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(is paper is the summary and enhancement of the previous studies on dynamic output feedback robust model predictive control
(MPC) for the linear parameter varying model (described in a polytope) with additive bounded disturbance. When the state is
measurable and there is no bounded disturbance, the robust MPC has been developed with several paradigms and seems
becomingmature. For the output feedback case for the LPVmodel with bounded disturbance, we have published a series of works.
Anyway, it lacks a unification of these publications. (is paper summarizes the existing results and exposes the ideas in a unified
framework. Indeed there is a long way to go for the output feedback case for the LPVmodel with bounded disturbance.(is paper
can pave the way for further research on output feedback MPC.

1. Introduction

In the control community, it is widely recognized that
linear parameter varying (LPV) model, whose system
matrices lie in the polytope, is a good tool for representing
the nonlinearity and uncertainty. (e well-known
Takagi–Sugeno (T-S) model (see, e.g., [1, 2]), often when
the stability is considered, can be considered as the LPV
model. (erefore, it is not surprising that there are a lot of
research works on the LPV model-based and T-S model-
based controls. Moreover, it is impossible that all the
uncertainties can be included in the parametric polytopes.
(e additive bound disturbance, with its real-time value
arbitrarily changing, without useful statistics, is another
widely accepted uncertainty description. (is paper con-
siders the above LPV model (including T-S model) with
additive bound disturbance.

(e research on robust model predictive control (MPC)
for LPV model has begun as early as in 1996 (see [3]). After
researching for slightly longer than a decade, the robust
MPC for LPV model (excluding T-S model and bounded
disturbance), when the state is assumed measurable, seems

becoming mature; there are four types in this robust MPC
community, i.e., open-loop MPC, partial feedback MPC,
feedback MPC, and parameter-dependent open-loop MPC
(see the Introduction of [4]). In the partial feedback, the
control move u is defined as u � Fx + c (i.e., state feedback
Fx plus perturbation c); when c � 0, the partial feedback
becomes the feedback and when F � 0, open-loop.When the
switching horizon N � 0 or N � 1, the four types are
equivalent. When N≥ 2, u can be defined as parameter-
dependent as in [4]; in this parameter-dependent case, open-
loop is equivalent to partial feedback.

From 2006, we have begun research on robust MPC for
LPV model (including T-S model and bounded distur-
bance), where the state can be unmeasurable. We have
published several works, emphasizing on N � 0, i.e., a
close generalization of [3]. For N> 1, we have not reached
to a technique which is, to us, as satisfactory as that in the
case when the state x is measurable. (erefore, this paper
concentrates on the output feedback robust MPC with
N � 0. N � 0 here indicates that there is no free control
move, i.e., both u and c will not be the immediate decision
variables.
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Although we have published several works on output
feedbackMPC, there lacks a unified and updated framework.
(ese works are given across more than 10 years. (e results
are scattered in different works; there are necessary overlaps
due to problem statements and recalls; some of the results
are improved which are not easy to trace back; some of the
details are missed in all published results; the original
thoughts may be overlooked. In this paper, we rearrange the
results of output feedback MPC for the LPV model during
these years, compromising the above demerits in the existing
works. We think that this is useful for future research; it is
not only a guideline, but also a summary for readers.

Notations: I is the unitary matrix with appropriate di-
mension; x(k + i | k) is the prediction of x(k + i) at time k.
Moreover,

(i) u: in Rnu , the control input signal
(ii) w: in Rnw , the disturbance
(iii) x: in Rnx , the true state
(iv) xc: in Rnxc , the estimator state or controller state
(v) y: in Rny , the output
(vi) |ξ|: the component-wise absolute value of ξ
(vii) εM: the ellipsoid associated with the positive-def-

inite matrix M, i.e., εM � ξ | ξ TMξ ≤ 1􏽮 􏽯

(viii) CoS: an element belonging to CoSmeans that it is
a convex combination of the elements in the
polytope S, with the scalar combing coefficients
being nonnegative and summing as 1

(ix) ★: this symbol induces a symmetric structure in
any square matrix

(x) ∗: a value with superscript ∗ means that it is the
solution of the optimization problem

2. Dynamic Output Feedback Robust
MPC Problem

Consider the following linear parameter varying (LPV)
model:

x(k + 1) � A(k)x(k) + B(k)u(k) + D(k)w(k),

y(k) � C(k)x(k) + E(k)w(k),

z(k) � C(k)x(k) + E(k)w(k),

z′(k) � F(k)x(k) + G(k)w(k),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where z(k) ∈ Rnz (see [5, 6]) and z′(k) ∈ Rn
z′ (see [7, 8]) are

the constrained signal and penalized signal, respectively, and
w is unknown, norm-bounded, and persistent.

Assumption 1. ‖w(k)‖≤ 1 for all k≥ 0.

Assumption 2. [A | B | C | D | E |C |E |F |G](k) ∈ Ω ≔ Co
[Al | Bl | Cl | Dl | El |Cl |El |Fl |Gl ] | l � 1, . . . , L]􏼈 􏼉, i.e.,
there exist nonnegative coefficients λl(k), l � 1, . . . , L such
that 􏽐

L
l�1λl(k) � 1 and [A | B | C | D | E |C |E |F |G](k) �

􏽐
L
l�1 λl(k)[Al | Bl | Cl | Dl | El |Cl |El |Fl |Gl].

Since D(k), E(k) are shaping matrices, Assumption 1
applies to any norm-bounded disturbance. If λl(k)’s are
exactly known at the current time k, but λl(k + i) for all i> 0
are unknown at the current time k, then we specially call (1)
the quasi-LPV model.

(e hard physical constraints are

|u(k)|≤ u,

|Ψz(k + 1)|≤ψ,

k≥ 0,

(2)

where u � [u1, u2, . . . , unu
]T; ψ � [ψ1,ψ2, . . . ,ψq]T; uj > 0,

j � 1, . . . , nu; ψj > 0, j � 1, . . . , q; Ψ ∈ Rq×nz .
When x is fully measurable and w(k) ≡ 0, Kothare et al. [3]

have developed a technique which, at each time k, solves a linear
matrix inequality (LMI) optimization problem with four con-
straints (confinement of the current state, invariance/stability/
optimality condition, input constraint, and state/output con-
straint). In the following, we will generalize the procedure of [3]
to the cases when x can be unmeasurable and w(k)≠ 0.

Theorem 1 (see [9]). Consider system (1), with Assumptions
1 and 2 being satisfied. Adopt the dynamic output feedback
controller, i.e.,

xc(k + 1) � Ac(k)xc(k) + Bc(k)y(k),

u(k) � Cc(k)xc(k) + Dc(k)y(k),
􏼨 (3)

where the controller parameters are defined as parameter-
dependent, i.e.,

Ac(k) � 􏽘

L

l�1
􏽘

L

j�1
λl(k)λj(k)A

lj

c (k),

Bc(k) � 􏽘

L

l�1
λl(k)B

l

c(k),

Cc(k) � 􏽘
L

j�1
λj(k)C

j

c(k),

Dc(k) � Dc(k).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

8e controller parametric matrices A
lj

c , B
l

c, C
j

c, Dc􏼚 􏼛(k)

are taken as
Dc � 􏽢Dc,

C
j

c � 􏽢C
j

c − DcCjQ1􏼒 􏼓Q− 1
2 ,

B
l

c � M− T
2

􏽢B
l

c − M1BlDc􏼒 􏼓,

A
lj

c � M− T
2

􏽢A
lj

c − M1AlQ1 − M1BlDcCjQ1 − M T
2 B

l

cCjQ1􏼒

− M1BlC
j

cQ2􏼓Q− 1
2 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where “(k)” is omitted for brevity. Further, {􏽢A
lj

c , 􏽢B
l

c,
􏽢C

j

c,
􏽢Dc}(k) are obtained by solving

min
c,αlj ,9,Q1 ,M1 ,􏽢A

lj

c ,􏽢B
l

c ,􏽢C
j

c,􏽢Dc􏽮 􏽯(k)

c(k),
(6)

s.t. M1(k)≤ 9(k)Me(k), (7)
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1 − 9(k) ⋆ ⋆
U(k)xc(k) Q1(k) ⋆

0 I M1(k)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦≥ 0, (8)

􏽘
L

l�1
C

ℓ
l (d, 2)ΥQBll (k) + 􏽘

L− 1

l�1
􏽘

L

j�l+1
C

ℓ
lj(d, 1, 1)

· ΥQBlj (k) + ΥQBjl (k)􏽨 􏽩≥ 0, ℓ � 1, . . . , |K(d + 2)|,

(9)

M1(k) ⋆ ⋆ ⋆

I Q1(k) ⋆ ⋆

0 0 I ⋆
1

������
1 − η1s

􏽰 ξs
􏽢Dc(k)Cj

1
������
1 − η1s

􏽰 ξs
􏽢C

j

c(k)
1
���η1s

√ ξs
􏽢Dc(k)Ej u2

s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0,

j � 1, . . . , L, s � 1, . . . , nu,

(10)

􏽘

L

l�1
C

ℓ
l (d, 2)Υz

hlls(k) + 􏽘
L− 1

l�1
􏽘

L

j�l+1
C

ℓ
lj(d, 1, 1)

· Υz
hljs(k) + Υz

hjls(k)􏽨 􏽩≥ 0, ℓ � 1, . . . , |K(d + 2)|,

h � 1, . . . , L, s � 1, . . . , q,

(11)
where U(k) is a transformation matrix being given before
solving (6)–(11), d is a fixed nonnegative integer, η1s ∈ [0, 1)

are the fixed scalars, and ξs is the s-th row of nu-ordered
identity matrix. In (9) and (11), K(d + 2) is the set of
L-tuples obtained from all possible combinations of
d1, d2, . . . , dL, dl ≥ 0,l � 1, . . . , L such that d1 + d2+

· · · + dL � d + 2. (e number of elements of K(d + 2) is
given by |K(d + 2)| � ((L + d + 1)!)/((d + 2)!(L − 1)!). (e
L-tuples of K(d + 2) are lexically ordered as ℓ � 1,

. . . , |K(d + 2)|. Moreover,

C
ℓ
l (d, 2) �

d!

d1! · · · dl− 1! dl − 2( 􏼁!dl+1! · · · dL!
, dl ≥ 2,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
ℓ
lj(d, 1, 1) �

d!

d1! · · · dl− 1! dl − 1( 􏼁!dl+1! · · · dj− 1! dj − 1􏼐 􏼑!dj+1! · · · dL!
, dl ≥ 1, dj ≥ 1,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

In (9),

ΥQB
lj �

(1 − α)M1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

(1 − α)I (1 − α)Q1 ⋆ ⋆ ⋆ ⋆ ⋆

0 0 αI ⋆ ⋆ ⋆ ⋆

Al + Bl
􏽢DcCj AlQ1 + Bl

􏽢C
j

c Bl
􏽢DcEj + Dl Q1 ⋆ ⋆ ⋆

M1Al + 􏽢B
l

cCj
􏽢A

lj

c
􏽢B

l

cEj + M1Dl I M1 ⋆ ⋆

Q1/2
1 Fj Q1/2

1 FjQ1 Q1/2
1 Gj 0 0 cI ⋆

R1/2 􏽢DcCj R1/2 􏽢C
j

c R1/2 􏽢DcEj 0 0 0 cI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)
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where “(k)” is omitted, and Q1,R􏼈 􏼉 are the weighting
matrices. In (11),

Υz
hljs �

M1 ⋆ ⋆ ⋆

I Q1 ⋆ ⋆

0 0 I ⋆

♠1 ♠2
1

������
1 − η2s

􏽰 ���η3s

√ ΨsEh Bl
􏽢DcEj + Dl􏼐 􏼑 ψ2

s −
1
η2s

ΨsEhE
T
h Ψ

T
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

♠1 �
1

������
1 − η2s

􏽰 ������
1 − η3s

􏽰 ΨsCh Al + Bl
􏽢DcCj􏼐 􏼑,

♠2 �
1

������
1 − η2s

􏽰 ������
1 − η3s

􏽰 ΨsCh AlQ1 + Bl
􏽢C

j

c􏼒 􏼓,

(14)

where “(k)” is omitted, Ψs is the s-th row of Ψ, and
η2s, η3s􏼈 􏼉 ∈ [0, 1) are the fixed scalars.

Take U(0) � I and an xc(0), and suppose
x(0) − xc(0) ∈ εMe(0). At each k≥ 0,

(a) For k> 0, apply (4) and (5) to obtain Ac, Bc􏼈 􏼉(k − 1),
then calculate xc(k) � Ac(k − 1)xc(k − 1) + Bc

(k − 1)y(k − 1)

(b) For k> 0, take

U(k) � U(k − 1), (15)

9(k) � 1 − xc(k)
T
[M
∗
3(k − 1) − U(k − 1)

T
M
∗
1(k − 1)

· U(k − 1)]xc(k),

(16)

Me(k) � M
∗
1(k − 1)9(k)

− 1
, (17)

where

M3(k − 1) � M2(k − 1) M1(k − 1) − Q1(k − 1)
− 1

􏽨 􏽩
− 1

· M2(k − 1)
T
,

(18)

with M2(k − 1) � − U(k − 1)TM1(k − 1)

(c) For k> 0, find Me
′, U′􏼈 􏼉(k) satisfying

x(k − 1) − U(k − 1)xc(k − 1) ∈ εMe(k− 1), ||w(k − 1)||≤ 1􏽮 􏽯

⟹x(k) − U′(k)xc(k) ∈ εMe
′(k),

(19)

Me
′(k)≥Me(k), (20)

and if (19) and (20) are feasible, then changeMe(k) � Me
′(k)

and U(k) � U′(k)

(d) Solve (6)–(11) to find Q1, M1,
􏽢A

lj

c , 􏽢B
l

c,
􏽢C

j

c,
􏽢Dc􏼚 􏼛
∗
(k)

(e) Take Q1, M1􏼈 􏼉(k) � Q1, M1􏼈 􏼉
∗
(k), Q2(k) � U(k)− 1

[Q1(k) − M1(k)− 1], and M2(k) � − U(k)TM1(k)

(f ) Apply (4) and (5) to obtain Cc(k) and Dc(k), then
implement u(k) � Cc(k)xc(k) + Dc(k)y(k)

Suppose (6)–(11) is feasible at time k � 0. (en,

(i) (6)–(11) will be feasible at each k> 0
(ii) c, z′, u􏼈 􏼉 will converge to a neighborhood of 0, and

the constraints in (2) are satisfied for all k≥ 0

In (6)–(11), the four constraints of [3] are generalized
(i.e., the confinement of x(k) being generalized to (7) and (8)
which is the confinement of both x(k) and xc(k), in-
variance/stability/optimality condition to (9) which is the
combination of quadratic boundedness and optimality
conditions, input constraint to (10), and state/output con-
straint to (11) which is the constraint on z).

In the following, let us show the details how the above
generalizations happen, taking Theorem 1 as one of the
examples.

3. Model and Controller Descriptions

(e predictive form of (1) is

x(k + i + 1 | k) � A(k + i)x(k + i | k) + B(k + i)u(k + i | k)

+ D(k + i)w(k + i),

y(k + i | k) � C(k + i)x(k + i | k) + E(k + i)w(k + i),

(21)

for all i≥ 0. (e predictive form of (2) is

|u(k + i | k)|≤ u,

|Ψz(k + i + 1 | k)|≤ψ,

i≥ 0,

(22)

where z(k + i | k) � C(k + i)x(k + i | k) + E(k + i)w(k + i).
According to Assumption 2,

4 Mathematical Problems in Engineering



[A | B | C | D | E |C |E |F |G](k + i)

� 􏽘
L

l�1
λl(k + i) Al | Bl | Cl | Dl | El |Cl |El |Fl |Gl􏼂 􏼃.

(23)

3.1. Controller for LPV Model. For the LPV model (1), the
dynamic output feedback controller is of the following form
(see firstly [10, 11]):

xc(k + 1) � Ac(k)xc(k) + Lc(k)y(k),

u(k) � Fx(k)xc(k) + Fy(k)y(k),

⎧⎨

⎩ (24)

where Ac, Lc􏼈 􏼉 are controller gain matrices and Fx, Fy􏽮 􏽯 are
feedback gain matrices. It is unnecessary that nx � nxc

. (e
predictive form of (24) is

xc(k + i + 1| k) � Ac(k)xc(k + i | k) + Lc(k)y(k + i | k),

u(k + i | k) � Fx(k)xc(k + i | k) + Fy(k)y(k + i | k).

⎧⎨

⎩

(25)

Remark 1. (ere are 4 controller parameters Ac, Lc, Fx, Fy􏽮 􏽯

in (24) and (25). In the literature, often there are only 2
controller parameters Lc, Fx􏼈 􏼉 for output feedback. We
found that with only 2 controller parameters Lc, Fx􏼈 􏼉, for (1),
it is more difficult to find the feasible solution to the op-
timization problem of output feedback MPC. With 4 pa-
rameters Ac, Lc, Fx, Fy􏽮 􏽯, output feedback MPC can be
applied to a much larger range of system models.

Define the augmented state 􏽥x �
x

xc

􏼢 􏼣. By applying (1)

and (24), the augmented closed-loop system is

􏽥x(k + 1) � Φ(k)􏽥x(k) + Γ(k)w(k), (26)

where

Φ(k) �

A(k) + B(k)Fy(k)C(k) B(k)Fx(k)

Lc(k)C(k) Ac(k)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Γ(k) �

B(k)Fy(k)E(k) + D(k)

Lc(k)E(k)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(27)

(e predictive form of (26) is
􏽥x(k + i + 1 | k) � Φ(i, k)􏽥x(k + i | k) + Γ(i, k)w(k + i),

(28)

where

Φ(i, k) �
A(k + i) + B(k + i)Fy(k)C(k + i) B(k + i)Fx(k)

Lc(k)C(k + i) Ac(k)
􏼢 􏼣,

Γ(i, k) �
B(k + i)Fy(k)E(k + i) + D(k + i)

Lc(k)E(k + i)
􏼢 􏼣.

(29)

By applying (23), it is shown that

Φ(i, k) � 􏽘
L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)Φlj(k),

Γ(i, k) � 􏽘
L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)Γlj(k),

Φlj(k) �
Al + BlFy(k)Cj BlFx(k)

Lc(k)Cj Ac(k)
⎡⎣ ⎤⎦,

Γlj(k) �
BlFy(k)Ej + Dl

Lc(k)Ej

⎡⎣ ⎤⎦.

(30)

3.2. Controller for Quasi-LPV Model. For the quasi-LPV
model (1), the dynamic output feedback controller is (3) and (4)
(see firstly [12, 13]), where nx � nxc

.(e predictive form of (3) is
xc(k + i + 1 | k) � Ac(k + i)xc(k + i | k) + Bc(k + i)y(k + i | k),

u(k + i | k) � Cc(k + i)xc(k + i | k) + Dc(k + i)y(k + i | k),
􏼨

(31)

where

Ac(k + i) � 􏽘
L

l�1
􏽘

L

j�1
λl(k + i)λj(k + i)A

lj

c (k),

Bc(k + i) � 􏽘
L

l�1
λl(k + i)B

l

c(k),

Cc(k + i) � 􏽘
L

j�1
λj(k + i)C

j

c(k),

Dc(k + i) � Dc(k).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Remark 2. For the quasi-LPV, since λl(k) are known, we can

utilize A
lj

c , B
l

c, C
j

c, Dc􏼚 􏼛(k) to calculate the parameter-de-

pendent Ac, Bc, Cc􏼈 􏼉(k). Such Ac, Bc, Cc􏼈 􏼉(k) allows to find
convex optimization problem to simultaneously give

A
lj

c , B
l

c, C
j

c, Dc􏼚 􏼛(k). Hence, the parameter-dependent

Ac, Bc, Cc􏼈 􏼉(k) is considerably better than the non-param-
eter-dependent Ac, Lc, Fx􏼈 􏼉(k).

Define the augmented state 􏽥x �
x

xc

􏼢 􏼣. By applying (1)

and (3), the augmented closed-loop system is
􏽥x(k + 1) � Φ(k)􏽥x(k) + Γ(k)w(k), (33)

where

Φ(k) �
A(k) + B(k)Dc(k)C(k) B(k)Cc(k)

Bc(k)C(k) Ac(k)
􏼢 􏼣,

Γ(k) �
B(k)Dc(k)E(k) + D(k)

Bc(k)E(k)
􏼢 􏼣.

(34)

(e predictive form of (33) is
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􏽥x(k + i + 1 | k) � Φ(i, k)􏽥x(k + i | k) + Γ(i, k)w(k + i),

(35)

where

Φ(i, k) �
A(k + i) + B(k + i)Dc(k + i)C(k + i) B(k + i)Cc(k + i)

Bc(k + i)C(k + i) Ac(k + i)
􏼢 􏼣,

Γ(i, k) �
B(k + i)Dc(k + i)E(k + i) + D(k + i)

Bc(k + i)E(k + i)
􏼢 􏼣.

(36)

By applying (32), it is shown that

Φ(i, k) � 􏽘
L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)Φlj(k),

Γ(i, k) � 􏽘
L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)Γlj(k),

Φlj(k) �
Al + BlDc(k)Cj BlC

j

c(k)

B
l

c(k)Cj A
lj

c (k)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

Γlj(k) �
BlDc(k)Ej + Dl

B
l

c(k)Ej

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(37)

In the sequel, we often use the notations for LPV, but the
results can be simply transplanted to quasi-LPV.

4. Characterization of Stability and Optimality

Consider the closed-loop systems (28) and (35). (ey have
the same form. Both (28) and (35) have uncertain system
parametric matrices which are composed of double convex
combinations (i.e., convex combinations by coefficients
λl(k + i) and λj(k + i)).

We will borrow the notion of quadratic boundedness
(QB) in [14, 15] to characterize the closed-loop stability of
(28) and (35).

4.1. Review of Quadratic Boundedness. In [14], the following
model with nominal parametric matrices is considered:

x(k + 1) � Ax(k) + Dv(k), (38)

where A and D are time-invariant (fixed) matrix, v ∈ Rnv . In
[14], it is firstly assumed that v ∈ V where V is a compact
(bounded and closed) set, and V ⊂ Rnv .

Definition 1 (see [14]). System (38) is said to be quadratically
bounded with Lyapunov matrix P> 0 if

x
T
Px≥ 1⟹ (Ax + Dv)

T
P(Ax + Dv)≤ x

T
Px, ∀v ∈ V .

(39)

System (38) is said to be strictly quadratically bounded
with Lyapunov matrix P> 0 if

x
T
Px> 1⟹ (Ax + Dv)

T
P(Ax + Dv)<x

T
Px, ∀v ∈ V .

(40)

Lemma 1 (see [14]). Suppose there exists a ξ ∈ V such that
Dξ ≠ 0. If (38) is quadratically bounded with the Lyapunov
matrix P> 0, then it is strictly quadratically bounded with the
same Lyapunov matrix.

Definition 2. (e set S is a robust positively invariant set for
(38), if

x ∈ S⟹(Ax + Dv) ∈ S, ∀v ∈ V . (41)

Theorem 2 (see [14]). Suppose v ∈ εPv
with Pv > 0. 8e

following facts are equivalent:

(i) (38) is quadratically bounded with Lyapunov matrix
P> 0

(ii) (38) is strictly quadratically bounded with Lyapunov
matrix P> 0

(iii) 8e ellipsoid εP is a robust positively invariant set for
(38)

(iv) xTPx≥ vTPvv⟹ (Ax + Dv)TP(Ax + Dv)≤ xTPx

(v) 8ere exists α> 0 such that

(1 − α)P − ATPA ⋆

− DTPA αPv − DTP D

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦≥ 0; (42)

(vi) A is exponentially stable (i.e., there exists P> 0 such
that P − ATPA> 0)

In [15], the following model with uncertain parametric
matrices is considered:

x(k + 1) � A(k)x(k) + D(k)v(k), (43)

where [A(k) | D(k)] belongs to a known bounded set, i.e.,
[A(k) | D(k)] ∈ P for all k≥ 0, and D≠ 0 for at least one
[A | D] ∈ P.

Definition 3 (see [15]). Suppose v(k) ∈ εPv
for all k≥ 0, in

(43). System (43) is said to be strictly quadratically bounded
with a common Lyapunov matrix P> 0, if
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x
T
Px> 1⟹ (Ax + Dv)

T
P(Ax + Dv)< x

T
Px,

∀v ∈ εPv
,∀[A | D] ∈ P.

(44)

Since D≠ 0 for at least one [A | D] ∈ P, and v ∈ εPv
,

there exists a Dv ≠ 0. Similarly to Lemma 1. if (43) is
quadratically bounded with Lyapunovmatrix P> 0, then it is
strictly quadratically bounded with the same Lyapunov
matrix.(e definition of quadratic boundedness is similar to
Definition 1.

Definition 4. Suppose v(k) ∈ εPv
for all k≥ 0, in (43). (e set

S is a positively invariant set for (43), if

x ∈ S⟹ (Ax + Dv) ∈ S, ∀v ∈ εPv
,∀[A | D] ∈ P.

(45)

Theorem 3 (see [15]). Suppose v(k) ∈ εPv
for all k≥ 0, in

(43). 8e following facts are equivalent:

(i) (43) is strictly quadratically bounded with a common
Lyapunov matrix P> 0

(ii) 8e ellipsoid εP is a positively invariant set for (43)
(iii) 8ere exists α(k) ∈ (0, 1) such that

(1 − α(k))P − A(k)TPA(k) ⋆

− D(k)TPA(k) α(k)Pv − D(k)TP D(k)
⎡⎣ ⎤⎦≥ 0.

(46)

Note that in the above theorem it is necessary to use a
time-varying α(k).

4.2. Stability Condition. In the output feedback MPC, QB is
equivalent to strict QB (see [16]). For the closed-loop

systems (28) and (35), by generalizing the results in Section
4.1, we obtain the following results.

Definition 5 (see firstly [12, 13] for quasi-LPV and [11, 17]
for LPV). Suppose (referring to Assumptions 1 and 2), at
time k and for all i≥ 0:

||w(k + i)||≤ 1; (47)

there exist nonnegative coefficients λl(k + i), l � 1, . . . , L

such that 􏽐
L
l�1λl(k + i) � 1 and [A | B | C | D | E](k) �

􏽐
L
l�1λl (k + i)[Al | Bl | Cl | Dl | El].
System (28) or (35) is said to be quadratically bounded

with a common Lyapunov matrix M(k) > 0, if

‖􏽥x(k + i | k)‖
2
M(k) ≥ 1⟹ ‖􏽥x(k + i + 1 | k)‖

2
M(k)

≤ ‖􏽥x(k + i | k)‖
2
M(k), ∀i≥ 0.

(48)

Definition 6. With the assumptions in Definition 5 satisfied,
the set S is a positively invariant set for (28) or (35), if

􏽥x(k + i | k) ∈ S⟹ 􏽥x(k + i + 1 | k) ∈ S, ∀i≥ 0. (49)

Theorem 4 (see firstly [10, 11] for LPV and [12, 18] for
quasi-LPV). With the assumptions in Definition 5 satisfied,
the following facts are equivalent:

(i) (28) or (35) is quadratically bounded with a common
Lyapunov matrix M(k)> 0

(ii) 8e ellipsoid εM(k) is a positively invariant set for (28)
or (35)

(iii) 8ere exists α(i, k) ∈ (0, 1) such that

(1 − α(i, k))M(k) − Φ(i, k) TM(k)Φ(i, k) ⋆

− Γ(i, k) TM(k)Φ(i, k) α(i, k)I − Γ(i, k) TM(k)Γ(i, k)
⎡⎣ ⎤⎦≥ 0, i≥ 0, (50)

(iv) Φ(i, k) is exponentially stable for all i> 0 (i.e., there
exists M(k) > 0 such that M(k) − Φ(i, k)TM(k)

Φ(i, k)> 0).

In [19], the single-valued α is firstly replaced by

α(i, k) � 􏽘
L

l�1
􏽘

L

j�1
λl(k + i)λj(k + i)αlj. (51)

4.3.OptimalityCondition. (e disturbance-free form of (28)
or (35) is
􏽥x u(k + i + 1 | k) � Φ(i, k)􏽥x u(k + i | k), ∀i≥ 0, 􏽥x u(k | k) � 􏽥x(k).

(52)

Correspondingly,

u u(k + i | k) � Fx(k)xc, u(k + i | k) + Fy(k)y u(k + i | k),

y u(k + i | k) � C(k + i)x u(k + i | k),

z u(k + i | k) � C(k + i)x u(k + i | k), zu
′(k + i | k)

� F(k + i)x u(k + i | k).

(53)

Let us introduce the quadratic cost

J(k) � 􏽘
∞

i�0
Ji(k),

Ji(k) � zu
′(k + i | k)

����
����
2
Q1

+ xc, u(k + i | k)
����

����
2
Q2

+ u u(k + i | k)
����

����
2
R

,

(54)

where Q1, Q2, and R are positive-definite weighting ma-
trices, and consider the condition
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􏽥x u(k + i + 1 | k)
����

����
2
M(k)

− 􏽥x u(k + i | k)
����

����
2
M(k)

≤ −
1

c(k)
Ji(k), ∀i≥ 0.

(55)

In (eorem 1, it has taken Q2 � 0. For exponentially
stable Φ(i, k), it will result in limi⟶∞zu

′(k + i | k) � 0,
limi⟶∞xc, u(k + i | k) � 0, and limi⟶∞u u(k + i | k) � 0.
Hence, summing (55) from i � 0 to i �∞ yields

J(k)≤ c(k) 􏽥x u(k | k)
����

����
2
M(k)

� c(k)‖􏽥x(k)‖
2
M(k). (56)

Further, let
􏽥x(k) ∈ εM(k). (57)

(en, applying (57) to (56) yields

J(k)≤ c(k), (58)

that is, c(k) is an upper bound of J(k). We will take c(k) as
the cost function of the optimization problems which finds
the controller parametric matrices.

(e condition (55) can be rewritten as

􏽥x u(k + i | k)
TΠ(i, k)􏽥x u(k + i | k)≥ 0, (59)

where

Π(i, k) � M(k) − Φ(i, k)
T
M(k)Φ(i, k)

−
1

c(k)
diag F(k + i)

T
Q1F(k + i),Q2􏽮 􏽯

−
1

c(k)
Fy(k)C(k + i) Fx(k)􏽨 􏽩

T

· R Fy(k)C(k + i) Fx(k)􏽨 􏽩.

(60)

Hence, (55) is guaranteed by Π(i, k)≥ 0. By applying the
Schur complement, it is shown that Π(i, k)≥ 0 can be
transformed into

M(k) − Φ(i, k)TM(k)Φ(i, k) ⋆ ⋆

Q1/2 diag F(k + i), I{ } c(k)I ⋆

R1/2 Fy(k)C(k + i) Fx(k)􏽨 􏽩 0 c(k)I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0, i≥ 0,

(61)

where Q � diag Q1,Q2􏼈 􏼉.
(e condition (55) or (61) is for optimality, not primarily

for stability. However, if

diag F(k + i)
T
Q1F(k + i),Q2􏽮 􏽯 + Fy(k)C(k + i) Fx(k)􏽨 􏽩

T

· R Fy(k)C(k + i) Fx(k)􏽨 􏽩> 0,

(62)

then (61) means that M(k) − Φ(i, k)TM(k)Φ(i, k)> 0, i.e.,
Φ(i, k) is exponentially stable (referring to point (iv) of
(eorem 4). We can indeed combine the optimality and
stability conditions by imposing (see firstly [11, 17] for LPV
and [12, 13] for quasi-LPV)

‖􏽥x(k + i | k)‖
2
M(k) ≥ 1

⟹ ‖􏽥x(k + i + 1 | k)‖
2
M(k) − ‖􏽥x(k + i | k)‖

2
M(k)

≤ −
1

c(k)
z′(k + i | k)

����
����
2
Q1

+ xc(k + i | k)
����

����
2
Q2

􏼔

+ ‖u(k + i | k)‖
2
R􏼕, ∀i≥ 0.

(63)

It is easy to show that (63) is equivalent to (in the sense
for any 􏽥x(k + i | k) and w(k + i))

(1 − α(i, k))M(k) − Φ(i, k)TM(k)Φ(i, k) ⋆ ⋆ ⋆

− Γ(i, k)TM(k)Φ(i, k) α(i, k)I − Γ(i, k)TM(k)Γ(i, k) ⋆ ⋆

Q1/2 diag F(k + i), I{ } Q1/2 G(k + i)

0
􏼢 􏼣 c(k)I ⋆

R1/2 Fy(k)C(k + i) Fx(k)􏽨 􏽩 R1/2Fy(k)E(k + i) 0 c(k)I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0, i≥ 0. (64)

Remark 3. It is apparent that feasibility of (64) guarantees
both (50) and (61). With c(k) free (i.e., as a decision variable),
feasibility of (50) guarantees both (61) and (64). (erefore, on
the feasibility aspect, (64) and (50) are equivalent.

4.4. A Paradox for State Convergence. Consider the con-
dition group {(57), (64)} or {(57), (50)}. Condition (64) or
(50) means that, if the augmented state 􏽥x(k) lies outside of
the ellipsoid εM(k), then 􏽥x(k + i | k) will converge to εM(k)

with the increase of i≥ 0. However, condition (57) requires

that the initial augmented state lies within the ellipsoid εM(k).
With the satisfaction of (57), condition (64) or (50) cannot
guarantee the convergence of 􏽥x(k + i | k); condition (64) or
(50) only guarantees the invariance of 􏽥x(k + i | k) within
εM(k).

In the above, although there is no guarantee that 􏽥x(k +

i | k) will converge, the convergence of 􏽥x(k + i | k) will
happen when ‖􏽥x(k)‖ is not small (see firstly [19] for LPV and
[20] for quasi-LPV).(emain reason lies in that (64) or (50)
is a robust condition.
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Let us impose that, if the augmented state 􏽥x(k) lies
outside of the ellipsoid εβ(k)− 1M(k), then 􏽥x(k + i | k) converges
to εβ(k)− 1M(k) with the increase of i≥ 0. Here, εβ(k)− 1M(k) is an
ellipsoid not larger than εM(k) since 0< β(k)≤ 1 (see firstly
[17] for LPV and [13, 20] for quasi-LPV). By applying such
β(k), we can change (48) as

‖􏽥x(k + i | k)‖
2
M(k) ≥ β(k)⟹ ‖􏽥x(k + i + 1 | k)‖

2
M(k)

≤ ‖􏽥x(k + i | k)‖
2
M(k), ∀i≥ 0,

(65)

which is equivalent to (in the sense for any 􏽥x(k + i | k) and
w(k + i))

♡ ⋆

− Γ(i, k)TM(k)Φ(i, k) α(i, k)β(k)I − Γ(i, k)TM(k)Γ(i, k)
􏼢 􏼣≥ 0,

♡ � (1 − α(i, k))M(k) − Φ(i, k)
T
M(k)Φ(i, k), i≥ 0.

(66)

We can also change (63) as

‖􏽥x(k + i|k)‖
2
M(k) ≥ β(k)

⟹ ‖􏽥x(k + i + 1|k)‖
2
M(k) − ||􏽥x(k + i | k)||

2
M(k)

≤ −
1

c(k)
z′(k + i|k)

����
����
2
Q1

+ xc(k + i | k)
����

����
2
Q2

􏼔

+‖u(k + i | k)‖
2
R􏽩, ∀i≥ 0,

(67)

which is equivalent to (in the sense for any 􏽥x(k + i | k) and
w(k + i))

(1 − α(i, k))M(k) − Φ(i, k)TM(k)Φ(i, k) ⋆ ⋆ ⋆

− Γ(i, k)TM(k)Φ(i, k) α(i, k)β(k)I − Γ(i, k)TM(k)Γ(i, k) ⋆ ⋆

Q1/2 diag F(k + i), I{ } Q1/2
G(k + i)

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ c(k)I ⋆

R1/2 Fy(k)C(k + i) Fx(k)􏽨 􏽩 R1/2Fy(k)E(k + i) 0 c(k)I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0, i≥ 0. (68)

Adding β(k) ∈ (0, 1] as a free variable, due to the special
position of β(k) in either (66) or (68), does not affect the
minimization of c(k) and feasibility. It is suggested to
minimize β(k) after the minimization of c(k) (see firstly [19]
for LPV and [20] for quasi-LPV). If the controller parametric
matrices are not reoptimized in minimizing β(k), it is easy to
know that we do not need β(k), i.e., we can simply remove it.

5. General Optimization Problem

Define par��→
� Ac, Lc, Fx, Fy􏽮 􏽯 for LPV and par��→

� 􏽢A
lj

c ,􏼚

􏽢B
l

c,
􏽢C

j

c,
􏽢Dc} for qusi-LPV. (e dynamic OFRMPC aims at

solving, at each k,

min
c,M,par
⟶

􏼈 􏼉(k)

max
[A | B | C | D | E |C |E |F |G ](k+i)∈Ω,‖w(k+i)‖≤1

c(k)􏼨 􏼩,

s.t. (22), (57), (48) and (55).

(69)

Lemma 2 (see firstly [19] for LPV and [18, 20] for quasi-
LPV) (recursive feasibility). Assume that the state x is
measurable. At each time k≥ 0, solve (69) and implement

u(k). Problem (69) is feasible for any k> 0 if and only if it
is feasible at k � 0.

Theorem 5 (see firstly [20] for quasi-LPV and [19] for
LPV) (stability). Assume that the state x is measurable. At
each time k≥ 0, solve (69) and implement u(k). If (69) is
feasible at k � 0, then with the evolution of k, c, z′, xc, u􏼈 􏼉

will converge to a neighborhood of the origin, and stay in this
neighborhood thereafter, and the constraints in (22) are
satisfied for all k≥ 0.

According to the above section, (69) is transformed into
(equivalently in the sense for any 􏽥x(k + i | k) and w(k + i))

min
c,αlj ,M,par

⟶
􏼈 􏼉(k)

max
[A | B | C | D | E |C |E |F |G ](k+i)∈Ω

c(k)􏼨 􏼩,

s.t. (22), (57), (50) and (61),

(70)

with recursive feasibility and stability properties retained.

5.1. Handling Physical Constraints. In [21, 22], the following
lemma is utilized to handle the physical constraints (e.g., the
magnitude constraints on x, y, and u).
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Lemma 3. Suppose a and b are vectors with appropriate
dimensions. 8en for any scalar η ∈ (0, 1), ‖a + b‖2 ≤ (1 − η)

||a||2 + (1/η)||b||2.
In [5, 7, 23, 24], it is found that applying the above lemma,

although simple, can greatly reduce the conservativeness for
physical constraint handling. In essence, the physical

constraints are handled based on the invariance of 􏽥x(k + i | k)

within εM(k).

Theorem 6 (see firstly [5, 23] for LPV and [9] for quasi-
LPV). Suppose at time k, there exist scalars α(i, k) ∈ (0, 1)

and ηrs, and matrix M(k)> 0, such that (57) and (50) hold,
and

M(k) ⋆ ⋆

0 I ⋆

1
������
1 − η1s

􏽰 ξs
Fy(k)C(k + i) Fx(k)􏽨 􏽩

1
���η1s

√ ξsFy(k)E(k + i) u2
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0, s � 1, . . . , nu, i≥ 0, (71)

M(k) ⋆ ⋆
0 I ⋆

1
���������������
1 − η2s( 􏼁 1 − η3s( 􏼁

􏽱 ΨsC(k + i + 1)Φ1(i, k)
1

����������
1 − η2s( 􏼁η3s

􏽱 ΨsC(k + i + 1)Γ1(i, k) ψ2
s −

1
η2s

Ψs E(k + i + 1)E(k + i + 1)
TΨTs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0,

s � 1, . . . , q, i≥ 0,

(72)

where Φ1(i, k) (Γ1(i, k)) is the first of the two rows of Φ(i, k)

(Γ(i, k)). Take care of the special cases:

(a) If ε(k + i + 1) � 0, then take (1/η2s)ΨsE(k + i + 1)

E(k + i + 1)TΨTs � 0 and η2s � 0
(b) If E(k + i) � 0, then take (1/ ���η1s

√
)ξsFy(k)E(k + i) �

0 and η1s � 0
(c) If D(k + i) � 0 and E(k + i) � 0, then take (1/ ���η3s

√
)

ΨsC(k + i + 1)Γ1(i, k) � 0 and η3s � 0

8en, (22) is satisfied.
In the above theorem, one may want to choose ηrs be

time-varying. However, we have not found a goodmethod to
online optimize ηrs, so we take ηrs as time-invariant.

According to Theorem 6, the problem (70) is approxi-
mated as (by no means equivalent to)

min
c,αlj ,M,par

⟶
􏼈 􏼉(k)

max
[A | B | C | D | E |C |E |F |G ](k+i)∈Ω

c(k)􏼨 􏼩,

s.t. (57), (50), (61), (71) and (72),

(73)

with recursive feasibility and stability properties retained. In
(73), ηrs is prespecified (see firstly [5, 23] for LPV and [9] for
quasi-LPV).

5.2. Current Augmented State. (e condition (57) (i.e.,
‖􏽥x(k)‖2M(k) ≤ 1 or 􏽥x(k) ∈ εM(k)) is the current condition on
the augmented state. At time k, in 􏽥x(k) � [x(k)T, xc(k)T]T,
x(k) can be unmeasurable, while xc(k) is always known.
When x(k) is unmeasurable, we need to remove it from (57)
for the sake of solving (73).

Let us define an error signal

e(k) � x(k) − x0(k), (74)

where

x0(k) � U(k)xc(k), (75)

with U(k) being a known transformation matrix. When
U(k) � I, defining e(k) is usual; when U(k) � ET

0 is fixed,
see firstly [7, 25]; when U(k) is online refreshed, see firstly
[5, 26] for LPV and [9] for quasi-LPV. When x(k) is un-
measurable, e(k) is unknown (nondeterministic). If we can
obtain the outer bounding set of e(k), say De(k), then we
can utilize x0(k)⊕De(k) to replace x(k). Since De(k) is
known (deterministic), by replacing x(k) by x0(k)⊕De(k),
(57) becomes deterministic.

Define

M �
M1 MT

2

M2 M3

⎡⎣ ⎤⎦. (76)

Using x � e + Uxc, we obtain

􏽥x
T
M􏽥x � e + Uxc( 􏼁

T
M1 e + Uxc( 􏼁 + 2 e + Uxc( 􏼁

T
M

T
2xc + x

T
c M3xc

� e
T
M1e + 2e

T
M1U + M

T
2􏼐 􏼑xc + x

T
c U

T
M1U + 2U

T
M

T
2 + M3􏼐 􏼑xc.

(77)
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If we can remove the cross item 2eT(M1U + MT
2 )xc, then

the treatment of (57) will become easier, and the treatment
of recursive feasibility of the resultant optimization will
become simpler.

Lemma 4. In order to remove the cross item 2eT(M1U +

MT
2 )xc in 􏽥xTM􏽥x, we need to take U � − M− 1

1 MT
2 .

For quasi-LPV, [12, 18] firstly impose M2 � − M1 and [9]
firstly imposes U � − M− 1

1 MT
2 , both removing the cross item.

For LPV, [19] firstly imposes M2 � − M1, [7, 25] firstly
impose M2 � − E0M1, and [5, 26] firstly impose
U � − M− 1

1 MT
2 , all removing the cross item.

By substituting U � − M− 1
1 MT

2 into (77), we obtain

􏽥x
T
M􏽥x � e

T
M1e + x

T
c M3 − U

T
M1U􏼐 􏼑xc. (78)

By introducing a scalar 9(k) and imposing

e(k)
T
M1(k)e(k)≤ 9(k), (79)

xc(k)
T

M3(k) − U(k)
T
M1(k)U(k)􏽨 􏽩xc(k)≤ 1 − 9(k),

(80)

it is apparent that (57) is guaranteed. Condition (79) is
guaranteed by (7) if we can firstly guarantee that

e(k) ∈ εMe(k). (81)

(e condition e(k) ∈ εMe(k) can be guaranteed by ap-
propriately refreshing Me(k) at each k> 0. However, for the
initial time k � 0, e(k) ∈ εMe(k) has to be assumed.

Assumption 3. e(0) � x(0) − x0(0) ∈ εMe(0).
Based on Assumption 3 and the fact that e(k) ∈ εMe(k),

problem (73) is approximated as (by nomeans equivalent to)

min
c,αlj,9,M,par

⟶
􏼈 􏼉(k)

max
[A | B | C | D | E |C |E |F |G ](k+i)∈Ω

c(k)􏼨 􏼩,

s.t. (80), (7), (50), (61), (71) and (72),

(82)

with recursive feasibility and stability properties retained in
case Me(k) is appropriately refreshed.

Lemma 5 (for quasi-LPV, see [20] firstly with M2 � − M1,
and [9] firstly with U � − M− 1

1 MT
2 ; for LPV, see [19] firstly

with M2 � − M1, [7, 25] firstly with M2 � − E0M1, and
[5, 26] firstly with U � − M− 1

1 MT
2 ). At each k> 0, if we choose

(12)–(14), then at time k, (80) and (7) can be satisfied with
equalities, i.e.,

xc(k)
T

M3(k) − U(k)
T
M1(k)U(k)􏽨 􏽩xc(k) � 1 − 9(k),

M1(k) � 9(k)Me(k).

(83)

Remark 4. In the above, the ellipsoidal bound on e or x has
been discussed. We have also utilized polyhedral outer
bounding sets of x, e.g.,

(a) Polyhedron with plane representation (see firstly
[27] for LPV), i.e.,

x(k) ∈ Px(k) ≔ x | − G(k)e≤Hx − �x(k)≤G(k)e{ },

(84)

where �x is a bias item, H �
Ha

Hb

􏼢 􏼣 a prespecified trans-

formation matrix with Ha being nonsingular, G(k) a di-
agonal matrix, and e � [e1, e2, . . . , ep]T with p> nx and ej > 0
(for all j � 1, . . . , p) being prespecified

(b) Polyhedron with vertex representation, i.e.,

x(k) ∈ Px(k) � Co ϑj(k) j � 1, 2, . . . , nϑ(k)
􏼌􏼌􏼌􏼌􏽮 􏽯, (85)

(see, e.g., [20] for quasi-LPV and [19] for LPV) which is a
general formulation of convex polyhedron.

We will not discuss the details for utilizing polyhedral
bounds, but the following points are promising:

(i) For the output feedback MPC, Px(k) in (84) is a
general formulation of convex polyhedron, which
includes the other polyhedral sets (e.g., [11–13, 18,
22]) as special cases, and is equivalent to the ex-

pression Px(k) � ξ |Hξ ≤G(k) 1
⟶

􏼚 􏼛 (with H ∈

Rp×nx being prespecified, and 1
⟶

� [1, 1, . . . , 1]T)
of [10].

(ii) Before [28], either ellipsoidal bound or polyhedral
bound is solely applied in the optimization problem.
(e recursive feasibility is guaranteed by a simple
refreshment of the ellipsoidal bound but might be lost
by applying polyhedral bound. In [28], it utilizes either
the ellipsoidal bound or the polyhedral bound, the
latter being used if and only if it is contained in the
former. Moreover, [28] shows the sufficient conditions
under which some approaches based on polyhedral
bound preserve the property of recursive feasibility. In
[29], the potentiality of applying both ellipsoidal and
polyhedral bounds is further explored.

5.3. Some Usual Transformations. In order to solve (82), we
need to transform (50) and (61) into familiar forms
(comparing with, e.g., [3]). Define Q � M− 1 and

Q �
Q1 QT

2

Q2 Q3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (86)

By applying the Schur complement, (50) is transformed
into

(1 − α(i, k))M(k) ⋆ ⋆

0 α(i, k)I ⋆

Φ(i, k) Γ(i, k) Q(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0, i≥ 0. (87)
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By applying the Schur complement, (61) is transformed
into

M(k) ⋆ ⋆ ⋆

Φ(i, k) Q(k) ⋆ ⋆

Q1/2 diag F(k + i), I{ } 0 c(k)I ⋆

R1/2 Fy(k)C(k + i) Fx(k)􏽨 􏽩 0 0 c(k)I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0, i≥ 0.

(88)

(en, we need to remove or handle the convex com-
binations in {(87), (88), (71), (72)}. By invoking the double
convex combinations (DbCCs), (87) and (88) are equivalent
to, respectively,

􏽘

L

l�1
􏽘

L

j�1
λl(k + i)λj(k + i)ΥQBlj (k)≥ 0, i≥ 0,

􏽘

L

l�1
􏽘

L

j�1
λl(k + i)λj(k + i)Υoptlj (k)≥ 0, i≥ 0,

(89)

where

ΥQBlj (k) �

1 − αlj􏼐 􏼑M(k) ⋆ ⋆

0 αljI ⋆

Φlj(k) Γlj(k) Q(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Υoptlj (k) �

M(k) ⋆ ⋆ ⋆
Φlj(k) Q(k) ⋆ ⋆

Q1/2 diag Fj, I􏽮 􏽯 0 c(k)I ⋆
R1/2 Fy(k)Cj Fx(k)􏽨 􏽩 0 0 c(k)I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(90)

By removing the single convex combination, (71) is
guaranteed by

Υu
j (k)≥ 0, j � 1, . . . , L, s � 1, . . . , nu, (91)

where

Υu
j (k) �

M(k) ⋆ ⋆

0 I ⋆

1
������
1 − η1s

􏽰 ξs
Fy(k)Cj Fx(k)􏽨 􏽩

1
���η1s

√ ξsFy(k)Ej u2
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(92)

By removing the single convex combination, and in-
voking DbCC, (72) is guaranteed by

􏽘

L

l�1
􏽘

L

j�1
λl(k + i)λj(k + i)Υz

hlj(k)≥ 0,

h � 1, . . . , L, s � 1, . . . , q, i≥ 0,

(93)

where

Υz
hlj(k) �

M(k) ⋆ ⋆

0 I ⋆

1
���������������
1 − η2s( 􏼁 1 − η3s( 􏼁

􏽱 ΨsChΦ
1
lj(k)

1
����������
1 − η2s( 􏼁η3s

􏽱 ΨsChΓ
1
lj(k) ψ2

s −
1
η2s

ΨsChC
T
hΨ

T
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (94)

In summary, problem (85) is approximated as (not
strictly equivalent to)

min
c,αlj ,9,M,Q,par

⟶
􏼈 􏼉(k)

max
[A | B | C | D | E |C |E |F |G ](k+i)∈Ω

c(k)􏼨 􏼩

s.t. (80), (7), (89), (91), (93) andQ � M− 1,

(95)

with recursive feasibility and stability properties retained in
case Me(k) is appropriately refreshed.

5.4.HandlingDoubleConvexCombinations. In the literature
of fuzzy control based on Takagi–Sugeno model and robust

feedback control, the double convex combinations as in
{(89), (93)} have been extensively studied. Some well-known
examples include [30] (being invoked by MPC in [11, 18]),
[31, 32] (being invoked by MPC firstly in [10, 25]), and [1]
(being invoked by MPC firstly in [12]).

By analogy to “(eorem 1” in [31], the following result
can be obtained.

Lemma 6 (see firstly [10, 25]). 8e conditions

􏽘
L

l�1
􏽘

L

j�1
λl(k + i)λj(k + i)Υlj(k)≥ 0, i≥ 0, (96)

hold if and only if there exists a sufficiently large d≥ 0 such
that
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􏽘

L

l�1
C

ℓ
l (d, 2)Υll(k) + 􏽘

L− 1

l�1
􏽘

L

j�l+1
C

ℓ
lj(d, 1, 1) Υlj(k) + Υjl(k)􏽨 􏽩≥ 0,

ℓ ∈ 1, . . . , |K(d + 2)|{ }.

(97)

Moreover, if (97) holds for d � 􏽢d, then they hold for any
d> 􏽢d.

(is lemma has been utilized in (eorem 1. In this

lemma, Υlj(k) ∈ ΥQB
lj (k),Υoptlj (k),Υz

hlj(k)􏼚 􏼛. Equivalently,

the techniques for the positivity of DbCC, as in [1], can be
exactly utilized to obtain finite dimensional sufficient con-
ditions for the nonnegativity of DbCC in (96). For example,
(96) is guaranteed by any one set of the following sets of
conditions (see “Proposition 2” of [1]):

Set 1: (n � 2) (i) Υll(k)≥ 0, l ∈ 1, . . . , L{ }, (ii) Υlj(k) +

Υjl(k)≥ 0, j> l, l, j ∈ 1, . . . , L{ }

Set 2: (n � 3) (i) Υll(k)≥ 0, l ∈ 1, . . . , L{ }, (ii) Υll(k) +

Υlj(k) + Υjl(k)≥ 0, j≠ l, l, j ∈ 1, . . . , L{ }, (iii) Υlj(k) +

Υjl(k) + Υjt(k) + Υtj(k) + Υtl(k) + Υlt(k)≥ 0, t> j> l,
l, j, t ∈ 1, . . . , L{ }

In Sets 1 and 2, n is the complexity parameter of [1].With
a larger n, the conditions are less conservative but the
computational burden is heavier. (ere exists a finite n such
that necessary and sufficient conditions for satisfaction of
(96) can be obtained for a concrete model.

6. Solutions to Output Feedback MPC

For solving (95), LPV is much more difficult than quasi-
LPV. For quasi-LPV, by setting

Q �
Q1 − Q1 − M− 1

1( 􏼁M1M
− 1
2

− M− T
2 M1 Q1 − M− 1

1( 􏼁 M− T
2 M1 Q1 − M− 1

1( 􏼁M1M
− 1
2

⎡⎣ ⎤⎦, (98)

M �
M1 MT

2

M2 M2 M1 − Q− 1
1( 􏼁

− 1
MT

2

⎡⎣ ⎤⎦, (99)

which naturally satisfies M � Q− 1, and using the trans-
formation (equivalent to (5), with “(k)” being omitted for
brevity)

􏽢Dc � Dc

􏽢C
j

c � DcCjQ1 + C
j

cQ2

􏽢B
l

c � M1BlDc + MT
2B

l

c

􏽢A
lj

c � M1AlQ1 + M1BlDcCjQ1 + MT
2B

l

cCjQ1

+ M1BlC
j

cQ2 + MT
2A

lj

c Q2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (100)

a solution to (95) can be obtained through a single opti-
mization problem (6)–(11). For the prespecified α,{

η1s, η2s, η3s}, (6)–(11) is an LMI optimization problem. Be-
fore [9], for the quasi-LPV, some special solutions to (95)
can be found in [20, 28]. For LPV, even with prespecified
αlj, η1s, η2s, η3s􏽮 􏽯, one cannot find all the parameters Ac,􏼈

Lc, Fx, Fy}(k) in a single LMI optimization problem. In the
following, we give two solutions to (95) for LPV.

6.1. Full Online Method for LPV. By applying the block-

matrix inversion on Q �
Q1 QT

2
Q2 Q3

􏼢 􏼣, it is easy to show that

M �
M1 − M1Q

T
2Q− 1

3

− Q− 1
3 Q2M1 Q− 1

3 + Q− 1
3 Q2M1Q

T
2Q− 1

3

⎡⎣ ⎤⎦. (101)

Take U � − M− 1
1 MT

2 . (en, it is easy to show that U �

− QT
2 Q− 1

3 and

􏽥x(k)
T
M(k)􏽥x(k) � x(k) − x

0
(k)􏽨 􏽩

T
M1(k) x(k) − x

0
(k)􏽨 􏽩

+ xc(k)
T
Q3(k)

− 1
xc(k).

(102)

Lemma 7. Let Assumption 3 hold and at each k> 0, find
x0, Me􏼈 􏼉(k) such that x(k) − x0(k) ∈ εMe(k). Choose
U, xc􏼈 􏼉(0) such that U(0)xc(0) � x0(0) and at each k> 0,

U(k) such that U(k)xc(k) � x0(k). 8en, condition (80)
holds if

1 − 9(k) ⋆

xc(k) Q3(k)
􏼢 􏼣≥ 0. (103)

Further define N1 � M− 1
1 and P3 � Q− 1

3 . (en,

Q �
N1 + UQ3U

T UQ3

Q3U
T Q3

⎡⎢⎢⎣ ⎤⎥⎥⎦,

M �
M1 − M1U

− UTM1 P3 + UTM1U

⎡⎢⎣ ⎤⎥⎦,

(104)

which naturally satisfies M � Q− 1. By applying (104),
problem (95) becomes (equivalently)
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min
c,αlj,9,N1 ,M1 ,P3 ,Q3 ,Ac,Lc,Fx,Fy􏼈 􏼉(k)

max
[A | B | C | D | E |C |E |F |G ](k+i)∈Ω

c(k)􏼨 􏼩,

s.t. (103), (7), (89), (91), (93), (104), N1(k) � M1(k)− 1, P3(k) � Q3(k)− 1.

(105)

(is approach is proposed in [6, 7] where U(k) � ET
0 ,

and hence,

Q �
Q1 ET

0Q3

Q3E0 Q3

⎡⎣ ⎤⎦,

M �
M1 − M1E

T
0

− E0M1 M3

⎡⎣ ⎤⎦.

(106)

In solving (105), usually αlj(k) � α(k) can be pre-
specified. One can line-search α(k) over the interval (0, 1).
Indeed, we found that the improvement on control per-
formance is negligible by online optimizing α(k). (e
problem (105) has been solved by the iterative cone-com-
plementary approach (ICCA) (see firstly in [10, 25]). ICCA
has two major loops. (e inner loop is the cone-comple-
mentary approach (CCA) which minimizes Trace M1(k)􏼈

N1(k) + N1(k)M1(k) + Q3(k)P3 (k) + P3(k)Q3(k)} in or-
der to achieve N1(k) � M1(k)− 1 and P3(k) � Q3(k)− 1. (e
outer loop gradually reduces c(k). Note that, even with α(k)

being prespecified, (105) cannot be transformed into LMI
optimization problem.

In Algorithm 1, while first and second equations in step
(c) are natural for refreshing the bound of x(k), third
equation in step (c) is imposed for the recursive feasibility of

(105). Finding Me
′(k) satisfying equations in step (c) in

Algorithm 1 can be achieved via LMI techniques.

Theorem 7 (see [5, 26]). Adopt Algorithm 1. Suppose that
Assumption 3 holds, and (105) is feasible at time k � 0.
8en,

(i) (105) will be feasible at each k> 0
(ii) c, z′, xc, u􏼈 􏼉 will converge to a neighborhood of 0, and

the constraints in (2) are satisfied for all k≥ 0

6.2. Partial Online Method for LPV. In order to alleviate
the computational burden, we can prespecify Lc, Fy􏽮 􏽯 in
(105). In this way, M1, P3􏼈 􏼉 are no longer the decision
variables. (erefore, {(7), (89), (91), (93)} will be modified
accordingly.

By applying the Schur complement, (7) is equivalent
to

9(k)Me(k) I

I N1(k)
􏼢 􏼣≥ 0. (107)

Taking congruence transformations via diag Q(k), I{ } on
(89) yields

􏽘

L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)

1 − αlj(k)􏼐 􏼑Q(k) ⋆ ⋆

0 αlj(k)I ⋆

�Φlj(k) Γlj(k) Q(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0, i≥ 0,

􏽘
L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)

Q(k) ⋆ ⋆
�Φlj(k) Q(k) ⋆

♠ 0 c(k)I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0, i≥ 0,

(108)

♠ �

Q1/2
1 Fj♡ Q1/2

1 FjU(k)Q3(k)

Q1/2
2 Q3(k)U(k)T Q1/2

2 Q3(k)

R1/2 FyCj♡ + �Fx(k)U(k)T􏽨 􏽩 R1/2 FyCjU(k)Q3(k) + �Fx(k)􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

♡ � N1(k) + U(k)Q3(k)U(k)
T

􏽨 􏽩,

(109)

where

�Φlj(k) �
◇Q1(k) + Bl

�Fx(k)U(k)T ◇Q2(k)T + Bl
�Fx(k)

LcCjQ1(k) + �Ac(k)U(k)T LcCjQ2(k)T + �Ac(k)
􏼢 􏼣,

�Φ1lj(k) � ◇Q1(k) + Bl
�Fx(k)U(k)T ◇Q2(k)T + Bl

�Fx(k)􏽨 􏽩,

◇ � Al + BlFyCj􏼐 􏼑, �Ac(k) � Ac(k)Q3(k), �Fx(k) � Fx(k)Q3(k).

(110)
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Taking congruence transformations on (91) and (93) via
diag Q(k), I{ }, and applying the Schur complement, yields

Q(k) ⋆

1
������
1 − η1s

􏽰 ξs ♠ FyCjU(k)Q3(k) + �Fx(k)􏽨 􏽩 u2
s −

1
η1s

ξsFyEjE
T
j F

T
yξ

T
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≥ 0,

♠ � FyCj N1(k) + U(k)Q3(k)U(k)
T

􏽨 􏽩 + �Fx(k)U(k)
T
,

j � 1, . . . , L, s � 1, . . . , nu,

(111)

􏽘

L

l�1
􏽘

L

j�1
λl(k + i)λj(k + i)

Q(k) ⋆ ⋆
0 I ⋆
♠1 ♠2 ♠3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦≥ 0,

♠1 �
1

���������������
1 − η2s( 􏼁 1 − η3s( 􏼁

􏽱 ΨsCh
�Φ1lj(k),

♠2 �
1

����������
1 − η2s( 􏼁η3s

􏽱 ΨsChΓ
1
lj(k),

♠3 � ψ2
s −

1
η2s

ΨsChC
T
hΨ

T
s , h � 1, . . . , L, s � 1, . . . , q, i≥ 0.

(112)

In summary, problem (105) is simplified as

min
c,αlj,9,N1 ,Q3 ,�Ac,�Fx􏼈 􏼉(k)

max
[A | B | C | D | E |C |E |F |G ](k+i)∈Ω

c(k)􏼨 􏼩,

s.t. (103), (107) and (108), (111), (112),

(113)

with Ac(k), Fx(k)􏼈 􏼉 calculated by

Ac(k) � �Ac(k)Q3(k)
− 1

,

Fx(k) � �Fx(k)Q3(k)
− 1

.
(114)

(e solution to (113) can be obtained by LMI toolbox.
Since CCA is not involved, it is computationally less ex-
pensive than (105).

Theorem 8 (see [5, 26]). Adopt Algorithm 2. Suppose that
Assumption 3 holds, and (113) is feasible at time k � 0.
8en

(i) (113) will be feasible at each k> 0;

(ii) c, z′, xc, u􏼈 􏼉 will converge to a neighborhood of 0, and
the constraints in (2) are satisfied for all k≥ 0.

6.3. Prespecifying Relaxation Scalars. (e scalars ηrs appear
nonaffine and nonlinear in (105) and (113). Although it is
suggested that ηrs can be line-searched over the interval
(0, 1) for online optimizations, in this way, the computa-
tional burden will be considerably increased. An alternative
is to offline optimize ηrs. In [5, 26], we offline calculated ηrs

by applying the norm-bounding technique.

At each k≥ 0,
(a) for k � 0, take U(0) � I;
(b) for k> 0, calculate xc(k) � Ac(k − 1)xc(k − 1) + Lc(k − 1)y(k − 1), and refresh Me, U, x0􏼈 􏼉(k) as in (15)–(17);
(c) for k> 0, find Me

′(k) satisfying (the same as (19)–(20))
x(k − 1) − x0(k − 1) ∈ εMe(k− 1), ||w(k − 1)||≤ 1􏽮 􏽯⟹x(k) − x′

0
(k) ∈ εMe

′(k),

x′
0
(k)≥U′(k)xc(k),

Me
′(k)≥Me(k),

and, if equations in step (c) in Algorithm 1 are feasible, then change Me(k) � Me
′(k), U(k) � U′(k) and x0(k) � U′(k)xc(k);

(d) solve (105) to find Ac, Lc, Fx, Fy, M1, N1, Q3, P3􏽮 􏽯
∗

(k);
(e) implement u(k) � Fx(k)xc(k) + Fy(k)y(k).

ALGORITHM 1: Full dynamic OFRMPC.
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(e condition (111) is satisfied if
Q(k) ⋆

ξs ♠ FyCjU(k)Q3(k) + �Fx(k)􏽨 􏽩 􏽥u2
s

⎡⎢⎢⎣ ⎤⎥⎥⎦≥ 0,

♠ � FyCj N1(k) + U(k)Q3(k)U(k)
T

􏽨 􏽩 + �Fx(k)U(k)
T
,

j � 1, . . . , L, s � 1, . . . , nu,

(115)

1
1 − η1s

􏽥u
2
s +

1
η1s

ζu
s( 􏼁

2 ≤ u
2
s , (116)

where ζu
s � max (ξsFyEjE

T
j FT

yξ
T
s )1/2 | j � 1, . . . , L􏽮 􏽯. (e

maximum 􏽥us satisfying (116) is calculated by
􏽥us � us − ζu

s , (117)

by taking η1s � ζu
s /us.

(e condition (112) is satisfied if

􏽘

L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)

Q(k) ⋆

ΨsCh
�Φ1lj(k) 􏽥ψ2

s

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦≥ 0,

h � 1, . . . , L, s � 1, . . . , q, i≥ 0,

(118)

1
1 − η2s( 􏼁 1 − η3s( 􏼁

􏽥ψ2
s +

1
1 − η2s( 􏼁η3s

ζ
z

s􏼐 􏼑
2

+
1
η2s

ζz
s( 􏼁

2 ≤ψ2
s ,

(119)

where ζz
s � max (ΨsEhE

T
hΨ

T
s )1/2 | h � 1, . . . , L􏽮 􏽯 and

ζ
z

s � min
ζ

z

s

ζ
z

s

s.t. 􏽘
L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)

·
ζ

z

s I ⋆

ΨsChΓ1lj(k) ζ
z

s

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦≥ 0, h � 1, . . . , L, i≥ 0.

(120)

(e maximum 􏽥ψs satisfying (119) is calculated by

􏽥ψs � ψs − ζz
s − ζ

z

s , (121)

by taking η2s � ζz
s /ψs and η3s � ζ

z

s /(ψs − ζz
s ).

In the above, since ζu
s and ζz

s , ζ
z

s􏽮 􏽯 are the norms of the
disturbance-related items, the method for optimizing
η1s, η2s, η3s􏼈 􏼉 has been called the norm-bounding technique.
In this way, we obtain “the second best” values of ηrs (though
may not be the best).

(e constraints (115) and (118) will not be utilized in the
optimization problems (though they could be utilized), since
they are more conservative than (111) and (112). In (111) the
item u2

s − (1/η1s)ξsFyEjE
T
j FT

yξ
T
s applies for each j, while

in (115), the item 􏽥u2
s imposes for all j � 1, . . . , L. Similarly,

in (112), the item [(1/(
����������
(1 − η2s)η3s

􏽰
))ΨsChΓ1lj(k),ψ2

s −

(1/η2s)ΨsεhεThΨ
T
s ] applies for each pair of l, j􏼈 􏼉, while in

(118), the item 􏽥ψ2
s imposes for all l, j � 1, . . . , L.

6.4. Alternative Transformations for LPV. Take nx � nxc
and

Q2 � 0 in this subsection. Based on (98) and (99), let us define

N1 ≔M
− 1
1 ,

P1 ≔ Q
− 1
1 ,

U ≔ − M
− 1
1 M

T
2 ,

e(k) ≔ x(k) − Uxc(k),

􏽢Ac ≔ − UAcQ2,

􏽢Lc ≔ − ULc,

􏽢Fx � FxQ2,

Ac ≔ − UAcM
− T
2 M1 − P1( 􏼁,

Fx ≔ FxM
− T
2 M1 − P1( 􏼁,

T0 ≔
I 0
0 M− T

2 M1 − P1( 􏼁
􏼢 􏼣,

T1 ≔
Q1 N1
Q2 0􏼢 􏼣,

T2 ≔
I 0
0 − UT􏼢 􏼣,

MP ≔
M1 ⋆

M1 − P1 M1 − P1
􏼢 􏼣,

QN ≔
Q1 ⋆

N1 − Q1 Q1 − N1
􏼢 􏼣,

NQ ≔
Q1 ⋆
N1 N1

􏼢 􏼣,

Φlj ≔
Al + BlFyCj BlFx

􏽢LcCj Ac

⎡⎣ ⎤⎦,

􏽢Φlj ≔
Al + BlFyCj􏼐 􏼑Q1 + Bl

􏽢Fx Al + BlFyCj􏼐 􏼑N1
􏽢LcCjQ1 + 􏽢Ac

􏽢LcCjN1

⎡⎣ ⎤⎦,

􏽢Γlj ≔
Dl + BlFyEj

􏽢LcEj

􏼢 􏼣,

Φ1lj ≔ Al + BlFyCj BlFx􏽨 􏽩,

􏽢Γ1lj ≔ Dl + BlFyEj,

􏽢Φ1lj � Al + BlFyCj􏼐 􏼑Q1 + Bl
􏽢Fx Al + BlFyCj􏼐 􏼑N1􏽨 􏽩.

(122)

At each k≥ 0,
(a) see steps (a)–(c) in Algorithm 1;
(b) solve (113) to find �Ac, �Fx, N1, Q3􏽮 􏽯

∗
(k);

(c) calculate Ac, Fx􏼈 􏼉
∗
(k) via (114), and implement u(k) � Fx(k)xc(k) + Fyy(k).

ALGORITHM 2: Partial dynamic OFRMPC.
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Based on these notations, we have

Ac � − U
− 1

Ac M1 − P1( 􏼁
− 1

M
T
2 ,

Lc � − U
− 1􏽢Lc,

Fx � Fx M1 − P1( 􏼁
− 1

M
T
2 ,

M2 � − U
T
M1,

(123)

Ac � − U
− 1 􏽢AcQ

− 1
2 ,

Lc � − U
− 1􏽢Lc,

Fx � 􏽢FxQ
− 1
2 ,

Q2 � U
− 1

Q1 − N1( 􏼁.

(124)

According to (98), we have Q3 � U− 1(Q1 − N1)U
− T.

Applying a congruence transformation on (103), via diag
I, U(k)T􏽮 􏽯, yields

1 − 9(k) ⋆

U(k)xc(k) Q1(k) − N1(k)
􏼢 􏼣≥ 0. (125)

Based on (98) and (99), applying congruence trans-
formations on (89), via diag T0, I, T2􏼈 􏼉 and diag T0, T2, I, I􏼈 􏼉,
respectively, yields

􏽘

L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)ΥQBlj ≥ 0, i≥ 0, (126)

􏽘

L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)Υoptlj ≥ 0, i≥ 0, (127)

where ΥQBlj ≔
(1 − αlj)MP ⋆ ⋆

0 αljI ⋆
Φlj

􏽢Γlj QN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, Υopt

lj ≔

MP ⋆ ⋆ ⋆
Φlj QN ⋆ ⋆

Q1/2
1 Fj 0􏽨 􏽩 0 cI ⋆

R1/2 FyCj Fx􏽨 􏽩 0 0 cI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. Applying congruence

transformations on (91) and (93), via diag T0, I􏼈 􏼉, yields

MP ⋆ ⋆

0 I ⋆

1
������
1 − η1s

􏽰 ξs FyCj Fx􏽨 􏽩
1
���η1s

√ ξsFyEj u2
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0,

j � 1, . . . , L, s � 1, . . . , nu,

(128)

􏽘

L

l�1
􏽘

L

j�1
λl(k + i)λj(k + i) ×

MP ⋆ ⋆

0 I ⋆

1
���������������
1 − η2s( 􏼁 1 − η3s( 􏼁

􏽱 ΨsChΦ
1
lj

1
����������
1 − η2s( 􏼁η3s

􏽱 ΨsCh
􏽢Γ1lj ψ2

s −
1
η2s

Ψsεhε
T
hΨ

T
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0,

h � 1, . . . , L, s � 1, . . . , q, i≥ 0.

(129)

Summarizing the above, an equivalent transformation of
(105) is (see [5])

min
c,αlj,9,M1 ,N1 ,Q1 ,P1 ,Ac,􏽢Lc,Fx,Fy􏼈 􏼉(k)

max
[A | B | C | D | E |C |E |F |G ](k+i)∈Ω

c(k)􏼨 􏼩,

s.t. (125), (7), (126) − (129) andM1(k) � N1(k)− 1, Q1(k) � P1(k)− 1,

(130)

with Ac, Lc, Fx􏼈 􏼉(k) calculated by (123). (e optimization
problem (130) is nonconvex, but its near-optimal solution
arbitrarily close to the theoretically optimal one can be found
by applying ICCA.

Based-on (98) and (99), applying congruence trans-
formations on (89) and (90), via diag T1, I, T2􏼈 􏼉 and
diag T1, T2, I, I􏼈 􏼉 respectively, yields
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􏽘

L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)

1 − αlj􏼐 􏼑NQ ⋆ ⋆

0 αljI ⋆

􏽢Φlj
􏽢Γlj QN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0, i≥ 0, (131)

􏽘
L

l�1
λl(k + i) 􏽘

L

j�1
λj(k + i)

NQ ⋆ ⋆
􏽢Φlj QN ⋆

Q1/2
1 FjQ1 Q1/2

1 FjN1

R1/2 FyCjQ1 + 􏽢Fx􏼐 􏼑 R1/2FyCjN1

⎡⎢⎢⎣ ⎤⎥⎥⎦ 0 cI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0, i≥ 0. (132)

Applying congruence transformations on (91) and (93),
via diag T1, I􏼈 􏼉, yields

NQ ⋆

1
������
1 − η1s

􏽰 ξs FyCjQ1 + 􏽢Fx FyCjN1􏽨 􏽩 u2
s −

1
η1s

ξsFyEjE
T
j F

T
yξ

T
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0, j � 1, . . . , L, s � 1, . . . , nu, (133)

􏽘

L

l�1
􏽘

L

j�1
λl(k + i)λj(k + i)

NQ ⋆ ⋆

0 I ⋆

1
���������������
1 − η2s( 􏼁 1 − η3s( 􏼁

􏽱 ΨsCh
􏽢Φ1lj

1
����������
1 − η2s( 􏼁η3s

􏽱 ΨsCh
􏽢Γ1lj ψ2

s −
1
η2s

ΨsEhε
T
hΨ

T
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0,

h � 1, . . . , L, s � 1, . . . , q, i≥ 0.

(134)

In summary, an equivalent transformation of (113) is
(see [5])

min
c,αlj,9,N1 ,Q1,􏽢Ac,􏽢Fx􏼈 􏼉(k)

max
[A | B | C | D | E |C |E |F |G ](k+i)∈Ω

c(k)􏼨 􏼩,

s.t. (125), (107) and (131) − (134),

(135)

with Ac, Lc, Fx􏼈 􏼉(k) calculated by (124) and 􏽢Lc, Fy􏽮 􏽯 pre-
specified. (e solution to (135) can be obtained by LMI
toolbox.

7. Conclusion

We have summarized the existing results for dynamic output
feedback robust MPC for the polytopic LPV model with
additive bounded disturbance. (is kind of research is still
undergoing. For example, the free control moves are not
included satisfactorily as in the disturbance-free case when x
is measurable (e.g., the partial feedback MPC, feedback
MPC, open-loop MPC, and parameter-dependent open-
loopMPC).(e summary in this paper may pave the way for
future research.
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