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In recent years, researches in the field of salient object detection have been widely made in many industrial visual inspection tasks.
Automated surface inspection (ASI) can be regarded as one of the most challenging tasks in computer vision because of its high
cost of data acquisition, serious imbalance of test samples, and high real-time requirement. Inspired by the requirements of
industrial ASI and the methods of salient object detection (SOD), a task mode of defect type classification plus defect area
segmentation and a novel deeper and mixed supervision network (DMS) architecture is proposed. -e backbone network
ResNeXt-101 was pretrained on ImageNet. Firstly, we extract five multiscale feature maps from backbone and concatenate them
layer by layer. In addition, to obtain the classification prediction and saliency maps in one stage, the image-level and pixel-level
ground truth is trained in a same side output network. Supervision signal is imposed on each side layer to realize deeper andmixed
training for the network. Furthermore, the DMS network is equipped with residual refinement mechanism to refine the saliency
maps of input images. We evaluate the DMS network on 4 open access ASI datasets and compare it with other 20 methods, which
indicates that mixed supervision can significantly improve the accuracy of saliency segmentation. Experiment results show that
the proposed method can achieve the state-of-the-art performance.

1. Introduction

Surface defect detection based on computer vision is an
important task in the industry. In traditional cases, object
surface defect detection is performed by the human eye.
However, such artificial recognition-based detection
methods are highly subjective, time-consuming, and lack of
accuracy. To overcome the limitations of manual inspec-
tion, automatic surface inspection (ASI) technology arises
to replace human decision.

In industry, automatic surface inspection task is
detecting local anomalies in uniform textures.-ese textures
can be divided into uniform textures and uneven textures.
Surface inspection objects include steel [1], wood [2], stone
[3], ceramic tile [4], and fabric [5].

To achieve automatic surface inception, many image
processing-based methods have been proposed. Traditional
ASI methods can be mainly divided into four categories:
structural method, statistical method, filter-based method,

and model-based method [6]. Structural methods simulate
primitives and displacements and are often used in repetitive
patterns, including roughness measurements, boundary
features, and morphology [7]. Statistical methods, which
measure the distribution of pixel values, are commonly used
in the detection of random textures (wood, castings, and
tiles), including histogram method [8], local binary pattern
(LBP) [9], and gray-level co-occurrence matrix (GLCM)
[10]. -e filter-based method, which can be divided into the
spatial domain method [11] and frequency domain method
[12], directly applies a filter bank to the texture patterns. And
the model-based approach builds a complete representation
of the defect by modeling multiple features of the defect [4].
In general, despite the wide variety of automated surface
inspection methods, the purpose of these traditional
methods is to construct templates or features of the image.
Model performance depends on the accuracy of modeling
defects, which means the generalization ability of the model
has great limitations.
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In recent years, convolution neural networks have been
widely used in computer vision tasks such as image clas-
sification, object detection, semantic segmentation, and
salient object detection.-e neural network has also become
the mainstream of automatic surface inspection tasks. It has
powerful image feature learning and generalization ability,
which avoids the defect that the traditional ASI method
relies too much on hand craft design features. In addition,
the generic surface defect detection model has become
possible. Park et al. [13] designed a simple CNN network to
classify the surface defects of six different materials, which is
far superior to the traditional feature extraction with clas-
sifier. Weimer et al. [14] used the CNN models to seman-
tically segment the defect regions of the repeated texture
patterns in the DAGM2007 dataset, and the segmentation
performance was significantly improved.

With the introduction of neural network models and the
continuous improvement in algorithm performance, the ASI
task model is also evolving. -e ASI task evolved from
image-level defect recognition classification to finer-grained
pixel-level segmentation or object detection.

Ren et al. [15] redefined the task mode of ASI task
classification plus segmentation. Based on the Decaf net-
work, they build a general automatic surface detection
method. -en they perform image-level defect recognition
and segment the defect area at the pixel level by a pixel-by-
pixel hot zone algorithm. As the ASI dataset has the char-
acteristics of clear defect categories and clear foreground
background in a single picture, comparing with the general
saliency segmentation in the free scene or the more complex
semantic segmentation in the foreground, the task model of
defect classification plus saliency segmentation is obviously a
more reasonable choice. To solve the surface defect detection
task of magnetic tile, Huang et al. [16] designed a surface
defect detection network based on neural network and sa-
liency detection method, realizing the real-time detection of
surface defects of the magnetic tile. -is research also fully
demonstrates that the introduction of image saliency de-
tection can greatly help solve the ASI task.

Although the deep learning method has achieved re-
markable results in many computer vision tasks, its appli-
cation of the ASI tasks has been limited by various factors.
First, the deep learning method requires hundreds and
thousands of training data to ensure the training effect of the
model and prevent over-fitting. However, the collection of
images in industrial scenes is difficult and expensive, only a
few hundred or even dozens of images in the ASI dataset. In
addition, unlike the general scene target detection and sa-
liency detection tasks, most of the samples in practical in-
dustrial applications are negative samples, and it is expensive
and inefficient to directly perform image detection or seg-
mentation on all samples.-erefore, it is of great significance
to discuss how to efficiently and accurately identify and
segment surface defect regions with neural network. Finally,
different from the saliency detection in natural scenes, the
foreground of ASI tasks is usually the small-scale targets that
are difficult to detect in traditional algorithms, such as holes
and cracks. How to effectively divide these small-scale
targets is also a huge algorithm challenge faced by ASI tasks.

In this paper, ASI task is defined as defect classification
plus defect area segmentation. We propose the deeper and
mixed supervision network (DMS), an innovative generic
surface defect method to fulfill the multiscale classification
and salient defects detection in one stage. To achieve this, as
Figure 1 illustrates, we first extract five different layers as side
outputs from the backbone network and then integrate them
into three levels of feature maps. Second, we concatenate
different level feature maps layer by layer in side outputs.
Finally, we impose image-level ground truth and pixel-level
ground truth in each feature layer to realize deeper and
mixed supervision. In training, we designed a loss function
to balance the weight of the classification and saliency
segmentation. Finally, we refine the residual by the multi-
bypass output of the DMS network to obtain the classifi-
cation prediction and pixel-by-pixel prediction of the object
defect. -e test results applied to the four ASI open source
data sets show that the mixed supervision mechanism of the
DMS network can improve the saliency segmentation re-
sults. In the classification and segmentation tasks, the
models we propose can achieve the best results of the current
ASI tasks.

In summary, our contributions are four folds:

(i) Based on the multilevel side output architecture of
HED, we propose a novel deep network architec-
ture, i.e., DMS (including SDMS and BDMS) net-
work, which combines the recurrent high-medium-
low feature concatenate and residual refinement
mechanism.

(ii) We propose a mixed supervision mechanism, which
can fulfill defect classification and foreground seg-
mentation in one stage. Besides, mixed supervision
significantly improved the performance of SOD. We
also propose our loss function to balance the weight
of classification and foreground segmentation. In
addition, mixed supervision provides a solution for
processing the nonsalient samples, which is one of
the most challenging tasks in generic SOD.

(iii) We further explore the industrial application of
salient object detection, while most of the current
application focuses on wild scenes.

(iv) We evaluate our network in four ASI datasets and
compare it with other methods. Overall, DMS
network reaches the state-of-the-art performance
for SOD in ASI.

2. Related Work

2.1. Fully Supervised Salient Object Detection. Saliency de-
tection is a detection method that defines image content as
background and foreground, detects the foreground
according to the salient features, and divides it pixel by pixel.
Many traditional methods are employed, fusing hand-
crafted features for salient object detection [17, 18]. In recent
years, neural network algorithms, especially fully convolu-
tional neural networks (FCN) [19], have dominated many
fields of computer vision due to its convincing performance.
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For example, Zhang et al. [20] proposed a novel FCN-based
structure to learn deep uncertain convolutional features and
significantly encourage the robustness and accuracy of sa-
liency detection. However, these SOD models generally
require a large number of pixel-level images for training and
can only give a foreground inference, which cannot meet the
ASI task requirements. In contrast, we use image-level
ground truth for enhanced training in our approach, and we
can get defect classification and saliency segmentation re-
sults simultaneously.

2.2. Salient Object Detection with Image-Level Supervision.
In early saliency segmentation tasks, training data were
typically based entirely on expensive pixel-level image data,
while data with image-level ground truth were rarely used in
saliency detection. -is is because typically the task of an
image-level ground truth focuses on the category of the
object in the image rather than the specific location, while
the saliency detection is intended to detect the full extended
area of the foreground object and ignore its specific category.
However, research by Wang et al. [21] shows that image
classification and saliency segmentation tasks are essentially
interrelated, as the candidate regions provided by saliency
detection help classify more accurately, while the categories
provided by image-level ground truth are likely to be the
foreground of the image. -is method approaches or even
surpasses the state-of-the-art fully supervised model by
using image-level labels at that time. Particularly, in ASI
tasks, the categories of defects are limited and normally have
quite different features. It indicates that image-level ground
truth may be more useful when inferring the foreground
areas. WSS fully demonstrates the contribution to image-
level supervision in saliency detection, which provides in-
spiration for our DMS network.

2.3. Feature Concatenate and Dense Supervision Refinement.
Feature concatenate and shortcut connection are one of the
hotspots of neural network model research in recent years.
He et al. [22] who proposed ResNet is the first to propose
the mechanism of shortcut, which is a challenge to the

traditional neural network with the connection only be-
tween two adjacent layers. On this basis, DenseNet [23]
applies more dense connections and bypass setting with the
assumption that feature concatenate is a better learning
method than its multiple learning redundancy features. In
object detection, the FPN satisfies the requirements of the
detection task by combining the location information of
the low-level feature map and the classification information
of the high-level feature map. -ese studies have fully
proved that the potential of the feature layer in the tra-
ditional neural network has not been fully explored. Re-
cently, many saliency detection models have enhanced the
detection results by combining low-level structural features
and high-level semantic features through short connection
and obtained obvious effects.

Deng et al. [24] designed a residual refinement block
(RRB). -ey concatenate the input rough saliency map with
the depth feature layer, and the residual map is output and
supervised to form a new saliency map, which is used as the
input map for the next round of circular refinement. R3Net
achieves the refinement of the saliency maps by repeatedly
concatenating the high- and low-layer features, which im-
proves the effect of the saliency detection. Zhang et al. [25]
studied how to better aggregate multilevel convolutional
feature maps for salient object detection. -ey proposed a
novel structure to combine the multilevel feature maps at
each resolution and predict saliency maps with the com-
bined features. -ose convincing studies indicate that
multilevel feature maps that are generated by FCN are
complementary.

Most recently, a large number of edge information
enhancement methods have been proposed [26–30]. Zhao
et al. [26] proposed to use the complementarity of edge
information and saliency information to enhance the
boundary and location information of saliency objects. Wu
et al. [30] combined the SOD with edge detection and de-
veloped a novel mutual learning module (MLM) to help the
foreground contour and edge detection tasks guide each
other simultaneously. It is obvious that reasonable addi-
tional information is a useful complement to the SOD task.

-e DMS network proposed in this paper combines the
mechanism of multilevel feature concatenate, deep super-
vision, and residual refinement.-eDMS backbone network
is divided into three feature layers of low, medium, and high,
and the network performs multiscale feature concatenate by
means of short connection. -e multi-bypass configuration
satisfies the requirements of deep supervision and residual
refinement.

3. Methodology

We show the structure of single deeper and mixed super-
vision network (SDMS) in Figure 2. Figure 3 shows the
proposed structure of the bilateral deeper mixed supervision
(BDMS) network. We first select five different scales feature
maps of input images as side outputs through ResNeXt101
backbone network. -e side outputs of different layers
contain low-level details and high-level semantic informa-
tion, respectively. We consider that the first-layer and the
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Figure 1: -e setting of the side outputs.
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second-layer feature maps are integrated as the low-level
feature (LF), third-layer feature maps are used as the middle-
level feature (MF), and the fourth-layer and fifth-layer
feature maps are integrated as the high-level feature (HF).

For each feature layer (side output), we set an independent
convolution filter to generate connectable feature maps and
corresponding saliency map, and the parameters corre-
sponding to each feature layer are as shown in Table 1. We
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Figure 2: Structure of SDMS network.
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use the high-level features to generate the original saliency
map and classification information and then concatenate the
middle-level features and the original saliency map to
generate detailed saliency maps and classification infor-
mation. We finally concatenate the low-level features to
generate saliency maps. We design a mixed loss function to
adjust the loss weight of the saliency segmentation and
defect classification and supervise the training of each level
of the saliencymap and the classification signal. In the SDMS
and BDMS, we, respectively, adopt the saliency map after
third-level/six-level feature reuse and residual refinement as
the final output saliency map and obtain the image classi-
fication prediction. In the following subsections, we will
elaborate on the specific architecture of SDMS and BDMS,
weighted mixing losses, and the detail of surface defect
detection task when the proposed model is applied.

3.1. Deeper andMixed Supervision. -e ultimate goal of this
paper is to achieve classification of defect categories and
saliency segmentation of defect regions. However, unlike
general SOD tasks, there are toomany normal samples in the
ASI task, i.e., nonsalient samples. However, most of the
current SOD methods have neglected the large number of
nonsalient samples, especially in ASI. It is worth mentioning
that the recent research by Fan et al. [31] also shows that
most of the current SOD data sets and researchers’ selective
neglect of nonsalient samples lead to a large number of SOD
models to perform huge difference in real-world scenes. In
order to solve this drawback and combine the actual re-
quirements of the ASI task, this paper proposes a mixed
supervisory model based on multilevel side output imple-
mentation, which uses image-level weak supervised labels to
enhance the saliency detection effectiveness and can effec-
tively classify and process nonsalient samples in actual ASI
tasks, and significantly enhances the ability of the SOD
model to process nonsalient samples.

In Figure 3, we use the ResNeXt101 as backbone network
to extract five sets of different scale feature maps of the input
image as the side output. -e first-layer and second-layer
feature maps are combined as the middle-level feature (LF),
the third-layer feature maps are used as the middle-level
feature (MF), and the fourth-layer and fifth-layer feature
maps are combined into the high-level feature (HF). We use
the advanced features to generate the original saliency map
and classification information, then concatenate the middle-
level features and the original saliency map to generate
detailed saliency maps and classification information, and
finally concatenate the low-level features and generate sa-
liency maps. Both of the saliency maps will be upsampled to

the input size. Supervision signals were imposed on each
level of saliency maps and classification results.

3.2. Improved Side Output Architecture. It is generally be-
lieved that, in neural networks, low-level features contain
more detailed information, while higher-level features
contain more semantic and positioning information, so the
weighted average results of extracting multiscale side out-
puts in detection tasks tend to get better test results. Mul-
tiscale side output supervision was initially widely used in
areas such as edge detection [32]. Hou et al. [33] obtained an
improved DSS architecture based on the HED architecture
by combining a specific short-connection structure with side
outputs of different scales and successfully applied in the
field of saliency detection. However, in DSS, since the side
output layer is compressed into a single channel before
making a short connection, there may be significant in-
formation loss between the short connections [34]. From the
perspective of improving the efficiency of feature reuse, we
do not intend to fully refer to the short-connection archi-
tecture in DSS but try to make a more complete concatenate
of the side output.

-e backbone of the DMS network uses a similar pro-
cessing approach to the classic HED [32] architecture, taking
five side output layers from different depths of the backbone
network to ensure multiscale characteristics of the side
output layer. We observe that, in the previous study, no
researchers discussed the specific meaning of the five-layer
side output architecture and they simply classified it into
different information aggregations provided by low-level
features and high-level features. In order to make the
meaning of the side output layer more typical, we aggregate
side output layers 0 and 1 into low-level feature (LF), side
output layer 2 into the middle-level feature (MF), and side
output layers 3 and 4 into high-level feature (HF) as shown
in Figure 2. Since the shallower feature layer has a larger size,
we upsample the relatively deep feature layer to the same size
and then join them as follows:

LF � fconv cat L0, up L1( 􏼁( 􏼁( 􏼁,

MF � fconv L2( 􏼁,

HF � fconv cat L3, up L4( 􏼁( 􏼁( 􏼁,

(1)

where LF, MF, and HF, respectively, represent the low-level
features, middle-level features, and high-level features; Ln

represents the n-th layer side output; up represents the
feature layer upsampling, in the lower layer features L1 is
upsampled to the same scale as L0, and in the high-level
feature, L4 is upsampled to the same scale as L3; cat

Table 1: Parameter of each side output.

Side output Channel Input Conv filters Feature maps

LF Layer 0 64 75× 75 Conv3@256 Conv3@256 Conv1@256 256@75× 75Layer 1 256 75× 75
MF Layer 2 512 38× 38 Conv3@256 Conv3@256 Conv1@256 256@38× 38

HF Layer 3 1024 19×19 Conv3@256 Conv3@256 Conv1@256 256@19×19Layer 4 2048 10×10
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represents the concatenate of feature layers; and fconv
represents a set of convolutional layers used to aggregate
feature layers. On the one hand, reducing the number of
feature layers effectively reduces the computational cost of
side output stitching. On the other hand, the side output
layer is more visual, which helps us to further discuss the
association between the side output layers.

In the SDMS network, we first start from the high-level
feature HF as F0; after a set of transposed convolutions (so
that the feature layer has the same scale as the next layer); it is
upsampled to obtain the primary saliency map S0; and then
we aggregate the after-transposed-convolution high-level
feature layer HF and middle-level feature layer MF into F1.
Next, we draw on the idea of residual refinement [24],
stitching the primary saliency map S0 and the feature layer
F1 into the residual layer R1. -e next saliency map S1 is
obtained by refining the initial saliency map S0 by R1. -e
specific definition is as follows:

Fi � φtrans cat Fi− 1, F( 􏼁( 􏼁,

Ri � fconv cat Fi, Si− 1( 􏼁( 􏼁,

Si � Si− 1 ⊕Ri,

(2)

where Fi denotes the i-th feature layer; F represents the
corresponding side output layer (including HF,MF, and LF);
Ri represents the i-th residual layer (the number of channels
is 1); Si represents the i-th saliency map; and ϕtrans indicates
the transposed convolution corresponding to the size of the
next-level feature layer.

When using the above formula for calculation, an ob-
vious problem appears that, after the multilayer residual
refinement, the constantly superimposed feature layer Fi

generated for feature concatenate will cause huge compu-
tational overhead, so it is difficult to build a deeper archi-
tecture using SDMS network. To further optimize the
saliency map, we propose the dual-stream architecture, the
BDMS network. In BDMS, we use a dual-stream architecture
with top-down and bottom-up feature concatenates. Spe-
cifically, we retain the resulting saliency map Si after per-
forming a top-down deep mixed supervision, reset Fi to F,
and then perform a second round saliency map refinement
from bottom to top:

Fi � φtrans cat Fi− 1, F( 􏼁( 􏼁, if i≠ 3,

Fi � F, if i � 3.
􏼨 (3)

-e practice of resetting the side output features effec-
tively reduces the computational overhead of the neural
network and provides greater scalability for the DMS net-
work structure. In this paper, we chose the BDMS structure
shown in Figure 3 as the final architecture and obtain the
sixth-level saliency map as the final result. -e experimental
result shows that the training time of the model is signifi-
cantly reduced after reset side output.

3.3. Weighted Loss Function. In order to satisfy the mixed
supervision of classification result and saliency maps, we
design a weighted mixed loss function for neural network
training. We set open source data as D � (Xi, Yi, Yi

′)􏼈 􏼉
N

i ,

where Xi � Xk
i , k � 1, . . . , P􏽮 􏽯 and Yi � Yk

i , k � 1, . . . , P􏽮 􏽯,
respectively, represent an input image with a pixel value of P
and a binarized truth value map and Yi

′ represents a clas-
sification label corresponding to the image. We design our
weighted mixed loss function based on the cross-entropy
loss function. In particular, the formula for the weighted
mixed loss function in the n-th output is as follows:

Ln Yi
′, Yi, yi
′, yi( 􏼁 � −

w1

P
􏽘

P

k

Y
k
i log y

k
i + 1 − Y

k
i􏼐 􏼑log 1 − y

k
i􏼐 􏼑􏽨 􏽩

− w2 􏽘

N

j�1
Yij
′ log yij
′ ,

(4)

where yi
′ and yi represent the classification prediction and

the saliency maps, respectively; yk
i represents the predicted

value of the k-th pixel in the saliency maps, while the total
number of pixels is P; Yk

i represents the true value of the k-th
pixel, where Yk

i � 1 represents the foreground pixel andYk
i �

0 represents the background pixel; yij
′ represents the clas-

sification probability that the image belongs to the j-th class
in the N categories; Yij

′ represents the true category of the
image; w1 and w2, respectively, represent the weights of the
foreground segmentation and the classification part; and n
represents the n-th level output. In our experiments, we set
the values of w1 and w2 to 1 and 0.01, respectively, to balance
the loss function of foreground segmentation and
classification.

-e above formula shows how we calculate the loss
function of the n-th-order output. For the entire neural
network, our complete loss function θ is defined as the
weighted sum of the output loss functions of each stage:

θ � 􏽘
N

n�1
ωnLn, (5)

where ωn and Ln represent the weight and loss functions of
the n-th stage output andN depends on the number of layers
of feature concatenate and takes value 6 in the BDMS
network. In the experiment of this paper, we will not discuss
the weight of each feature layer, so ωn is set to 1 uniformly.

4. Experiments

In this section, we mainly illustrate the experimental pa-
rameters and the training test details of the model. We focus
on the ASI dataset we used and present the experimental
results.

4.1. Training and Inference Settings

4.1.1. Training Parameters. We implement the model based
on the PyTorch 0.4.0. All models were trained and tested on
an NVIDIA GeForce GTX Titan Xp GPU (12G Memory).
As the number of saliency detection data sets, especially ASI
data sets, is usually limited, a trained backbone network is
necessary. In this paper, we use the weight of ImageNet
pretrained ResNeXt101 [35] network as the initial
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parameters of the backbone network. We use the standard
stochastic gradient descent (SGD) training network, with the
size of each batch is 16, the momentum is set to 0.9, and the
weight attenuation is 0.0005. And the initial learning rate is
set to 0.001, using a polynomial decay with a power of 0.9.
Model training is finished after 20000 iterations, and we save
the best and the latest model.

-e SOD model is usually trained with the MSRA10K
[36] dataset and verified on other datasets. Considering the
limited size of the ASI datasets and the particularity of
mixed supervision, we divided it into training set and test
set in the same ASI dataset. -e ASI datasets is introduced
in Section 4.3.

4.1.2. Inference. During the testing stage, we input the test
image into the trained network and obtain the saliency map
and classification result of each side output, without any
other preprocessing or postprocessing. We estimate the
classification accuracy of the image and the Fβ and MAE
values of the saliency map while generating image reasoning
and save the relatively better results. In general, multilevel
optimized saliency map has better metrics.

4.2. EvaluationMetrics. In the classification task, we use the
classification accuracy to evaluate the model classification
effectiveness. For saliency testing, we use two commonly
used metrics, F measure (Fβ) and mean absolute error
(MAE), to evaluate our DMS network. A good saliency
network usually has a larger Fβ and a smaller MAE. For a
saliency map y with pixel value P, we linearly map the pixel
values from [0, 255] to [0, 1] and compare it with the truth
map Y. -e MAE calculation formula is as follows:

MAE �
1
P

􏽘

P

i�1
yi − Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (6)

And the F measure calculation formula is

Fβ �
1 + β2􏼐 􏼑precision × recall
β2precision + recall

. (7)

Usually, β2 � 0.3 is chosen as the recommended value for
the accuracy of the saliency maps. -ese metrics are dis-
cussed in our experimental results below.

4.3. ASI Datasets. In order to verify the effectiveness of the
proposed automatic surface defect detection model, we
select three surface defect detection public data for exper-
iments. -ese datasets include the magnetic tile surface
defect dataset [16], NEU surface defect dataset [37], rail
surface defect dataset [38], and the road crack defect dataset
[39].

4.3.1. Magnetic Tile Surface Defect Dataset. -e first dataset
is magnetic tile surface defect dataset (MTDD) [16]. MTDD
contains 1344 images which was divided into six categories,
including five types of defect and one type of defect-free
map, named as Blowhole, Break, Crack, Fray, Uneven, and

Free. Examples of different defect images and ground truth
are shown in Figure 4. We divide this dataset into training
set (1118 images) and test set (226 images). Both of the
training set and test set share the same category distribution.

4.3.2. NEU Surface Defect Database. -e second open
source dataset is the NEU strip surface defect dataset [37].
-e NEU dataset includes six defects of the hot rolled
strip surface, including cracks (Cr), inclusions (In),
plaques (Pa), pits (Ps), holes (Rs), and scratches (Sc), with
300 images each. Examples of defect images are shown in
Figure 5.

4.3.3. Rail Surface Defect Datasets. -e third open source
dataset is the rail surface defect datasets (RSDDs) [38]. It
contains two types of dataset: the first is Type-I RSDDs
dataset captured from express rails, which has 67 chal-
lenging images, and the second is Type-II RSDDs dataset
captured from common/heavy haul rails, which has 128
challenging images. Examples of defect images are shown
in Figure 6.

4.3.4. Road Crack Dataset. -e fourth open source dataset is
the road crack dataset [39]. -e road crack dataset does not
classify road cracks but provides roadmaps and pixel-level
labels, including a total of 151 images. Examples of defect
images are shown in Figure 7.

4.4. Ablation Analysis. In order to fully evaluate the per-
formance of mixed monitoring and feature concatenate
mechanisms in the ASI dataset, we perform ablation analysis
on DMS network. We use the same backbone network and
the hyperparameters in a series of simplified SDMS networks
and compare them with standard SDMS network to verify
the concatenate of the side output and effectiveness of mixed
supervision mechanism. -e specific setting of the ablation
models is shown in Table 2. -e results of different models
are show in Table 3.

Table 2 shows the test results for different settings. We
can draw the following conclusions from the experiment: (1)
-e accuracy of saliency maps in each side output layer of
the standard SDMS network are increased, indicating the
effectiveness of the residual refinement mechanism. (2) -e
comparison result between the standard SDMS and SDMS-
A networks proves that side output concatenate is effective
to improve the accuracy of salient defect detection. (3) -e
comparison between the standard SDMS and SDMS-B
networks shows that themixed supervisionmechanism has a
significant improvement in the accuracy of the detection and
proves the conclusion that image-level labels can effectively
enhance the saliency segmentation results. (4) -e com-
parison between the standard SDMS and SDMS-C networks
shows that the introduction of the ASPP mechanism does
not enhance the network effectiveness, meanwhile increased
training time for the DMS network by about 40%. Due to
this, we finally abandon the ASPP module. (5) Comparison
between the standard and SDMS-D indicates that feature
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concatenate is a more advanced method than skip con-
nection in reuse the feature layer. (6) It seems standard
SDMS has better performance than SDMS-E, even though
SDMS-E has better score in F measure. It indicates that
residual refinement is an effective mechanism for optimizing
the saliency maps.

4.5. Model Comparison. We compare the effectiveness of the
DMSmodel with 16 saliencymethods, including 12 traditional

saliency algorithms (ITTI [40], LC [41], SR [42], AC [43], FT
[44], MSS [45], PHOT [46], HC [47], RC [47], SF [48], BMS
[49], and MBP [50]), and 8 deep learning methods (U-Net
[51], FCN [19], R3Net [24], DSS [33], PiCANet [52], BASNet
[29], PoolNet [53], and EGNet [26]). We implement the
traditional saliency algorithm through the toolbox provided in
[16]. In particularly, we test traditional saliency methods in the
test dataset without free type, which causes significant inter-
ference with experimental results. For fair comparation, we
realize the deep learning method by running the code directly

G
T

Im
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e
G

T
Im

ag
e

Blowhole Crack Break Fray Uneven Free

Figure 4: Examples of magnetic tile surface defects (https://github.com/abin24/Magnetic-tile-defect-datasets).

(a) (b) (c) (d) (e) (f )

Figure 5: Examples of NEU surface defects datasets (http://faculty.neu.edu.cn/me/songkc/Vision-based_SIS_Steel.html). (a) Rolled-in
scale. (b) Patches. (c) Crazing. (d) Pitted surface. (e) Inclusion. (f ) Scratches.

Figure 6: Examples of rail surface defect datasets (https://github.com/cuilimeng/CrackForest-dataset).
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provided by authors. Table 4 mainly shows the expert results
on the MTDD dataset. Without any preprocessing and
postprocessing, the proposedmethod outperforms those state-
of-the-art methods. Figure 8 provides several examples of
different defects, where our method is obviously better than
others. Table 5 shows the test results on the other three
datasets, which verified the effectiveness of the proposed
method. In addition, our proposed method runs at about 7
FPS in GPU with input size 300∗ 300.

We also test the effectiveness of the DMS network on the
three ASI datasets of RSDDs, road cracks, and NEU.-e test
result shows that the DMS network can mostly meet the

Table 2: Setting of the ablation models.

Method Standard SDMS-A SDMS-B SDMS-C SDMS-D SDMS-E
Skip connection ✓
Feature concatenate ✓ ✓ ✓ ✓
Mixed supervision ✓ ✓ ✓ ✓ ✓
Residual refined ✓ ✓ ✓ ✓ ✓
ASPP ✓
F measure 0.9295 0.9245 0.9182 0.9254 0.9288 0.9309
MAE 0.00979 0.01294 0.01270 0.01196 0.01347 0.01063

Table 3: Results of models with different settings: the top 2 results
of MAE and FMax

β metrics in SDMS and top result in BDMS are
marked with bold font.

Model MAE↓ FMax
β ↑ Acc

Baseline Output 0.0175 0.9160 —
SDMS-A Output 0.0129 0.9245 90.3
SDMS-B Output 0.0127 0.9227 —
SDMS-C Output 0.0120 0.9254 89.8
SDMS-D Output 0.0135 0.9288 88.3
SDMS-E Output 0.0106 0.9309 87.6
Standard Output 0.0098 0.9295 89.6SDMS

BDMS

Output 0 0.0134 0.9335 98.2
Output 1 0.0103 0.9353
Output 2 0.0104 0.9355
Output 3 0.0104 0.9369
Output 4 0.0103 0.9360
Output 5 0.0082 0.9339

(a) (b) (c)

Figure 7: Examples of Road Cracks defects (https://github.com/cuilimeng/CrackForest-dataset).

Table 4: DMS model is compared with other models in terms of
performance metrics. -e best three results are in bold.

Model MAE↓ FMax
β ↑

ITTI 0.444 0.168
LC 0.160 0.147
SR 0.140 0.201
AC 0.119 0.161
FT 0.170 0.153
MSS 0.115 0.158
PHOT 0.108 0.161
HC 0.213 0.153
RC 0.275 0.185
SF 0.236 0.145
BMS 0.179 0.262
MBP 0.441 0.288
FCN 0.0532 0.898
PiCANet 0.0337 0.900
U-Net 0.0268 0.914
DSS 0.0177 0.919
R3Net 0.0109 0.914
BASNet 0.0103 0.922
PoolNet 0.0107 0.930
EGNet 0.0116 0.933
SDMS 0.0098 0.930
BDMS 0.0082 0.934
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foreground division of surface defects, but there is still room
for improvement in the accuracy of segmentation on small
defects such as cracks.

5. Conclusion

-is paper presents an optimized deep and mixed super-
vision network for surface defect saliency detection. -e
network is improved from the basic HED architecture and is
equipped with layer-by-layer feature concatenate structure
in the side output network. We design our loss function and
add the classify module in DMS, in order to joint training
classification and saliency segmentation in one stage. In the
side output network, we divide the side output into high-
level features, middle-level features, and low-level features
and realize feature reuse on the basis of preserving feature
layer information maximally. In addition, we generate sa-
liency maps along each feature layer and apply supervisory
signals, and the supervised map is passed to the next feature
layer to achieve residual refinement for the saliency map.

One of our key contributions is proposal of amechanism of
classification and saliency segmentation joint training. We
implement image classification plus segmentation in one
model, and the classification information effectively enhances
the saliency detection accuracy of the ASI dataset. In particular,

it has a remarkable effect on removing normal samples
(nonsalient images) with no defects in practical application.We
believe that such a multitask model is a useful idea to promote
saliency detection in more practical scenes. We conduct a
simplified model test and tested our DMS network on 4 dif-
ferent test sets. Result shows the improvement mechanism we
proposed increases the effectiveness of the saliency detection to
different extents and can be effectively promoted to other ASI
datasets.

We tried to employ the atrous spatial pyramid pooling
(ASPP) from DeeplabV3 in DMS network, for which may
improve the model effectiveness by expanding the convo-
lution layer receptive field. However, the experimental result
shows that this operation does not have a positive effect on
the task but declined some evaluation metrics instead. After
analysis, it may be that most detection objects in ASI saliency
datasets are mainly small targets, so the idea of expanding
the receptive field to collect global information is not very
effective. -at is to say, local information plays a more active
role in resolving saliency surface defect detection. At present,
saliency detection of small target objects is still a recognized
difficulty in the field of saliency detection. -erefore, ex-
ploring how to solve the saliency segmentation of small task
objectives may be one of the key points to further enhance
the ASI task.

Input AC BMS FT HC ITTI LC MBP MSS PHOT RC SF SR Ours GT

Figure 8: -e saliency maps of different models were compared. -e results obtained by our method are obviously different from those
obtained by other saliency methods and can almost accurately segment defects of different scales in the image.

Table 5: SDMS network’s performance on RSDDs, road cracks, and NEU datasets. We used the samemodel and hyperparameter settings in
the training.

Dataset RSDDs Road cracks NEU Settings
Model MAE↓ FMax

β ↑ MAE↓ FMax
β ↑ MAE↓ FMax

β ↑

-e same as the SDMS-D, which is shown in Table 3SDMS

Output0 0.01132 0.5526 0.03044 0.6973 0.00891 0.7927
Output1 0.00549 0.7842 0.01955 0.8169 0.00616 0.8229
Output2 0.00527 0.7835 0.01934 0.8148 0.00593 0.8249
Output0+ 0.00906 0.6884 0.02728 0.6549 0.00735 0.7913
Output1+ 0.00602 0.7888 0.01494 0.7805 0.00611 0.8258
Output2+ 0.00575 0.7882 0.01479 0.7786 0.00590 0.8306
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Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request. -e
saliency maps used to support the findings of this study have
been deposited in the GitHub repository (https://github.com/
Sssssbo/DMS). Previously reported ASI datasets were used to
support this study and are available at https://github.com/
abin24/Magnetic-tile-defect-datasets, http://faculty.neu.edu.
cn/me/songkc/Vision-based_SIS_Steel.html, https://github.
com/cuilimeng/CrackForest-dataset, and https://github.com/
cuilimeng/CrackForest-dataset. -ese prior studies (and
datasets) are cited at relevant places within the text as references
[16, 37, 38, 39].
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