dynamic models are also diverse,
such as an equation of state model [27], a second-order
transfer function [43], a first-order transfer function with
transmission delay [44], and a transfer function established
for a maglev train [4, 5, 30, 45–49]. In this study, the model
of the maglev train was adapted as the control object, which
can be expressed as

G(s) �
612

s + 0.34
1

8621s + 822.4
�

0.07128
(s + 0.0954)(s + 0.34)

.

(1)

,e typical frequency of control messages is about
100–600milliseconds, and shorter than 100milliseconds it is
normally supported [42, 50]. In this study, the sampling time
was set as 100milliseconds by referring Xu and Xiao [45].
And the discretized model of Formula (1) is

G(z) �
0.0003513z + 0.0003462

z2 − 1.957z + 0.9574
. (2)

3. NSGA-II-Based Parameter
Tuning Framework

In practical applications, in order to achieve an acceptable
control performance, it is necessary to find a set of ideal
control parameters for a certain controller. ,e manual
parameter tuning method is difficult for this purpose, and
there is currently no classical parameter tuning method for
the FI-PID controller. ,e study discusses a tuning
framework for the controller based on NSGA-II.

3.1. FI-PID Controller. When antigens invade the body, the
constituent elements of the lymphocyte helper T cell TH, the
suppressor T cell TS, and the B cell cooperate with each other
for the balance of immune feedback system. Based on the
adaptive mechanism of the immune process, the increment
PID controller, and the fuzzy control method, the FI-PID
controller was designed by taking the number of antigens as
error, the total stimulus received by B cells as the control
signal or control law [51, 52]. Meanwhile, the controller
introduces two variables namely the rate of reaction K and
the coefficient of stabilizing effect η, and set

ATOATP

ATOATPATS

Service
braking

Emergency
brakingTraction

Wayside

Vehicle

Location

Cab

Speed

Figure 1: General ATC system.
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kp � K(1 − ηf(u′(t),Δu′(t))). ,en, the structure of the
FI-PID controller is shown in Figure 2.

,e control law u(t) of the controller is

u(t) � u(t − 1) + kp (e(t) − e(t − 1)) + ki
′e(t) + kd

′(e(t)(

− 2e(t − 1) + e(t − 2))),

(3)

where f(·) is the fuzzy logic function, ki
′ is the integral co-

efficient, kd
′ is the differential coefficient, u′(t) and Δu′(t) are

the simplified expressions of u(t − 1) and u(t − 1) − u(t − 2),
respectively, and e(t) is the deviation between input and
output, which equals r(t) − y(t), as shown in Figure 2. ,e
pseudocode corresponding to the simulation process of FI-
PID is shown as follows (Algorithm 1).

For the fuzzy rules of the controller in this study, each
input variable was blurred into “positive” (P) and “negative”
(N), respectively. And output variables were blurred to
“positive” (P), “zero” (Z), and “negative” (N), and the
membership function was defined in the entire interval of
(−∞, +∞). ,e fuzzy rule adopted for f(·) was as follows: if
u is positive and Δu is positive, then f(·) is negative; if u is
positive and Δu is negative, then f(·) is zero; if u is negative
and Δu is positive, then f(·) is zero; if u is negative and Δu is
negative, then f(·) is positive. For the rules, Zadeh fuzzy
logic “AND” and the usual “mom” defuzzifier were
employed to acquire an output of the fuzzy controller f(·)

[14, 52]. Based on the settings above, the fuzzy controller of
the FI-PID controller contains two inputs, one output and
four fuzzy rules, as shown in Figure 3.

3.2. Parameters Tuning Method. For FI-PID controllers,
there are four parameters that need to be tuned, including
the rate of reaction K, the coefficient of stabilizing effect η,
the integral coefficient ki

′, and the differential coefficient kd
′

[14, 15]. Appropriate optimization objectives are important
for parameter tuning, and it is a multiobjective optimization
problem in general [7–11]. With an optimization model and
a corresponding algorithm, an optimization process was
introduced to solve this problem in the study.

3.2.1. Objective Functions and Solution. For ATO system or
other similar systems, the purpose of parameter tuning is to

reduce the deviation between input and output. Errors were
widely discussed in parameter optimization
[9, 10, 51, 53, 54]. Taking error as the basic point, a mul-
tiobjective optimization model was put forward from the
three aspects of train’s operation, including overall opera-
tion, initial acceleration phase, braking, and stopping phase.
And the optimization model and its subobjective functions
are

MinF � f1, f2, f3􏼈 􏼉, (4)

f1 � 􏽚

m

0

|e(t)|dt, (5)

f2 � 􏽚

m

0

t
− 1

􏼐 􏼑e
2
(t)dt, (6)

f3 � 􏽚

m

0

te
2
(t)dt, (7)

where the first optimization object is integrated absolute
error (IAE) [10, 53], which considers the overall error
equally; the second optimization object is integral of time’s
reciprocal multiplied by squared error (ITRSE), which fo-
cuses on the error in the initial stage, and less considers the
error in the later stage; the third optimization object is the
integral of time multiplied by squared error (ITSE) [9, 10],
which less considers the error in the initial stage, but focuses
on errors in later stage; m is the length of an error sequence,
e(t) is the tth error in error sequence, and m and t are all
integers in the study.

Seeking a set of nondominated optimal solutions or
Pareto solutions is the goal of a multiobjective optimi-
zation problem [55]. For two solutions p and q, if the
condition “for i � 1, 2, 3, and objective functions
fi(p)<fi(q)” is met, then p dominates q, and p is the
nondominated solution. If the condition “for i � 1, 2, 3,
objective functions fi(p)≤fi(q), and at least one j be-
longing to 1, 2, 3 satisfy fj(p)<fj(q)” is met, then p

weakly dominates q, and p is also the nondominated
solution. A set of nondominated solutions is the optimal
solutions, namely, Pareto solutions.

Immune controller
(kp = K(1 – ηf (•)))

+

u′, ∆u′

Input
r(t)

Output
y(t)

e(t)

Fuzzy controller Process database

K, η

Increment PID controller Control
object

kp

ki′, kd′

f (•)
u

–

Figure 2: Structure of the FI-PID controller.
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3.2.2. Optimization Algorithm and Its Process. Genetic al-
gorithms (GA) have become a widely used method of pa-
rameter tuning in many controllers [7, 8, 21, 51, 54]. NSGA-
II is a multiobjective optimization method derived from GA
with an elite preservation strategy and a fast-nondominated
sorting method [7, 55, 56]. NSGA-II can find optimal so-
lutions based on initial feasible solutions. First, the algorithm
randomly generates a number of individuals, which is the
initial population. ,e fast-nondominated sorting is per-
formed for different individuals according to their objective
function fitness values. Individuals in the population are
further selected based on tournament method to generate
offspring based on crossover or mutation according to the
preset probabilities. And the offspring are merged into the
current population. ,en, a new population is formed
according to each individual’s nondomination rank and
crowding distance. By repeating the above operation con-
tinuously, the population is gradually evolved toward a set of
better solutions until the preset termination condition is
met. ,e corresponding pseudocode is shown as follows
(Algorithm 2).

For individuals in GA or NSGA-II, the coding form of
chromosomes needs to be designed. As mentioned above,
the parameters requiring further tuning include K, η, ki

′, and
kd
′. To simplify the process of decoding, the study adopted

decimal coding method for above parameters. Considering
the storage of the objective function fitness values, non-
domination rank, and crowding distance, the coding form of
chromosomes was set in Figure 4.

,e process of parameter tuning is shown in Figure 5,
which takes a test signal and the 1st to 4th digits in an
individual’s code as the input of the FI-PID controller and
takes the transfer function (Formula (2)) as the control
object. After executing the control simulation process, the
corresponding error sequence can be used to calculate the
three objective function fitness values according to equations
(5)–(7), and these values are stored in the 5th to 7th positions
of the corresponding codes. After obtaining all fitness values
of a population, the nondomination sorting and the cal-
culation of crowding distance can be performed. ,e values
of nondomination rank and crowding distance are stored in
the 8th and 9th positions of corresponding codes.

Based on the current individuals’ nondomination ranks
and crowding distances, a mating pool can be formed based
on the current population and the tournament method. For
the tournament method, an individual with a high non-
domination rank or the same nondomination rank but a
large crowding distance is the winner of two individuals. ,e
operation of crossover or mutation is performed based on
these individuals in the mating pool to generate offspring,
and objective function fitness values of the offspring are
calculated simultaneously. Furthermore, offspring are
merged with the current population, and the population that
contains offspring needs to be screened to form a new
population according to the nondominated ranks and
crowding distances, with eliminating the bad individuals and
retaining elite individuals. In the study, for generating a set
of offspring, crossover operation is the exchange in 1st to 4th
elements between two chromosomes according to a preset
probability, andmutation operation is a randommutation of
one in 1st to 4th elements of a chromosome. ,e above
process is continuously executed until the number of iter-
ations or other stop criterions are met, such as the quality or
quantity of an optimal solution.

,e final output of NSGA-II is Pareto solutions, which is
one set of control parameters. However, the results of
NSGA-II or other genetic algorithms are somewhat random.
Although individuals in Pareto solutions do not dominate
each other, there are still individuals that may not match
one’s expectations. For example, one fitness value in ob-
jective functions can be very unsatisfactory with other values
that are ideal for an individual. Meanwhile, Pareto solutions
may also contain local optimal solutions, which happened a
lot in practice. Aiming at these two problems, in order to

Initialize the parameters (K, η, ki
′, kd
′, fuzzy rules f(·), control law u, initial output y, and initial error e).

while (t≤ length of inputs) do
Calculate the current output y(k) according to (1) or (2)
Calculate current error e(t)

kp(t) � K(1 − ηf(u′(t),Δu′(t)))

Calculate the current control law u(t) according to (3)
Update data u, e, y

end while
Postprocess results and visualization

ALGORITHM 1

u(3)

du(3)

f (3)

Fuzzy system
(mamdani)

4 rules

Figure 3: Structure of the fuzzy controller.
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obtain better parameters, a viable approach is obtaining
nondominated solutions as many as possible by performing
the optimization process multiple times and further
screening them with nondomination sorting and a certain
criterion, as shown in Figure 6. In terms of further
screening for deficient individuals in a new set of Pareto
solutions, the study suggests removing individuals with
extreme values.

3.3. Results of Parameters Tuning. In the study, with refer-
ence to the setting of Babaveisi et al. [57], the crossover and
mutation probabilities of NSGA-II were, respectively, set as
0.8 and 0.25, and the iteration, the population size, and the
mating pool size were set as 80, 25, and 19, respectively. In
terms of the range of parameters, the range of K was set as
[1, 200], the range of η was [0, 1], and ki

′ was [0, 3], kd
′ was

[0, 30]. Referring to the research of Utomo and Widianto
[5], the study sets the input signal as a square wave with an
interval of 0.1, a swing size of [0, 1], a duty ratio of 0.5, and a
length of 1000.,e train’s dynamic model (Formula (2)) was
taken as the control object.

One Pareto situation was obtained according to Figure 5
without a further screening, as shown in Figure 7 and Ta-
ble 1. ,e process took 948.128 s, which relied on the
MATLAB software and a,inkpad laptop with Version P52,
CPU i7-8750H, and memory 16GB.

Figure 7 contains 6 Pareto solutions, and Table 1 lists all
the optimal solutions obtained and their objective function
fitness values. ,e results show that the minimum value of
the objective function 1 is 33.840, the minimum value of the
objective function 2 is 2.037, and the minimum value of the

objective function 3 is 7159.192. Since the length of the input
signal is 1000, all the minimum values are ideal.

As mentioned above, genetic algorithms have ran-
domness, and local optimal solutions are also prone to occur
easily. ,e number of optimal solutions in Table 1 is small,
and they may contain some local optimal solutions or some
poor optimal solutions. In terms of this issue, the study
optimized the parameters 10 times with the same method
according to Figure 5 without a further screening, and 10
sets of Pareto solutions containing 148 individuals had been
obtained. For these 10 sets, repetitive individuals were re-
moved firstly, and a new set of Pareto solutions was obtained
by nondominated sorting according to Figure 6. ,e dis-
tribution of these solutions’ fitness values was shown in
Figure 8.

It can be seen from Figure 8 that major individuals are
dominated by a few individuals (Table 2), and these indi-
viduals are closer to the ideal point (0, 0, 0). However, there
is only one solution in Table 1 located in Table 2, which
shows the necessity for further optimization for one set of
solutions. At the same time, considering the possible bad
individuals in the optimized individuals, the individuals with
a maximum fitness value had been removed from the study
to further screen ideal individuals. ,e maximum value of
objective function 1 in Table 2 is 82.011, the corresponding
individual is 11, the maximum value of objective function 2
is 2.055, the corresponding individual is 6, the maximum
value of objective function 3 is 9718.481, and the corre-
sponding individual is 11. Based on the screening suggestion
above, individuals 6 and 11 are deficient individuals. As
shown in Figure 8, the distance of individual 11 from other
optimal solutions is large. Although the individual 6 is closer

Initialize the parameters (population size N, iterations G, crossover and mutation probabilities, mating pool size P)
Initialize N individuals randomly
for (i � 1, 2, . . . N) do

Perform a simulation process of FI-PID for an individual, and update the fitness of the individual using (5)–(7)
end for
Calculate the nondominated rank and crowding distance based on the fitness value of the initial population
while (g≤G) do

P individuals are selected from the current N individuals according to the tournament method
Perform crossover or mutation on this P individuals based on according probabilities to generate offspring
Execute the simulation process of FI-PID to obtain the fitness value of each new offspring
Combine the offspring with the N individuals as a temporary population
Perform the nondominated sorting and calculate crowding distances on the temporary population
Reserve N elite individuals as new population according to nondominated ranks and crowded distances

end while
Yield a set of the optimal solutions
Postprocess results and visualization

ALGORITHM 2

1 2 3 4 5 6 7 8 9

ki′ kd′
Non-domination

rank
Crowding
distanceK f1 f2 f3η

Figure 4: Coding form.
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to other optimal individuals, since it contains a maximum
value, it also needs to be removed according to the screening
criterion in the study.

Based on the above steps, 10 optimal individuals had
been obtained in the study. Each of them performed very
well on the objective functions and can be tested for ATO
systems.

4. FGI-PID Controller

As mentioned above, the optimal results of the genetic al-
gorithm are stochastic,and it is difficult to obtain a set of best
parameters. At the same time, it is very likely uncertain in the
actual operation process of a train. For the existing opti-
mization space, the study references the idea of predictive

Start

Initialization of NSGA-II
parameters and initial population

Yes

No

Gen = 0

Decoding each chromosome
(K, η, ki′, kd′ )

Errors

Crossover or mutation to generate
offspring based on the mating pool

Calculating crowding distances

Preservation of excellent individual
to generate new population

based on ranks and crowding distances

Gen = Gen + 1

Controller and object

Outputs

Maximun
iteration?

Removing some individuals
based on proposed rules

Nondominated sorting and
calculating crowding distance

based on f1, f2 and f3

Forming a mating pool from the
current population based on the

tournament method

Nondominated sorting for
the population added offspring

Updating f1, f2 and f3 for offspring

Decoding the chromosomes
of offspring

Stop

Decoding the final Pareto solutions

Further
screening?

Yes

No

(K, η, ki′, kd′ )

Input signal

1

0.5

–0.5

0

0 10 20 30 40 50 60 70 80 90 100

1.5

Figure 5: NSGA-II based parameters tuning framework for the FI-PID controller.

Mathematical Problems in Engineering 7



control and further fine-tunes these tuned parameters
according to current error and prediction error to explore
the possibility of further optimization for the FI-PID
controller.

4.1. Grey Model GM(1,1). Grey model GM(1,1) is one im-
portant part of prediction methods in grey theory. It is a
first-order differential equation model with a single variable
prediction, and its discrete-time response function ap-
proximates an exponential pattern [39, 40, 58]. Combined
with the research content of the study, the process of
GM(1,1) was summarized as follows.

Assume e(0) � e(0)(1), e(0)(2), · · · , e(0)(n)􏼈 􏼉 was the
original sequence consisting of the sequence of error or
deviation e(t) between input and output. ,en e(1) is the
first-order accumulated sequence, that is, e(1) �

e(1)(1), e(1)(2), · · · , e(1)(n)􏼈 􏼉, where e(1)(t) � 􏽐
t
i�1 e(0)(i),

t � 1, 2, · · · , n.
,e Albinism differential equation of GM(1,1) is

de(1)

dt
+ ae

(1)
� b, (8)

where a and b are parameter and endogenous variable to be
identified.

Constructing unrecognized parameters into a vector 􏽢a �

(a, b)T obtained by least-squares method, 􏽢a � (BTB)− 1BTY,
where

B �

−1
2 e(1)(2) + e(1)(1)( 􏼁 −1

2 e(1)(3) + e(1)(2)( 􏼁 · · · −1
2 e(1)(n) + e(1)(n − 1)( 􏼁

1 1 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (9)

Y � e(0)(2) e(0)(3) · · · e(0)(n)􏽨 􏽩
T
. (10)

,e discrete-time response function of the prediction
model is

e
(1)

(t + 1) � e
(0)

(1) −
b

a
􏼠 􏼡e

− at
+

b

a
, (11)

where the e of e− at is the Napierian base, and e(1)(t + 1) is the
predicted value obtained by accumulating.

,en a predicted error can be restored by
􏽢e(0)(t + 1) � 􏽢e(1)(t + 1) − 􏽢e(1)(t), where t � 1, 2, · · · n. For
formal simplification, a prediction error e′(t + 1) � 􏽢e(0)(t +

1) in the study.

4.2. Design of FGI-PID Controller. ,e development of the
FI-PID controller focuses on the immune parameters of K

and η. ,e prediction algorithm of GM(1,1) was used to
adjust these two parameters dynamically based on current
errors and corresponding prediction errors. And a kind of
fuzzy grey immune PID (FGI-PID) controller was raised.
,e structure of the FGI-PID controller was shown in
Figure 9.

Different from the structure of the FI-PID controller
(Figure 2), there is an adjusted part for the immune con-
troller to adjust the parameters of K and η. As shown in
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…

Nondominated
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(removing redundant
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proposed methods

Figure 6: Screening processing for multi-Pareto solutions.
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Figure 10, the process of the FGI-PID controller is given as
follows:

Step 1 (initialization): It is a process of setting the initial
parameter, such as outputs y(1) and y(2), errors
e(1) and e(2)e(1), control laws u(1) and u(2), and the
six data are all equal 0 and will be updated in the process.
Meanwhile, initializing the rate of reactionK0, the stability
effect η0, ki

′, kd
′, the length of the production base sequence

n, the weight coefficient w, and the fuzzy controller.
Step 2 (calculating the output and the error): It is a
process of calculating the current output and acquiring
current error. Generally, the first output of the system
based on the initial data is 0.
Step 3 (calculating the correction coefficient β): ,ere
are two constraints for the calculation of β, including
that whether the length of error sequence meet a certain
number n, and whether the consecutive errors are all
equal 0. If the length of error sequence less than n or
errors e(t − n + 2) to e(t) are all equal 0, w equals 1.
when the length is more than n and these errors are not
all equal 0, predictive error e′(t + 1) are acquired based
on n errors and GM(1,1). In addition, if the current
error e(t) and e′(t + 1) are not both equal to zero, the
correction coefficient β is calculated according to the

deviation level between the current error and the
predicted error. Formula (13) is aiming to calculate the
correction coefficient β based on a logit function with a
range of [0.5, 1] in the study, where the e of eβ0 is the
Napierian base.

β0 �
min |e(t)|, e′(t + 1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

2

max |e(t)|, e′(t + 1)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
2, (12)

β �
eβ0

1 + eβ0
. (13)

Step 4 (adjusting the parameters K and η of the FGI-
PID controller): K and η are calculated according to
Formulas (14) and (15) by introducing a weight coef-
ficient w to balance the original parameters and the
modified parameters. ,e value of w can be determined
by experience or test. For the FI-PID controller, pa-
rameters of K and η are fixed, w equals 1 all through.

K � K0(w +(1 − w)β), (14)

η � η0(w +(1 − w)β). (15)

Step 5 (calculating the control law and judging the task
progress): Calculating the control law according to
Formula (3). If the control task is completed, stop.
Otherwise, update the data and return to Step 2.

,e pseudocode corresponding to the simulation process
of FGI-PID is shown as follows (Algorithm 3).

5. Test and Comparison of Controllers for
ATO System

5.1. Test Method. To test the feasibility of the FI-PID con-
troller and the FGI-PID controller, the train’s dynamic
model (Formula (2)) was taken as the control object, and a
velocity-time curve from the Shanghai maglev demonstra-
tion line was used as the input signal to analyze and compare
the performance of FI-PID and FGI-PID. ,e time interval
of the original velocity-time curve is 1 s, and a curve with the
interval of 0.1 s was acquired by interpolation with the
method of “cubic” in MATLAB. MATLAB software is also
the simulation environment in the study.
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Table 1: Parameters and fitness in a set of Pareto solutions.

No. K η ki
′ kd

′ f1 f2 f3

1 117.483 072 0.004 112 4.535 228 20.815 663 45.478 970 2.062 627 8437.193 409
2 117.483 072 0.365 846 5.189 957 20.815 663 63.098 630 2.080 257 8434.407 945
3 127.711 245 0.004 112 4.535 228 20.815 663 66.323 764 2.056 862 7908.307 087
4 127.711 245 0.004 112 5.189 957 20.815 663 65.360 173 2.078 545 7175.785 564
5 127.711 245 0.004 112 5.648 306 20.815 663 64.781 421 2.087 611 7159.192 661
6 196.056 906 0.0041 12 2.483 254 11.076 463 33.840 311 2.037 480 8790.987 535
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,e velocity-time curve and acceleration curve are
shown in Figure 11. ,e planned driving distance is
29108.992m, and the travel time is 441 s. ,e largest velocity
is 431.28 km/h, the maximal acceleration is 0.950m/s2, the
minimal deceleration is −0.931m/s2, and the maximal
change rate of acceleration is 0.145m/s3.

During the simulation, the parameters of K, η, ki
′, and kd

′
were consistent with Table 2, excluding the 5th and 11th
parameters. In terms of the grey predictive process, the
modeling dimension n of GM(1,1) was set as 3; that is, when
the prediction condition is satisfied, the next error e′(t + 1)

would be predicted based on 3 consecutive errors. For the
weight coefficient of the FGI-PID controller in the study, w

was identified as 0.85 based on multiple tests, which were
conducted between 0.5 and 0.95 by taking 0.05 as the step
length.

5.2. Results. In an actual operation, ATO system receives
operation commands from the ATP and ATS system con-
tinuously and performs commands such as traction,
coasting, and braking tomeet operation requirements. In the
study, the simulations were used to analyze the appli-
cability of the FI-PID controller and the FGI-PID con-
troller for the ATO system. ,e applicability of the two
controllers for ATO system had been analysed from the
aspect of the traceability and comfort based on output
results.

5.2.1. Traceability. ,e study analysed the traceability
from the perspective of error. In general, the smaller the
error, the better the traceability. ,e analysis process
involved the objective functions (f1, f2, f3) above and
the maximal error. And minimum, maximum, average,
and standard deviation of these error indicators were also
computed.

As shown in Table 3, all of the FI-PID controllers and
the FGI-PID controllers have shown good traceability. ,e
maximum error value is 1.957, the maximum value of
integrated absolute error (IAE) is 210.068, the maximum
value of integral of time’s reciprocal multiplied by squared
error (ITRSE) is 0.062, and the maximum value of integral
of time multiplied by squared error (ITSE) is 213 868.345.
,e length of the input sequence is 4421, and the results
indicate that the above error is acceptable within a certain
range.

Figure 12 shows the tracking curves with 1st parameters
and 12th parameters in Table 3. Intuitively, it is almost
impossible to see a major deviation, and both parameters
show good traceability. Combined with Table 3, the 1st
parameters show the best performance in the above indi-
cators; that is, the corresponding error indicators are all
minimum values for FI-PID and FGI-PID. For the 1st pa-
rameters, the IAE of the tracking process is 115.397 for FI-
PID, and 112.779 for FGI-PID, the average error is 0.026 1
for FI-PID, and 0.025 5 for FGI-PID, and the maximal error
is 1.871 for FI-PID, and 1.849 for FGI-PID. ,e ITRSE and

Table 2: Parameters and fitness of the new Pareto solutions.

No. K η ki
′ kd

′ f1 f2 f3

1a 196.056 906 0.004 112 2.483 254 11.076 463 33.840 311 2.037 480 8790.987 535
2 163.753 696 0.067 833 3.283 048 14.514 336 42.594 627 2.046 223 8207.051 904
3 163.753 696 0.067 833 3.353 620 14.514 336 47.685 838 2.048 811 7175.217 023
4 163.753 696 0.143 479 3.353 620 14.514 336 47.991 836 2.048 005 6891.833 427
5 163.753 696 0.157 608 3.283 048 14.514 336 46.123 175 2.046 986 7447.494 305
6b 163.990 325 0.049 013 3.450 764 14.514 336 52.744 138 2.055 492 6678.679 570
7 163.990 325 0.067 833 3.283 048 14.514 336 43.074 668 2.045 939 8191.242 857
8 163.990 325 0.067 833 3.283 048 14.831 223 61.992 764 2.043 818 7797.083 067
9 163.990 325 0.067 833 3.450 764 14.514 336 54.797 450 2.055 114 6669.372 779
10 163.990 325 0.157 608 3.353 620 14.514 336 51.153 823 2.047 966 6775.205 121
11b 192.644 021 0.169 557 9.476 489 28.630 928 82.011 092 2.025 346 9718.480 946
12 163.990 325 0.157 608 3.450 764 14.514 336 54.636 489 2.055 159 6623.210 587
aIndividual in Table 1. bIndividuals with the maximum fitness value.
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Control
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e(0)

–

Immune controller
(kp = K(1 – ηf(•)))

Figure 9: Structure of the FGI-PID controller.
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ITSE are 0.049 and 173 372.887 for FI-PID, and 0.048 and
166 347.702 for FGI-PID, respectively, which show a good
performance in the initial stage and later stage. As a ran-
domized control group, the results of the 12th group, similar
to other parameters, are not as good as those of the 1st group.
For the parameters, the average error is 0.047 5 for FI-PID,
and 0.029 4 for FGI-PID, and the maximal error is 1.945 for
FI-PID, and 1.923 for FGI-PID. Further, combined with
Figure 13, it can be seen that the errors are mostly con-
centrated below 0.5. When the condition changed from
traction to coasting, there is a short-term deviation of the
tracking curves, which are slightly lower than the target
curve, as shown in the partial diagrams in Figure 12 and the
maximal errors in Table 3. ,ese show that the results of
NSGA-II based parameter tuning method in the study is
suitable for both FI-PID and FGI-PID. Meanwhile, all of FI-
PID and FGI-PID have good traceability with the same
optimized parameters.

In terms of the comparison between the FI-PID con-
troller and the FGI-PID controller, the values of indicators’
minimum, maximum, average, and standard deviation of
FGI-PID are all better than FI-PID in Table 3. Taking error
sequence as an example, Figure 13 shows the sequence of
the 1st parameters and the 12th parameters. For the 1st
parameters, the error curves of FI-PID and FGI-PID are

very close (Figure 13(a)), and there is no significant dif-
ference between them. ,is may be because the parameters
are ideal, and there is less space for a further optimization.
In addition, as can be seen from the results of Table 3, the
maximum error and the objective function fitness values of
FI-PID with 1st parameters are all larger than FGI-PID.
Furthermore, according to Figure 13(b), it can be clearly
seen that the error fluctuation of FI-PID is more severe
than that of the FGI-PID controller, which results in a poor
performance. Similar phenomenon can be seen from the
results of other control parameters, as shown in Table 3 and
Appendix. To an extent, FGI-PID can handle errors, es-
pecially for the overall errors.

Figure 14 shows the variation of the value of cor-
rection coefficient. It can be seen that the fluctuation of
correction coefficients is very obvious. With the changes
of the correction coefficient, the immune parameters (K
and η) of the FGI-PID controller also change accordingly,
and these changes had made the performances better. It is
worth mentioning that the control effect of FGI-PID
under different control parameters is relatively close,
which can be seen from the smaller standard deviation in
Table 3. In this regard, for FI-PID, the performance is not
as good as FGI-PID, and the values of the standard de-
viation are greater.

Stop
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Length of errors
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Initialization
n, e(1), u(1), k0, η0, f (•), ...

Calculating e′(t + 1) based on n errors and
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Adjusting parameters K and η

e′(t + 1) and e (t)
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Figure 10: Process of the FGI-PID controller.
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5.2.2. Comfort Level. ,e comfort level can be estimated
from the point of accelerations. For example, in order to
reduce the passenger’s discomfort during a journey, the
acceleration should be usually less than 1m/s2, and the
change rate of acceleration (the derivative of accelera-
tion) should be usually less than 0.75 m/s3 [43, 59]. ,ese
common indicators were calculated in this study, as
shown in Table 4.

Table 4 shows three acceleration indexes of velocity-
time curves with the different controller and different
parameter, including the maximum acceleration, the

minimum deceleration, and the maximum change rate of
acceleration, as well as their maximum, minimum, av-
erage, and standard deviation. Overall, the maximum
acceleration under different parameters is 0.982m/s2, and
the average value (0.950 485m/s2) is close to the tar-
get curve (0.950m/s2). ,e minimum deceleration is
−0.942m/s2, and the average value (−0.931 487m/s2) is also
close to the target curve (−0.931m/s2). ,e maximum ac-
celeration change rate is 0.163m/s3, and the average value
(0.161 185m/s3) is slightly larger than the target speed curve
of 0.145m/s3. ,e accelerations and the change rates of

Initialize the parameters (K0, η0, ki
′, kd
′, fuzzy rules f(·), control law u, initial output y, initial error e, length of the production base

sequence n, and weight coefficient w).
while (t≤ length of inputs) do
Calculate the current output y(k) according to (1) or (2), and calculate current error e(t)

if (t≥ n) and errors e(t − n + 2) to e(t) are not all equal 0
Calculate e′(t + 1) according to (8)–(11)
if one of e′(t + 1) and e(t) is not equal 0
Calculate the correction coefficient according to formulas (12) and (13).
Calculate K and η according to weight coefficient w, (14) and (15)

else
K � K0, and η � η0

end if
else

K � K0, and η � η0
end if

kp(t) � K(1 − ηf(u′(t),Δu′(t)))

Calculate the current control law u(t) according to (3)
Update data u, e, y

end while
Postprocess results and visualization

ALGORITHM 3
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Figure 11: Velocity-time curve (a) and acceleration curve (b).
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acceleration satisfy the general requirements for comfort in
urban rail transit.

When comparing the FI-PID controller and the FGI-PID
controller with the performance of comfort level, the two are
very close.,e average value of acceleration and deceleration
of FI-PID is slightly smaller than that of FGI-PID, but the
stability is not as good as FGI-PID due to the larger standard
deviations. At the same time, the maximum value of the
acceleration change rate for FI-PID is not as good as FGI-
PID, showing a larger value of the average and a larger value
of the standard deviation. ,e performance on the value of
the standard deviation in Table 4 is very close to Table 3 with
a similar smaller standard deviation for FGI-PID.

In addition, Figures 15 and 16 show the changes in the
acceleration and the change rate of acceleration with the 1st
and 12th parameters. For the 1st parameters, the curves from
different controllers are very close, which benefited from the
suitability of the control parameters. But for the 12th pa-
rameters, the deviation of the two controllers’ output can be
found, which is more obvious fluctuation of FI-PID than
that of FGI-PID. Combining Table 4 and Figure 14, FGI-PID
can help reduce the fluctuation of acceleration and its change
rate with a better traceability. It is worth mentioning that
these phenomena are related to the variation of error.,at is,
the smaller the deviation on the velocity, the smaller the
deviation on the acceleration.
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Figure 12: Tracking curves with 1st parameters (a) and 12th parameters (b).

Table 3: Errors under different parameter and different controller.

No. a
f1 f2 f3 Maximal error

FI-PID FGI-PID FI-PID FGI-PID FI-PID FGI-PID FI-PID FGI-PID

1 115.397 112.779 0.049 0.048 173 372.887 166 347.702 1.871 1.849
2 190.398 126.056 0.057 0.052 200 737.828 183 424.269 1.924 1.896
3 193.596 124.591 0.059 0.052 204 386.149 181 710.911 1.937 1.891
4 197.444 130.052 0.056 0.055 190 142.383 192 790.746 1.888 1.925
5 206.014 134.077 0.061 0.056 211 369.137 197 974.489 1.951 1.937
7 189.967 126.185 0.059 0.052 205 235.797 183 856.682 1.942 1.898
8 203.835 132.220 0.061 0.055 210 307.087 192 813.168 1.945 1.922
9 192.035 120.538 0.059 0.051 203 369.217 179 641.669 1.937 1.887
10 207.309 131.984 0.062 0.055 213 868.345 195 433.065 1.957 1.933
12 210.068 130.027 0.061 0.054 211 001.222 192 005.118 1.945 1.923
Min 115.397 112.779 0.049 0.048 173 372.887 166 347.702 1.871 1.849
Max 210.068 134.077 0.062 0.056 213 868.345 197 974.489 1.957 1.937
Mean 190.606 126.851 0.058 0.053 202 379.005 186 599.782 1.930 1.906
S.D. 27.457 6.427 0.004 0.002 12 279.062 9 508.092 0.028 0.027
aConsistent with the original number in Table 2.
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6. Discussion

Based on the parameter tuning and the development of the
FI-PID controller, this paper studied the application of
NSGA-II in parameter tuning and discussed the suitability of
GM(1,1) integrated in the FI-PID controller. ,e test results
show the feasibility of these methods.

In the case there are multiple optimization objects in a
parameter tuning process, if they are merged into one op-
timization objective function, it is likely that the optimal

result is not ideal because of different dimensions or
magnitudes of objectives. And using multiobjective opti-
mization algorithms is an ideal choice. Optimization algo-
rithms are usually easy to get a feasible solution, but they are
difficult to get a global optimal solution. ,is is also true for
NSGA-II because the algorithm is random in generating
individuals and genetic operations, and the selection of its
parameters is also very important. ,e method of increasing
the size of the population or running the optimal process
multiple times is feasible for obtaining some better optimal

0 50 100 150 200 250 300 350 400 450
−0.5

0

0.5

1

1.5

2

Time (s)

Er
ro

rs

FI-PID
FGI-PID

(a)

0 50 100 150 200 250 300 350 400 450
−0.5

0

0.5

1

1.5

2

Time (s)

Er
ro

rs

FI-PID
FGI-PID

(b)

Figure 13: Error curves with 1st parameters (a) and 12th parameters (b).
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solutions. In this paper, based on 10 tuning processes, 148
solutions were further screened, 10 optimal individuals were
finally determined, and the results also showed good perfor-
mances. ,e process with a small population and iterations
spends 948.128 s for the results in Table 1. It is also feasible to
increase the size of the population, but the population with
greater size or iterations will mean greater time consumption
if, unfortunately, local optimal solutions are unsatisfactory
situations. For practice, in order to acquire a better optimal
solution or a better performance, it is usually worth the time to
continually refine these key parameters.

,e tests based on the velocity-time curve show that the
FI-PID controller and the FGI-PID controller have good

applicability, which can be attributed to FI-PID itself and has
the property of the fuzzy control, and FGI-PID adds a
prediction part to dynamically adjust immune parameters,
which is similar to prediction control [20, 25, 37]. ,e
difference of FGI-PID than FI-PID is that it can predict a
next error based on historical errors and applies prediction
error in the control process. In this study, based on the
approximation idea of logit model, a logit function was used
to generate and adjust the value of the correction coefficient
based on the deviation between current errors and pre-
diction errors. Meanwhile, to minimize possible adverse
effects, the weighted average method was used to maintain
the balance between initial parameters and modified
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Figure 15: Acceleration curves with 1st parameters (a) and 12th parameters (b).

Table 4: Accelerations under different parameter and different controller.

No.a
Maximal acceleration (m/s2) Minimal deceleration (m/s2) Maximal change rate of

acceleration (m/s3)
FI-PID FGI-PID FI-PID FGI-PID FI-PID FGI-PID

1 0.953 352 0.953 540 −0.932 446 −0.932 778 0.160 953 0.160 107
2 0.942 791 0.953 228 −0.941 354 −0.932 023 0.161 160 0.160 715
3 0.936 699 0.953 166 −0.932 546 −0.932 030 0.161 880 0.161 110
4 0.949 322 0.953 107 −0.930 687 −0.931 767 0.162 234 0.160 573
5 0.950 432 0.952 880 −0.941 854 −0.931 863 0.160 856 0.160 309
7 0.943 531 0.953 214 −0.942 312 −0.931 938 0.161 680 0.160 709
8 0.982 397 0.952 635 −0.929 668 −0.931 794 0.161 947 0.160 390
9 0.932 753 0.953 207 −0.918 563 −0.931 963 0.161 498 0.161 626
10 0.949 438 0.953 058 −0.910 764 −0.931 881 0.160 860 0.161 288
12 0.936 821 0.954 138 −0.929 015 −0.932 487 0.162 710 0.161 091
Min 0.932 753 0.952 635 −0.942 312 −0.932 778 0.160 856 0.160 107
Max 0.982 397 0.954 138 −0.910 764 −0.931 767 0.162 710 0.161 626
Mean 0.947 754 0.953 217 −0.930 921 −0.932 052 0.161 578 0.160 792
S.D. 0.013 957 0.000 401 0.010 151 0.000 325 0.000 629 0.000 478
aConsistent with the original number in Table 2.
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parameters. ,e results show that the proposed method is
feasible for the FI-PID controller, not only for better pa-
rameters but also for worse parameters. ,is is indicated by
smaller standard deviations and averages, which mean that
the outcomes of control effect are less uncertain and more
likely to get a good performance. In this paper, the weight
coefficient in the weighted average method and the length of
the production base sequence in the prediction method are
determined based on the manual testes, and there is a great
space for optimizing these parameters. For practice, in order to
acquire a better performance, these parameters can also be
determined by optimization method or enumeration method

with simulation analyses. In addition, the applicability of FI-
PID and FGI-PID for other plants remains to be studied.

In an actual ATO system, the target velocity of a train is
usually adjusted and issued by the corresponding ATP
system during operation in real-time, rather than a fixed
velocity profile generated before departing from a station.
,e test method in the study can only discuss controllers’
performances from the aspects of traceability and comfort
level limitedly. ,e research on train’s punctuality or
stopping accuracy for the controllers needs to add more
simulation modules. However, the better the traceability is,
the closer it is to the target curve and the smaller the running
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Figure 16: Change rate curves of acceleration with 1st parameters (a) and 12th parameters (b).
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Figure 17: Error curves with 2nd parameters (a) and 3rd parameters (b).
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deviation on the timing or the distance. Meanwhile, if a
velocity curve was less adjusted during a control process, the
workload of ATC system would also reduce more. An ex-
cellent controller can improve the stability of ATO systems.

7. Conclusion

In this paper, a parameter tuning framework for the FI-PID
controller was constructed based on NSGA-II, a novel con-
troller named FGI-PID was developed based on FI-PID and a
method named GM(1,1), and the applicability of the FI-PID
controller and the FGI-PID controller for an ATO systemwas

analysed. ,e results showed that the parameter tuning
method is feasible, with both FI-PID and FGI-PID have high
applicability for the ATO system. At the same time, the
performances of FGI-PID are better than FI-PID. For future
studies, the parameter configuration of FGI-PID and the
performance of the two controllers in a more complex and
realistic simulation environment are worth discussing.

Appendix

Here, the error sequences corresponding to the 8 sets of
optimized parameters in Table 2 are shown as Figures 17–20.
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Figure 18: Error curves with 4th parameters (a) and 5th parameters (b).
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Figure 19: Error curves with 7th parameters (a) and 8th parameters (b).
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,ese error curves can also show that the FGI-PID controller
and the FI-PID controller have good performances. For
more details, please refer to Tables 3 and 4.
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