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In this paper, we are concerned with a class of optimal control problem governed by nonlinear first order dynamic equation on
time scales. By imposing some suitable conditions on the related functions, for any given control policy, we first obtain the
existence of a unique solution for the nonlinear controlled system. 'en, we study the existence of an optimal solution for the
optimal control problem.

1. Introduction

'e theory of time scales was introduced by Hilger in [1] in
order to unify discrete and continuous analysis. Some
foundational definitions and results from the calculus on
time scales will be defined in Section 2. For more details, one
can see [2–4].

In recent years, the calculus of variations and optimal
control problems on time scales have attracted the attention of
some researchers. For example, [5–8] discussed the calculus of
variations on time scales and [9–12] studied some maximum
principles on time scales, while [13–16] investigated the exis-
tence of optimal solutions or the necessary conditions of
optimality for some optimal control problems on time scales.

In 2017, Guo [17] studied the projective synchronization
problem of a class of chaotic systems in arbitrary dimensions.
Firstly, a necessary and sufficient condition for the existence of
the projective synchronization problem was presented. Sec-
ondly, an algorithm was proposed to obtain all the solutions of
the projective synchronization problem. 'irdly, a simple and
physically implementable controller was designed to ensure the
realization of the projective synchronization. Finally, some
numerical examples were provided to verify the effectiveness
and the validity of the proposed results.

In 2020, Xu and Zhang [18] investigated general mean-field
linear-quadratic (LQ) games of stochastic large-population
system, where the individual diffusion coefficient could depend
on both the state and the control of the agent, and the control
weight in the cost functional could be indefinite. 'e as-
ymptotic suboptimality property of the decentralized strategies
for the LQ games was derived through the consistency con-
dition. A pricing problem was also studied, for which the
decentralized suboptimal price was obtained.

'roughout this paper, we always assume that T is a time
scale, T> 0 is fixed, 0, T ∈ T and σ2(T) � σ(T). For each
interval I of R, we denote by IT � I∩ T .

Suppose that there is a flock of sheep in a pasture. We
consider the changes in the number of sheep during a time
interval [0, σ(T)]T . It is well known that the supply of
herbage, which influences growth rate and reproductive
ability of sheep, is one of the main ways to control the
number of sheep. Now, we define some related functions as
follows:

x(t) is the number of sheep at time t

r(t) is the number of births per unit of time at time t

p(t) is the number of sales per sheep per unit of time at
time t
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u(t) is the amount of herbage supplied at time t

q(t) is the number of sheep converted by per unit of
herbage supplied per unit of time at time t

Let Uad be the admissible control set. 'en, for any given
control policy u ∈ Uad, it is easy to know that the changes in
the number of sheep can be described by the following linear
dynamic equation:

x
Δ

(t) + p(t)x(σ(t)) � r(t) + q(t)u(t), t ∈ [0, T]T .

(1)

At the same time, in order to keep steady development,
we may assume that the number of sheep at the beginning is
equal to that at the end, that is,

x(0) � x(σ(T)). (2)

Suppose that xu is the solution of the controlled systems
(1) and (2) corresponding to the control policy u and xd is
the desired value. Recently, the authors [19] considered the
optimal control problem (P0). Find a u0 ∈ Uad such that

J u0( 􏼁≤ J(u), for all u ∈ Uad, (3)

where

J(u) � 􏽚
T

0
xu(σ(t)) − xd(t)􏼂 􏼃

2Δt + 􏽚
T

0
u
2
(t)Δt, u ∈ Uad,

(4)

is the quadratic cost functional.
Motivated greatly by the abovementioned works, in this

paper, we suppose that the controlled system is governed by
the following more general nonlinear periodic boundary
value problem:

xΔ(t) + p(t)x(σ(t)) � f(t, x(t), x(σ(t))) + g(u(t)), t ∈ [0, T]T ,

x(0) � x(σ(T)).

⎧⎨

⎩ (5)

First, by imposing some suitable conditions on p, f, and
g, for any given control policy u ∈ Uad, we obtain the ex-
istence of a unique solution xu for the nonlinear controlled
system (5). 'en, we study the optimal control problem (P).
Find a u0 ∈ Uad such that

J u0( 􏼁≤ J(u), for all u ∈ Uad, (6)

where

J(u) � 􏽚
T

0
xu(σ(t)) − xd(t)􏼂 􏼃

2Δt + 􏽚
T

0
h(u(t))Δt, u ∈ Uad,

(7)

where xd is the desired value and h: R⟶ [0,∞) is
continuous.

2. Preliminaries

In this section, we will provide some foundational defini-
tions and results from the calculus on time scales.

Definition 1. We define the forward jump operator
σ: T⟶ T by

σ(t) :� inf s ∈ T : s> t{ }, for all t ∈ T , (8)

while the backward jump operator ρ: T⟶ T is defined by

ρ(t) :� sup s ∈ T : s< t{ }, for all t ∈ T . (9)

In this definition, we put inf∅ � supT and sup∅ � infT ,
where ∅ denotes the empty set. If σ(t)> t, we say that t is
right-scattered, while if ρ(t)< t, we say that t is left-scattered.
Also, if t< supT and σ(t) � t, then t is called right-dense,
and if t> inf T and ρ(t) � t, then t is called left-dense. If T
has a left-scattered maximum m, then we define
Tk � T − m{ }, otherwise Tk � T . Finally, the graininess
function μ: T⟶ [0,∞) is defined by

μ(t) :� σ(t) − t, for all t ∈ T . (10)

Definition 2. Assume f: T⟶ R is a function and let
t ∈ Tk. 'en, we define fΔ(t) to be the number (provided it
exists) with the property that given any ε> 0, there is a
neighborhood U of t(i.e., U � (t − δ, t + δ)T for some δ > 0)

such that

f(σ(t)) − f(s) − f
Δ
(t)(σ(t) − s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε|σ(t) − s|, for all s ∈ U.

(11)

We call fΔ(t) the delta derivative of f at t.
Moreover, we say that f is delta differentiable (or in

short, differentiable) on Tk provided fΔ(t) exists for all
t ∈ Tk. 'e function fΔ: Tk⟶ R is then called the (delta)
derivative of f on Tk. A function F: T⟶ R is called an
antiderivative of f: T⟶ R provided

F
Δ

(t) � f(t) holds for all t ∈ Tk
. (12)

If F: T⟶ R is an antiderivative of f: T⟶ R, then
we define the Cauchy integral by

􏽚
b

a
f(t)Δt � F(b) − F(a), for all a, b ∈ T . (13)

Definition 3. A function f: T⟶ R is called rd-continuous
provided it is continuous at right-dense points in T and its
left-sided limits exist (finite) at left-dense points in T .

Definition 4. We say that a function p: T⟶ R is re-
gressive provided

1 + μ(t)p(t) ≠ 0, for all t ∈ Tk
, (14)

holds. 'e set of all regressive and rd-continuous functions
will be denoted by R. We define the set of positively
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regressive functionsR+ as the set consisting of those p ∈R
satisfying

1 + μ(t)p(t) > 0, for all t ∈ T . (15)

Lemma 1. Let p ∈R, t0 ∈ T , and ep(·, t0) be the exponential
function on T . 0en,

(i) ep(t, t) ≡ 1 for all t ∈ T
(ii) eΔp(t, t0) � p(t)ep(t, t0) for all t ∈ Tk

Moreover, if p ∈R+, then

ep t, t0( 􏼁> 0, for all t ∈ T . (16)

Lemma 2. Let f be a continuous function on [a, b]T that is
differentiable on [a, b)T . 0en, f is increasing, decreasing,
nondecreasing, and nonincreasing on [a, b]T if fΔ(t)> 0,
fΔ(t)< 0, fΔ(t)≥ 0, and fΔ(t)≤ 0 for all t ∈ [a, b)T ,
respectively.

Lemma 3. Let fn􏼈 􏼉
∞
n�1 be a sequence of Δ integrable functions

on [a, b]T and suppose that fn⟶ f uniformly on [a, b)T for
a function f defined on [a, b]T . 0en, f is Δ integrable from a

to b and

􏽚
b

a
f(t)Δt � lim

n⟶∞
􏽚

b

a
fn(t)Δt. (17)

In the remainder of this paper, we always assume that
Banach space

C [a, b]T ,R( 􏼁 � y | y: [a, b]T⟶ R is continuous􏼈 􏼉,

(18)

is equipped with the norm ‖y‖ � maxt∈[a,b]T
|y(t)|,

p: [0, T]T⟶ (0,∞) is rd-continuous, and denote

M �
1

ep(σ(T), 0) − 1
. (19)

'en, it is easy to see that M> 0.

Lemma 4 (see [20]). For any y ∈ C([0, T]T ,R), the fol-
lowing first order linear periodic boundary value problem

xΔ(t) + p(t)x(σ(t)) � y(t), t ∈ [0, T]T ,

x(0) � x(σ(T)),

⎧⎨

⎩ (20)

has a unique solution

x(t) �
1

ep(t, 0)
􏽚

t

0
ep(s, 0)y(s)Δs + M 􏽚

σ(T)

0
ep(s, 0)y(s)Δs􏼢 􏼣,

t ∈ [0, σ(T)]T .

(21)

3. Main Results

First, we list the following two conditions which we shall use
in the sequel.

(A1)f: [0, T]T × R2⟶ R is continuous and there
exists 0<L< (M/2(1 + M)2σ(T)) such that

f t,ω1, v1( 􏼁 − f t,ω2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L ω1 − ω2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

t ∈ [0, T]T ,ω1,ω2, v1, v2 ∈ R.

(22)

(A2) g: R⟶ R and there exists K> 0 such that

|g(ω) − g(v)| ≤K|ω − v|, ω, v ∈ R. (23)

From now on, we always suppose that the control space
is C([0, T]T ,R) and the admissible control set Uad is a
compact subset of C([0, T]T ,R).

Lemma 5. Assume that conditions (A1) and (A2) are sat-
isfied. 0en, for any given control policy u ∈ Uad, the non-
linear controlled system (5) has a unique solution xu and

xu(t) �
1

ep(t, 0)
􏽚

t

0
ep(s, 0) f s, xu(s), xu(σ(s))( 􏼁 + g(u(s))􏼂 􏼃Δs􏼨

+M 􏽚
σ(T)

0
ep(s, 0) f s, xu(s), xu(σ(s))( 􏼁 + g(u(s))􏼂 􏼃Δs􏼩, t ∈ [0, σ(T)]T .

(24)

Proof. For any fixed u ∈ Uad, we define an operator
Φu: C([0, σ(T)]T ,R)⟶ C([0, σ(T)]T ,R) as follows:

Φux( 􏼁(t) �
1

ep(t, 0)
􏽚

t

0
ep(s, 0)[f(s, x(s), x(σ(s))) + g(u(s))]Δs􏼨

+M 􏽚
σ(T)

0
ep(s, 0)[f(s, x(s), x(σ(s))) + g(u(s))]Δs􏼩, t ∈ [0, σ(T)]T .

(25)
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Obviously, x is a solution of the nonlinear controlled
system (5) if and only if x is a fixed point of Φu in
C([0, σ(T)]T ,R).

Let x, y ∈ C([0, σ(T)]T ,R). 'en, in view of Lemmas 1
and 2 and (A1), we have

Φux( 􏼁(t) − Φuy( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1

ep(t, 0)
􏽚

t

0
ep(s, 0)[f(s, x(s), x(σ(s))) − f(s, y(s), y(σ(s)))]Δs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+M 􏽚
σ(T)

0
ep(s, 0)[f(s, x(s), x(σ(s))) − f(s, y(s), y(σ(s)))]Δs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1

ep(t, 0)
􏽚

t

0
ep(s, 0)|f(s, x(s), x(σ(s))) − f(s, y(s), y(σ(s)))|Δs􏼨

+M 􏽚
σ(T)

0
ep(s, 0)|f(s, x(s), x(σ(s))) − f(s, y(s), y(σ(s)))|Δs􏼩

≤ (1 + M) 􏽚
σ(T)

0
ep(s, 0)|f(s, x(s), x(σ(s))) − f(s, y(s), y(σ(s)))|Δs

≤L(1 + M) 􏽚
σ(T)

0
ep(s, 0)[|x(s) − y(s)| +|x(σ(s)) − y(σ(s))|]Δs

≤ 2L(1 + M)‖x − y‖ 􏽚
σ(T)

0
ep(s, 0)Δs

≤
2L(1 + M)2σ(T)

M
‖x − y‖, t ∈ [0, σ(T)]T ,

(26)

so

Φux − Φuy
����

����≤
2L(1 + M)2σ(T)

M
‖x − y‖, (27)

which together with 0<L< (M/2(1 + M)2σ(T)) implies
that Φu: C([0, σ(T)]T ,R)⟶ C([0, σ(T)]T ,R) is a con-
traction mapping.

'erefore, it follows from Banach contraction principle
that Φu has a unique fixed point xu ∈ C([0, σ(T)]T ,R). 'is
indicates that the nonlinear controlled system (5) has a
unique solution xu and

xu(t) �
1

ep(t, 0)
􏽚

t

0
ep(s, 0) f s, xu(s), xu(σ(s))( 􏼁 + g(u(s))􏼂 􏼃Δs􏼨

+M 􏽚
σ(T)

0
ep(s, 0) f s, xu(s), xu(σ(s))( 􏼁 + g(u(s))􏼂 􏼃Δs􏼩, t ∈ [0, σ(T)]T .

(28)

□
Theorem 1. Assume that conditions (A1) and (A2) are
satisfied and h: R⟶ [0,∞) is continuous. 0en, the op-
timal control problem (P) has an optimal solution u0 ∈ Uad.

Proof. First, it follows from Lemma 5 that, for any given
control policy u ∈ Uad, the nonlinear controlled system (5)
has a unique solution xu and

xu(t) �
1

ep(t, 0)
􏽚

t

0
ep(s, 0) f s, xu(s), xu(σ(s))( 􏼁 + g(u(s))􏼂 􏼃Δs􏼨

+M 􏽚
σ(T)

0
ep(s, 0) f s, xu(s), xu(σ(s))( 􏼁 + g(u(s))􏼂 􏼃Δs􏼩, t ∈ [0, σ(T)]T .

(29)
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Next, in view of J(u) � 􏽒
T

0 [xu(σ(t)) − xd(t)]2Δt+
􏽒

T

0 h(u(t))Δt, u ∈ Uad, it is obvious that infu∈Uad
J(u) ex-

ists. 'us, by the definition of infimum, we know that there
exists a sequence un􏼈 􏼉

∞
n�1 ⊂ Uad such that

lim
n⟶∞

J un( 􏼁 � inf
u∈Uad

J(u). (30)

On the one hand, since Uad is a compact subset of
C([0, T]T ,R) and un􏼈 􏼉

∞
n�1 ⊂ Uad, un􏼈 􏼉

∞
n�1 has a convergent

subsequence in Uad. Without loss of generality, we may
assume that un􏼈 􏼉

∞
n�1 converges in Uad, that is, there exists

u0 ∈ Uad such that

lim
n⟶∞

un � u0. (31)

On the other hand, in view of Lemmas 1 and 2, (A1) and
(A2), for any n � 1, 2, . . ., we have

xun
(t) − xu0

(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
1

ep(t, 0)
􏽚

t

0
ep(s, 0) f s, xun

(s), xun
(σ(s))􏼐 􏼑 − f s, xu0

(s), xu0
(σ(s))􏼐 􏼑 + g un(s)( 􏼁 − g u0(s)( 􏼁􏽨 􏽩Δs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+M 􏽚
σ(T)

0
ep(s, 0) f s, xun

(s), xun
(σ(s))􏼐 􏼑 − f s, xu0

(s), xu0
(σ(s))􏼐 􏼑 + g un(s)( 􏼁 − g u0(s)( 􏼁􏽨 􏽩Δs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
t

0
ep(s, 0) f s, xun

(s), xun
(σ(s))􏼐 􏼑 − f s, xu0

(s), xu0
(σ(s))􏼐 􏼑 + g un(s)( 􏼁 − g u0(s)( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Δs

+ M 􏽚
σ(T)

0
ep(s, 0) f s, xun

(s), xun
(σ(s))􏼐 􏼑 − f s, xu0

(s), xu0
(σ(s))􏼐 􏼑 + g un(s)( 􏼁 − g u0(s)( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Δs

≤ (1 + M) 􏽚
σ(T)

0
ep(s, 0) f s, xun

(s), xun
(σ(s))􏼐 􏼑 − f s, xu0

(s), xu0
(σ(s))􏼐 􏼑 + g un(s)( 􏼁 − g u0(s)( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Δs

≤ (1 + M) 􏽚
σ(T)

0
ep(s, 0) f s, xun

(s), xun
(σ(s))􏼐 􏼑 − f s, xu0

(s), xu0
(σ(s))􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + g un(s)( 􏼁 − g u0(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼔 􏼕Δs

≤ (1 + M) 􏽚
σ(T)

0
ep(s, 0) L xun

(s) − xu0
(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + xun
(σ(s)) − xu0

(σ(s))
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕 + K un(s) − u0(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼚 􏼛Δs

≤ (1 + M) 2L xun
− xu0

�����

����� + K un − u0
����

����􏼒 􏼓 􏽚
σ(T)

0
ep(s, 0)Δs

≤
2L(1 + M)2σ(T)

M
xun

− xu0

�����

����� +
K(1 + M)2σ(T)

M
un − u0

����
����, t ∈ [0, σ(T)]T ,

(32)

so, for any n � 1, 2, . . ., we obtain

xun
− xu0

�����

�����≤
K(1 + M)2σ(T)

M − 2L(1 + M)2σ(T)
un − u0

����
����, (33)

which together with (31) implies that

lim
n⟶∞

xun
� xu0

. (34)

'us, in view of Lemma 3, (31), and (34), we obtain

lim
n⟶∞

J un( 􏼁 � lim
n⟶∞

􏽚
T

0
xun

(σ(t)) − xd(t)􏽨 􏽩
2Δt + 􏽚

T

0
h un(t)( 􏼁Δt􏼠 􏼡

� 􏽚
T

0
lim

n⟶∞
xun

(σ(t)) − xd(t)􏽨 􏽩
2Δt + 􏽚

T

0
lim

n⟶∞
h un(t)( 􏼁Δt

� 􏽚
T

0
xu0

(σ(t)) − xd(t)􏽨 􏽩
2Δt + 􏽚

T

0
h u0(t)( 􏼁Δt

� J u0( 􏼁,

(35)
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which together with (30) indicates that

J u0( 􏼁 � inf
u∈Uad

J(u). (36)

'erefore, J(u0)≤ J(u) for all u ∈ Uad. 'is shows that u0
is an optimal solution of the optimal control problem (P). □

Example 1. Let T � [0, 1]∪ [2, 3]. We suppose that the
controlled system is governed by the following nonlinear
periodic boundary value problem

xΔ(t) + x(σ(t)) � Dt2 x(t) arctanx(t) −
1
2
ln 1 + x

2
(t)􏼐 􏼑 +

π
4
sin2x(σ(t))􏼔 􏼕 + u(t), t ∈ [0, 3]T ,

x(0) � x(3),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(37)

where

D �
2 2e2 − 1( 􏼁

9π 28e4 − 4e2 + 1[ ]
. (38)

In view of T � [0, 1]∪ [2, 3], T � 3 and p(t) ≡ 1 for
t ∈ [0, 3]T , it is not difficult to obtain that

M �
1

2e2 − 1
. (39)

Since f(t,ω, v) � Dt2[ω arctanω − (1/2)ln(1 + ω2)+

(π/4)sin2v] for (t,ω, v) ∈ [0, 3]T × R2 and g(ω) � ω for
ω ∈ R, it is obvious that f: [0, 3]T × R2⟶ R is continuous
and (A2) is satisfied. Moreover, if we choose L � (9πD/2),
then 0< L< (M/2(1 + M)2σ(T)) and it follows from
Lagrange mean value theorem that

f t,ω1, v1( 􏼁 − f t,ω2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� Dt
2 ω1 arctanω1 −

1
2
ln 1 + ω2

1􏼐 􏼑 +
π
4
sin2v1 − ω2 arctanω2 +

1
2
ln 1 + ω2

2􏼐 􏼑 −
π
4
sin2v2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 9D ω1 arctanω1 −
1
2
ln 1 + ω2

1􏼐 􏼑 − ω2 arctanω2 +
1
2
ln 1 + ω2

2􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
π
4
sin2v1 − sin2v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼔 􏼕

≤
9πD

2
ω1 − ω2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + v1 − v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

� L ω1 − ω2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑, t ∈ [0, 3]T ,ω1,ω2, v1, v2 ∈ R.

(40)

'is shows that (A1) is fulfilled.
For any given constant N> 0, let Uad � u ∈ C([0, 3]T ,􏼈

R) | u(0) � 0 and |u(t1) − u(t2)|≤N|t1 − t2| for all t1, t2 ∈
[0, 3]T }. 'en, it is easy to verify that Uad is a compact subset
of C([0, 3]T ,R).

By Lemma 5, we know that, for any given control policy
u ∈ Uad, the nonlinear controlled system (37) has a unique
solution xu.

Now, we consider the optimal control problem (P∗).
Find a u0 ∈ Uad such that

J u0( 􏼁≤ J(u), for all u ∈ Uad, (41)

where

J(u) � 􏽚
3

0
xu(σ(t)) − xd(t)􏼂 􏼃

2Δt + 􏽚
3

0
u
2
(t)Δt, u ∈ Uad,

(42)

where xd is the desired value.

Since h(ω) � ω2 for ω ∈ R, h: R⟶ [0,∞) is con-
tinuous, thus, all the conditions of 'eorem 1 are sat-
isfied. 'erefore, it follows from 'eorem 1 that the
optimal control problem (P∗) has an optimal solution
u0 ∈ Uad.

4. Conclusions

In this paper, we consider a class of optimal control
problem governed by nonlinear first order dynamic
equation on time scales. First, by imposing some suitable
conditions on the related functions and applying Banach
contraction principle, for any given control policy, we
obtain the existence of a unique solution for the nonlinear
controlled system. Next, we prove that the optimal control
problem has an optimal solution in the admissible control
set. Finally, an example is also given to illustrate the main
result of this paper.
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