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Visible images contain clear texture information and high spatial resolution but are unreliable under nighttime or ambient
occlusion conditions. Infrared images can display target thermal radiation information under day, night, alternative weather, and
ambient occlusion conditions. However, infrared images often lack good contour and texture information. ,erefore, an in-
creasing number of researchers are fusing visible and infrared images to obtain more information from them, which requires two
completely matched images. However, it is difficult to obtain perfectly matched visible and infrared images in practice. In view of
the above issues, we propose a new network model based on generative adversarial networks (GANs) to fuse unmatched infrared
and visible images. Our method generates the corresponding infrared image from a visible image and fuses the two images
together to obtain more information.,e effectiveness of the proposed method is verified qualitatively and quantitatively through
experimentation on public datasets. In addition, the generated fused images of the proposed method contain more abundant
texture and thermal radiation information than other methods.

1. Introduction

Image fusion involves the use of mathematical methods to
comprehensively process important information acquired
by multiple sensors to produce a composite image that is
easier to understand, thereby greatly improving the utili-
zation rate of the image information and the reliability and
automation degree of systems for target detection and
recognition. Image fusion technology currently plays an
important role in military, remote sensing, medicine,
computer vision, target recognition, intelligence acquisition,
and other applications. ,e fusion of visible and infrared
images is one of the most useful cases of applying this
technology. Infrared imaging sensors capture the heat ra-
diation emitted by objects. On the one hand, infrared images
are less affected by dark or severe weather conditions but
typically lack sufficient background and contour edge de-
tails. On the other hand, visible images obtained by spectral
reflection offer high resolution, excellent image quality, and
rich background details but cannot detect objects under
hidden or low light and night conditions. ,e advantages of

visible and infrared images can be combined by constructing
fused images that retain richer feature information, making
them suitable for subsequent processing tasks.

Image fusion is divided into three levels (from lowest to
highest level): pixel-, feature-, and decision-level image
fusion. Currently, the most highly studied and frequently
applied image fusion is performed at the pixel level, and the
majority of proposed image fusion algorithms work at this
level. According to different image fusion processing do-
mains, image fusion can be roughly divided into two cat-
egories: the spatial domain and the transform domain.
Image fusion based on the spatial domain is directly con-
ducted on the pixel gray space of an image. Common image
fusion methods based on the spatial domain include linear
weighted image fusion, false color image fusion, image fu-
sion based on modulation, image fusion based on statistics,
and image fusion based on neural networks [1, 2]. Image
fusion based on the transformation domain involves
transforming multisource images, combining coefficients
from the transformation to obtain transformation coeffi-
cients of the fused images, and conducting inverse
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transformation to obtain the fused images. Common fusion
algorithms based on the transform domain include those
based on the discrete cosine transform (DCT), the fast
Fourier transform (FFT), the multiscale transform [3–5],
image subspace technology [6, 7], the saliency method [8, 9],
the sparse representation method [10, 11], and others
[12–15].

Currently, image fusion based on the transform domain
is a widely researched method. Most image fusion algo-
rithms are based on multiscale decomposition and typically
use the same transformation or representation for different
source images. Since the thermal radiation in infrared im-
ages and the texture information in visible images are dif-
ferent, multiscale decomposition methods are not suitable
for the fusion of infrared and visible images. To overcome
this problem, the developers of FusionGAN [16] proposed
an infrared and visible image fusion method based on the
novel perspective of generative adversarial networks (GANs)
[17]. In FusionGAN, the visible image and the generated
fused image are both allowed to enter the discriminator. To
“deceive” the discriminator, the fused image retains more
visible information and drops its infrared thermal radiation
information. It is often difficult to obtain perfectly matched
infrared and visible images. To solve the above problems,
this paper proposes a new fusion method that generates
matching infrared images for visible images and produces
fusion images that retain visible light texture details and
infrared thermal radiation information, as shown in
Figure 1.

,e main contributions of this paper are as follows:

A new GAN framework is proposed to retain more
information from visible and infrared images in fused
images.
For visible images without matching infrared images,
approximate infrared images are generated to facilitate
the next image fusion.
To verify the feasibility and effectiveness of the pro-
posed method, experiments are conducted on publicly
available visible and infrared image datasets, and a
comparison of the proposed method with other
methods is carried out using several popular evaluation
methods.
,e remainder of the paper is arranged as follows:
Section 2 briefly describes related studies on image
fusion and GANs. Section 3 introduces the proposed
method. In Section 4, the fusion performance of the
proposedmethod is experimentally evaluated. Section 5
presents the conclusion of the paper.

2. Related Studies

In this section, several methods for the fusion of visible and
infrared images are briefly introduced along with GANs.

2.1. Infrared and Visible Image Fusion Using a Deep Learning
Framework. Amethod to generate fusion images of infrared
and visible images using a deep learning framework was

proposed by Li et al. [18]. ,e authors decompose the source
image into base and detail content. ,e base content is fused
by weight averaging. A deep learning network is used to
extract multilayer features, and then, the L1-norm and a
weighted average strategy are used to generate candidates for
the fused detail content. ,e final fused detail content is
obtained using a max selection strategy.

2.2. Infrared and Visual Image Fusion through Infrared
Feature Extraction and Visual Information Preservation.
Zhang et al. [19] proposed an image fusion method that uses
infrared feature extraction and visual information preser-
vation. ,is method uses quadtree decomposition and
Bézier interpolation to reconstruct the infrared background
and then subtracts the reconstructed background from the
infrared image to obtain infrared bright features. ,e pro-
cessed infrared features are then added to the visible images
to achieve the final fusion image.

2.3. GAN and Its Derivatives

2.3.1. GAN. A GAN [17] consists of a generator G and a
discriminator D that perform a minimax game together. ,e
generator attempts to generate realistic images to trick the
discriminator, and the discriminator must distinguish all the
real images and the images generated by the generator until
G and D reach the Nash equilibrium:

min
G

max
D

Ex−pdata(x)[logD(x)] + Ez−pz(z)[log(1 − D(G(z)))].

(1)

2.3.2. Conversion between Matched Images. ,e Pix2Pix
[20] model, based on a conditional GAN (CGAN) [21],
realizes the translation task of a variety of matched images.
In Pix2Pix, generator G does not require random noise and
only accepts one input image X as condition C with
translated image Y as the output. Meanwhile, discriminator
D accepts an X sample and a Y sample, where Y contains the
real sample and the sample generated by the generator andD
determines whether X and Y are the actual matched images.

2.3.3. Fusion of Visible and Infrared Images. Recently, Ma
et al. proposed FusionGAN [16], which uses a GAN to fuse
the thermal radiation information of infrared images with
the high resolution and clear texture details of visible images.
FusionGAN’s generator produces a fused image with in-
frared intensity and an additional visible gradient, and the
discriminator distinguishes the fused image from the real
visible image so that the fused image retains both infrared
and visible image information.

3. Method

,is section introduces the method proposed in this paper.
First, the structural framework of the model is described,
and then the model is described in greater detail.
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3.1. Structural Framework of the Model. In this paper, the
GAN two-player game is used to fuse visible and infrared
images. ,e structural framework of the training process is
shown in Figure 2. Visible image IV is input as condition C
into generator G1 to generate a fake infrared image IRG.
Next, the visible image and the fake infrared image are input
into generator G2 together in a concatenated channel, cre-
ating fused image IF as the output. Discriminator D1 dis-
tinguishes between real visible image IV and fused image IF

so that the fused image is closer to the visible image and has
more visible texture details. Simultaneously, discriminator
D2 distinguishes real infrared image IR, generated infrared
image IRG, and fused image IF. ,rough continuous
updating, the generated infrared image becomes closer to the
real infrared image, and the fused image contains more
thermal radiation information. In Figure 3, a visible image is
input to obtain a fused image with both visible and infrared
radiation information.

3.2. Network Structure. In our model, generator G1 is the
three-part convolutional neural network (CNN), as shown
in Figure 4. It contains a downsampling component for
convolution, an upsampling component for deconvolution,
and a tanh active component. ,e downsampling compo-
nent for convolution contains 7 convolution blocks. Except
for the first block, each block contains one convolution layer
and one LeakReLU active layer. ,e upsampling component
for convolution also contains 7 convolution blocks. ,e
convolution layer adopts a 4× 4 filter, with a step size of 2
and “same” padding.

Generator G2 is the simple five-layer CNN, as shown in
Figure 5. ,e first two layers use a 5× 5 filter, layers 3 and 4
use a 3× 3 filter, and the last layer uses a 1× 1 filter. Each
convolution layer has a step size of 1 without padding.

Discriminators D1 and D2 adopt the network structure,
as shown in Figure 6. ,e discriminator contains a four-
layered CNN and a linear, fully connected layer. ,e first
four convolution layers use a 3× 3 filter with a step size of 2,
no padding, and the LeakReLU active layer. ,e last fully
connected layer is used for classification.

3.3. Loss Function. ,e loss function of the proposed
method consists of four elements, i.e., loss function LG1

of

generatorG1, loss function LG2
of generatorG2, loss function

LD1
of discriminator D1, and loss function LD2

of dis-
criminator D2. ,e loss function LG1

of generator G1 is given
by equation (2), where the first term represents adversarial
loss between the generator and discriminator D2 and the
second term represents the loss of the structural similarity
between the input visible image and the output infrared
image:

LG1
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(2)

,e loss function LG2
of generator G2 contains the

adversarial losses between generator G2 and discriminators
D1 and D2 and the content loss of the fused image relative to
the visible and infrared images:
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(3)

,e loss function LD1
of discriminator D1 is defined as

follows:

LD1
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2
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,e first term represents the classification results of the
visible images, and the second term represents those of the
fused images. ,e loss function LD2

of discriminator D2 is
given by equation (5), which includes an additional term to
represent the classification results of the generated infrared
images:
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(5)

Figure 1: Generated fused images.
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Figure 4: Network structure of generator G1.
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4. Experiments

,e TNO Image Fusion Dataset, a commonly used infrared
and visible fusion image dataset containing night-vision
infrared images and visible images of different scenes, was
used to train the proposed method. A total of 56 pairs of
images from the TNO dataset were selected. After the images
were translated, zoomed, and flipped, 25,936 pairs of in-
frared and visible images were obtained. All the experiments
were performed on a desktop computer with a 2.20GHz× 40
Intel Xeon(R) Silver 4114 CPU, GeForce GTX 1080 Ti GPU,
and 64GB of internal memory. ,e training parameters
were set to an image batch size of 32 and a learning rate of
10−4, and the generator was trained once for every 2 dis-
criminator training runs.,e chosen optimizer was Adam. It
took 16.5 hours to train the model. In the first part of this
section, several common image fusion evaluation indexes
are introduced. In the second part, two datasets are used to
validate the effectiveness of the proposed method compared
with three popular image fusion methods.

4.1. Common Image Fusion Evaluation Indexes. ,e evalu-
ation of fused images is performed by combining multiple
indexes together. Objective quantitative evaluation methods
are mainly divided into two categories: nonreference and
reference image evaluation methods. Nonreference image
evaluation methods include standard deviation (SD) [22]
and information entropy (EN) [23]. Reference image eval-
uationmethods include the correlation coefficient (CC) [24],
peak signal-to-noise ratio (PSNR) [25], structural similarity
index measure (SSIM) [25], visual information fidelity (VIF)
[26], root mean square error (RMSE), and universal image
quality index (UIQI) [27] methods. ,ese indexes are de-
fined as follows.

SD reflects the dispersion of the relative mean gray value
and is mathematically defined as follows:

SD �

��������������������

1
MN

􏽘

M

i�1
􏽘

N

j�1
(F(i, j) − μ)

2

􏽶
􏽴

, (6)

where μ is the average value of the fused images (M×N). A
greater SD value indicates a higher contrast in the fused
image and a typically better visual effect.

EN is a statistical feature form that reflects the average
amount of information in an image. EN is mathematically
defined as follows:

EN � − 􏽘
L−1

l�0
pllog2pl, (7)

where L represents the image’s gray levels and pl represents
the proportion of pixels with gray value i in the total pixels. A
larger EN means that a greater amount of information exists
in the fused images.

,e CC measures the degree of linear correlation be-
tween a fused image and infrared and visible images and is
mathematically defined as follows:

CC(X, Y) �
Cov(X, Y)

�������������
Var(X)Var(Y)

􏽰 , (8)

where Cov(X, Y) represents the covariance of X and Y and
Var (X) and Var (Y) represent the variance of X and Y,
respectively. ,e larger the CC is, the higher the degree of
correlation between the fused images and visible and in-
frared images is, and the higher the similarity is.

,e PSNR assumes that the difference between a fused
and reference image is noise and is mathematically defined
as follows:

PSNR � 10 log10
MAX2

MSE
􏼠 􏼡, (9)

where MAX represents the maximum value of the image
color and MSE is the mean squared error. ,e larger the
PSNR is, the more similar the two images are. ,e common
benchmark is 30 dB, and fused images with PSNR< 30 dB
are clearly deteriorated.

,e SSIM considers image distortion by comparing
changes in image structure information, thereby obtaining
an objective quality evaluation. ,e mathematical definition
of SSIM is as follows:

SSIM(X, Y) �
2uxuy + c1

u2
x + u2

x + c1
􏼠 􏼡

α

·
2σxσy + c2

σ2x + σ2y + c2

⎛⎝ ⎞⎠

β

·
σxy + c3

σxσy + c3
􏼠 􏼡

c

,

σxy �
1

N − 1
􏽘

N

i�1
xi − μx( 􏼁 yi − μy􏼐 􏼑,

(10)

where x and y are the reference image and fused image,
respectively, ux, uy, σ2x, σ

2
y, and σxy represent the mean value

and variance and covariance of images x and y, respectively,
and c1, c2, and c3 are small normal numbers to avoid having a
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Figure 5: Network structure of generator G2.
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denominator of zero. Parameters α, β, and c are used to
adjust the proportions.

VIF is a reference image evaluation method based on
natural scene statistics and the concept of image information
extracted from the human visual system. ,e mathematical
definition of VIF is as follows:

VIF �
􏽐

K
k�1 I Ck

r ; Fk zk
r

􏼌􏼌􏼌􏼌􏼐 􏼑􏽨 􏽩

􏽐
K
k�1 I Ck

r ; Ek zk
r

􏼌􏼌􏼌􏼌􏼐 􏼑􏽨 􏽩
, (11)

where I(C; E | z) is the reference image information content
and I(C; F | z) is the mutual information of the reference
and fused images.

,e RMSE is defined as follows:

RMSE �

������������������������

1
MN

􏽘

M

i�1
􏽘

N

j�1
R(i, j) − F(i, j)

2
􏽨 􏽩

􏽶
􏽴

. (12)

(a)

(b)

(c)

(d)

(e)

(f )

Figure 7: Qualitative fusion results of six images from the TNO dataset: (a) visible images; (b) infrared images; (c) DenseFuse fusion results;
(d) DeepFuse fusion results; (e) FusionGAN fusion results; (f ) proposed method fusion results.
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Figure 8: Continued.
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,e UIQI measures image distortion via a combination
of three factors: loss of correlation, brightness distortion,
and contrast distortion.

4.2. Experimental Validation on Fusion Performance

4.2.1. Validation by the TNO Dataset. Qualitative com-
parison: to provide a more intuitive observation of fusion
performance, six representative images were selected for
qualitative evaluation. ,e results of the fusion performance
of the proposed method and the other three methods are
shown in Figure 7. Figure 7(a) is the visible image,

Figure 7(b) is the infrared image, and Figures 7(c)–7(f) show
the fusion results of DenseFuse [28], DeepFuse [29],
FusionGAN [16], and the proposed method, respectively.
Intuitively, all four methods fuse the texture information of
the visible image and the thermal radiation information of
the infrared image together to some extent. However, the
fusion results of our method are more closely aligned with
human visual perception, better preserve visible informa-
tion, and retain more infrared information, making the
image look richer and clearer with higher contrast. In ad-
dition, the target area is also more prominent than those of
the other three methods.
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Figure 8: Quantitative comparison of the 14 dimensions of 8 indexes for 56 pairs of images from the TNO dataset.
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(a)

(b)

(c)

Figure 9: Infrared images generated using the proposed method.
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Figure 10: Continued.
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Quantitative comparison: the qualitative illustrations
in Figure 7 cannot objectively determine the quality of the
results. ,erefore, the fusion methods were further
compared using quantitative methods. Eight indexes were
used on 56 pairs of images from the TNO dataset, of which
six indexes require a reference (the fused image refers to
the corresponding visible and infrared images). ,e results
are shown in Figure 8. ,e proposed method achieves the
best performance for the majority of image pairs, and, for
some individual image pairs, the comprehensive fusion
index is much higher than that of the other methods. In
addition, compared with the other three methods, the
proposed method has the best average of the evaluation
indexes. Because the proposed method uses two dis-
criminants when referring to visible images, it is com-
parable to the FusionGAN method. However, when
referring to infrared images, the proposed method con-
siderably outperforms the FusionGAN method. ,is
shows that the proposed method retains more infrared
thermal radiation information while retaining sufficient
visible texture information. ,us, our training framework
is both effective and essential.

4.2.2. Validation by the VEDAI Dataset. ,e Vehicle De-
tection in Aerial Imagery (VEDAI) dataset [30] contains
publicly available aerial orthogonal normalization images
from Utah’s State Geographic Information Database (SGID)
by the Automated Geographic Reference Center (AGRC).
,ese aerial orthogonal normalization images contain a wide
variety of vehicles, backgrounds, and obfuscated objects.
Each image has three visible channels and one near-infrared
channel. In this section, the DenseFuse, DeepFuse,
FusionGAN, and proposed method are further tested using
the VEDAI dataset. Figure 9 shows the proposed method’s
generation of infrared images from visible images.
Figure 9(a) shows the visible images, Figure 9(b) shows the
actual infrared images corresponding to the visible images
from the dataset, and Figure 9(c) shows the infrared images
generated directly from the visible images using the pro-
posed method. Figure 9 illustrates that the infrared images
generated by the proposed method accurately reflect actual

thermal radiation information while maintaining consis-
tency with the real infrared images.

A total of 40 images from the VEDAI dataset were se-
lected for a quantitative comparison. Figure 10 shows a
quantitative analysis of the fusion results of the four methods
using 8 evaluation indexes. ,e proposed method achieves
the best SSIM, CC, PSNR, UIQI, and RMSE results on the
majority of images. Compared with the other three methods,
the averages of the other indexes of the proposed method are
the highest. Our experiments show that the proposed
method generalizes well to other datasets.

5. Conclusion

In this paper, we propose a new fusion method that gen-
erates a matched infrared image from a visible image and
generates a fused image that retains more visible texture
details and infrared heat radiation information than other
methods. Experimental evaluations on two public datasets
show that the proposed method generates infrared images
with thermal radiation information relatively consistent
with real infrared images and generates fused images with
clearly prominent texture information and rich thermal
radiation information. A quantitative analysis of eight
evaluation indexes for fused images shows that the proposed
method produces better visual effects while retaining more
information than other methods.
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