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0is paper proposes a chaotic color image encryption scheme based on DNA-coding calculations and arithmetic over the Galois
field. Firstly, three modified one-dimensional (1D) chaotic maps with larger key space and better chaotic characteristics are
presented. 0e experimental results show that their chaotic intervals are not only expanded to (0, 15], but their average largest
Lyapunov Exponent reaches 10. 0ey are utilized as initial keys. Secondly, DNA coding and calculations are applied in order to
add more permutation of the cryptosystem. Ultimately, the numeration over the Galois field ensures the effect for the diffusion of
pixels. 0e simulation analysis shows that the encryption scheme proposed in this paper has good encryption effect, and the
numerical results verify that it has higher security than some of the latest cryptosystems.

1. Introduction

Information security is an important issue in information
communication nowadays. With the advancement of in-
formation technology, plenty of digital contents are stored
and transmitted in various forms. 0erefore, it becomes
more and more significant to improve the security of them.
As the main information carrier, digital images play an
important role in the medical and military fields. Hence, the
safety of image transmission has received extensive atten-
tion. Nevertheless, since the images have large amounts of
data, high redundancy and strong correlation of adjacent
pixels, conventional encryption technologies such as DES,
AES, and RSA fail to satisfy the security of encryption.

Chaotic systems are ergodic, dispersive, and highly
sensitive to initial conditions [1–4]. 0ey have a lot of
similarities with cryptography. As a consequence, the chaos-
based encryption methods have become a main branch of
the cryptosystem. Fridrich first applied chaotic maps to
image encryption algorithms, who used two-dimensional
(2D) Baker map and Cat map for pixel position transfor-
mation in 1997 [5]. After that, many researchers encrypted

images based on 1D and multidimensional (MD) chaotic
maps [6–10]. Among them, the MD chaotic maps are widely
used in image encryption due to their relatively intricate
structures and parameters [11–14]. However, these traits
increase the complexity of computation and the difficulty of
implementation. In comparison, although the 1D chaotic
maps have uneven distribution and discontinuous range,
they have simpler structures.0us, they are more convenient
to be handled and implemented. In recent years, some efforts
have been devoted to addressing the weaknesses of 1D
chaotic systems and proposing encryption schemes. Zhou
et al. presented a new system structure and encrypted images
with random pixel insertion [15]. However, Dhall et al.
pointed out that this cryptosystem can be broken by the
differential attack [16]. Hua et al. introduced a Sine-Logistic
modulation map to efficiently change the image pixel po-
sitions in [17]. Pak and Huang also proposed a new 1D
chaotic system to determine pixels permutation and diffu-
sion positions [18]. But the algorithms in [17, 18] are vul-
nerable to chosen plaintext attack. Hence, we propose three
improved 1D chaotic maps with better dynamic complexity
for our encryption scheme. 0e simulation results exhibit

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 3965281, 22 pages
https://doi.org/10.1155/2020/3965281

mailto:xiangjianhong@hrbeu.edu.cn
https://orcid.org/0000-0002-3589-285X
https://orcid.org/0000-0001-5620-1715
https://orcid.org/0000-0002-5764-7775
https://orcid.org/0000-0002-8705-791X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3965281


that the new 1D chaotic maps have larger chaotic ranges and
more uniform output sequences, which makes them more
suitable for image encryption.

DNA-based image encryption methods mainly apply the
principle of DNA cryptography. Due to huge parallelism,
inherent information density, and fairly low power con-
sumption, DNA-based image encryptionmethods have been
rapidly developed. In [19], Zhang et al. proposed an image
encryption scheme with DNA sequence addition operation
and two Logistic maps. However, the Logistic map has been
declared that it does not have outstanding randomness to
achieve the desired encryption effect [15]. Hence, Li et al.
changed the location of pixels and pixel values with the
Arnold map before DNA encoding [20]. Since the key
streams are independent of the plain images, Yong proved
that this scheme can be cracked by the chosen plaintext
attack and known plaintext attack [21]. 0e researchers also
considered the application of chaotic systems with excellent
chaotic dynamic properties to improve the robustness of the
cryptosystems. In [22], Zhen et al. introduced an encryption
method based on spatiotemporal chaotic systems and Lo-
gistic map. Moreover, the method also utilized DNA coding
to promote the efficiency of image confusion and diffusion.
Although the authors have claimed that the cryptosystem in
[22] can resist a variety of attacks, Xin et al. still found two
flaws that make the encryption fail under chosen plaintext
attack [23].

Motivated by the abovementioned discussions, we
propose a new chaotic color image encryption scheme using
DNA coding calculations and arithmetic over the Galois
field. Particularly, the 1D chaotic maps applied in this paper
are derived from the classical Logistic map, Sine map, and
Chebyshev map. Besides, the contributions and innovations
of this article are summarized as follows. (1) We propose
improved 1D chaotic maps that are more appropriate for
image encryption. Not only do they have better chaotic
properties but they are also easier to be operated on
hardware and software. (2) We design the calculation modes
of the encoded DNAmatrixes to be randomly decided by the
chaotic sequences which are updated by plain images. In this
case, the cryptosystem is more robust. (3) In order to prevent
the danger of being cracked by utilizing DNA operations
only, we add multiplication arithmetic over the Galois field
GF(17) to our scheme. Moreover, the generation of the
lookup table will not increase the time consumption.

0e arrangement of this paper is as follows. Section 2
introduces the basic theories involved in this paper. Section 3
displays the improved 1D chaotic maps with their perfor-
mance analysis. Section 4 proposes our image encryption
and decryption schemes. Section 5 gives the experimental
simulation results and security analysis. 0e Section 6 draws
the conclusion.

2. Related Work

2.1. DNA Coding and Calculation. DNA coding is a concept
derived from biology. A DNA sequence consists of four
nucleotides.0ey are adenine (A), guanine (G), cytosine (C),
and thymine (T). According to the principle of

complementary base pairing, adenine (A) pairs with thy-
mine (T) and cytosine (C) pairs with guanine (G) [24]. As
shown in Table 1, there are eight DNA coding methods that
satisfy the pairing rules [25]. In the binary system, 0 and 1 are
also complementary. 0us, each 8-bit pixel value can be
decomposed into four “2-bit” values, and the four values can
be encoded with a certain coding rule to obtain a DNA
sequence. For instance, if the value of a pixel is 177, it is
“10110001” in binary encoding. One can get the DNA se-
quence “CTAG” by the DNA coding rule 2 in Table 1. And
using disparate decoding rules will obtain diverse pixel
values. Hence, when the sequence “CTAG” is decoded by the
DNA decoding rule 5 in Table 1, the binary result “00100111”
is obtained, and the corresponding decimal number is 39.

In addition to encoding pixel values, DNA sequences can
also perform algebraic calculations. Because the operation
modes of DNA are based on traditional arithmetic opera-
tions in binary, the eight DNA coding rules correspond to
eight kinds of DNA addition, DNA subtraction, and DNA
exclusive or (XOR) rules [26]. If we arbitrarily select the
DNA coding rule 1 in Table 1, then the corresponding DNA
addition, subtraction, and XOR modes are shown in
Tables 2–4.

2.2. Multiplication over the Galois Field. 0e French math-
ematician Galois invented the Galois field, and the opera-
tions of addition, subtraction, multiplication, and division
over the Galois field can be performed. Compared with the
addition and subtraction over the Galois field, the multi-
plication and division are more complicated. 0at is, the
diffusion effect on pixels is more prominent. In order to
speed up the calculation, we need to construct a lookup table
in advance by

(0: 16)
T

×(0: 16)􏼐 􏼑mod 17, (1)

where (·)T denotes transposition of the sequence. As for the
GF(17) multiplication, a 8-bit pixel value is divided into the
upper four bits and the lower four bits whose value ranges
are [0, 15]. 0e bits are further converted to [1, 16] when the
lookup table is established, and the results are exhibited in
Table 5.

3. Modification of 1D Chaotic Maps

With only one variable and simple structures, 1D chaotic
maps have low implementation costs. Hence, they are
suitable for efficient image encryption. Nevertheless, existing
1D chaotic maps still have some defects. In this section, we
will introduce and analyze three conventional 1D chaotic
maps, and further present three modified 1D chaotic maps.

3.1. (ree Classical 1D Chaotic Maps. 0e first classical
chaotic map is the Logistic map, which is also called the
insect mouth model. Its definition is as follows:

Xk+1 � FL μ, Xk( 􏼁 � μXk 1 − Xk( 􏼁, (2)
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where parameter μ ∈ (0, 4], and Xk is the output sequence.
0e bifurcation diagram and Lyapunov Exponent of the
Logistic map are shown in Figures 1(a) and 2(a), re-
spectively. It can be seen from the bifurcation diagram
that when the parameter is 3, the Logistic map appears 2
bifurcations from the steady-state solution, and it does not

enter chaos until μ is close to 4. 0e chaotic region of the
Logistic map is narrow and a blank window will appear.
Only when the Lyapunov exponent exhibits a positive
state, the chaotic map has excellent chaotic property.
However, the Lyapunov exponents of the Logistic map are
negative when μ< 3.57. Figure 3(a) shows the chaotic

Table 1: 8 DNA coding and decoding rules.

1 2 3 4 5 6 7 8
A 00 00 11 11 01 10 01 10
T 11 11 00 00 10 01 10 01
C 10 01 10 01 00 00 11 11
G 01 10 01 10 11 11 00 00

Table 2: DNA addition.

+ A T G C
A A T G C
T T C A G
G G A C T
C C G T A

Table 3: DNA subtraction.

− A T G C
A A G T C
T T A C G
G G C A T
C C T G A

Table 4: DNA XOR operation.

⊕ A T G C
A A T G C
T T A C G
G G C A T
C C G T A

Table 5: Multiplication lookup table on the GF(17).

× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 0 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15
3 0 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14
4 0 4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13
5 0 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12
6 0 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11
7 0 7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10
8 0 8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9
9 0 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8
10 0 10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7
11 0 11 5 16 10 4 15 9 3 14 8 2 13 7 1 12 6
12 0 12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5
13 0 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4
14 0 14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3
15 0 15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2
16 0 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
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sequence distribution with the initial value of 0.1, the
bifurcation parameter of 4, and the iterations of 10000.
Most values are close to 0 and 1. 0is indicates that the
distribution of the sequence generated by the Logistic map

is uneven. Hence, the application range of the Logistic
map is tiny.

0e Sine map has similar chaotic properties with the
Logistic map [17], which is described by
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Figure 1: 0e bifurcation diagrams of the (a) Logistic map; (b) Sine map; (c) Chebyshev map; (d) SLM; (e) CLM; (f) SCM.
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Figure 2: 0e Lyapunov Exponents of the (a) Logistic map; (b) Sine map; (c) Chebyshev map; (d) SLM; (e) CLM; (f) SCM.
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Xk+1 � FS r, Xk( 􏼁 � r sin π × Xk( 􏼁, (3)

where parameter r ∈ (0, 1]. 0e bifurcation analysis of the
Sine map is exhibited in Figure 1(b), and the map has chaotic
characteristic when r is close to 1. It can be seen in Figure 2(b)
that a portion of the Lyapunov exponents for the Sine map
are positive and others of them are negative. Figure 3(b)
shows that the chaotic sequence distribution of the Sine
map is similar to the Logistic map when the bifurcation
parameter is set to 1 and the other parameters are un-
changed. It is also not uniform. 0us, there are a number
of security risks when using the Sine map for encryption.

0e Chebyshev map is also a traditional 1D chaotic map
[27], and it can be expressed as follows:

Xk+1 � FC u, Xk( 􏼁 � cos u × arccosXk( 􏼁, (4)

where parameter u ∈ N. It can be seen from the bifurcation
diagram in Figure 1(c) that the map does not have chaos
property when u< 1, and it has obvious blank areas within
[1, 2]. Only when u is greater than 2, the map actually enters
a chaotic state. Figure 2(c) displays that a portion of the
Lyapunov exponents for the Chebyshev map are negative.
Figure 3(c) shows the sequence distribution of the same
parameters set as the Logistic map, and a great many values
are close to 0 and 1. It also proves that the application range
of the Chebyshev map is tiny and limited.

3.2.(reeModified 1DChaoticMaps. In this section, the 1D
chaotic maps mentioned above are combined to put forward
three modified 1D chaotic maps.0e purpose is to rectify the

shortcomings of the classical 1D chaotic maps analyzed in
the previous section. It can be found that the novel 1D
chaotic maps have better chaotic properties than the original
chaotic maps.

0e first map is the SLM (Sine-Logistic map), which can
be defined by the following formula:

Xk+1 � f(n) × FS r1, Xk( 􏼁 + FL 2r1, Xk( 􏼁( 􏼁

− ⌊ f(n) × FS r1, Xk( 􏼁( 􏼁 + FL 2r1, Xk( 􏼁( 􏼁⌋,
(5)

where f(n) � 2n with 10≤ n≤ 20, which is used to balance
the entire function. 0e symbol ⌊ · ⌋ represents the integer
function that make the element return the nearest integer
towards minus infinity. It is utilized to control the chaotic
sequence within the range of (0, 1]. After the improvement,
the range of bifurcation parameter r1 is increased to (0, 15],

and x0 is the initial value of the output sequence. It can be
seen from the bifurcation diagram in Figure 1(d) that there is
no obvious blank area in the entire chaotic region. In other
words, the improved SLM expands the original chaotic range.
Moreover, Figure 2(d) displays that the Lyapunov exponents
of the SLM are all positive within (0, 15], and Figure 3(d)
shows that its chaotic sequence is uniformly distributed when
the parameter set is the same as the Logistic map.

0e second map is the CLM (Chebyshev-Logistic map).
Its formula can be described as

Xk+1 � f(n) × FC r2, Xk( 􏼁 + FL 2r2, Xk( 􏼁( 􏼁

− ⌊ f(n) × FC r2, Xk( 􏼁 + FL 2r2, Xk( 􏼁( 􏼁⌋,
(6)

where f(n) has the same effect as it in the SLM and control
parameter r2 ∈ (0, 15]. From the bifurcation diagram in
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Figure 3: 0e distribution of the chaotic sequences for the (a) Logistic map; (b) Sine map; (c) Chebyshev map; (d) SLM; (e) CLM; (f) SCM.
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Figure 1(e) and Lyapunov exponent in Figure 2(e) of the
CLM, it can be found that the CLM has superior chaotic
behavior, which is similar to the SLM. Besides, Figure 3(e)
shows that the distribution of its chaotic sequence is sem-
blable to the SLM.

0e third map is the SCM (Sine-Chebyshev map). 0e
combination equation is as follows:

Xk+1 � f(n) × FS r3, Xk( 􏼁 + FC 2r3, Xk( 􏼁( 􏼁

− ⌊ f(n) × FS r3, Xk( 􏼁 + FC 2r3, Xk( 􏼁( 􏼁⌋,
(7)

where f(n) is the same as it in equation (6) and control
parameter r3 ∈ (0, 15]. 0e bifurcation diagram and Lya-
punov exponent of the SCM are revealed in Figures 1(f )
and 2(f ), respectively. Moreover, the distribution of the
output sequence is displayed in Figure 3(f ). Its chaos
property is similar with the SLM and CLM, which is also
improved a lot.

Table 6 lists the comparison of characteristics between our
maps and other improved 1D chaoticmaps. It can be seen that
themaps proposed in this paper have better chaotic behaviors.

4. The Proposed Image Encryption and
Decryption Scheme

4.1. Encryption Scheme

Input: color plain image P of size m × n, the security
keys which are composed of the bifurcation parameters
r1, r2, and r3 and three initial values X10, X20, andX30
of the SLM, CLM, and SCM.
Output: the color cipher image with the same size.

Step 1: decompose the image P into three matrixes R, G,

and B. 0en, update the three initial values with bit-
planes recombination according to the following formula:

X10′ � X10 +
􏽐 Rodd(x, y)

255 × n2 , X20′ � X20 +
􏽐 Godd(x, y)

5 × m2 × n2 , X30′ � X30 +
􏽐 Bodd(x, y)

5 × m2 × n2 ,􏼨 (8)

X1
1(i)( 􏼁

m×n

i�1 � X1
1(1), X1

1(2), . . . , X1
1(m × n)( 􏼁,

X1
2(i)( 􏼁

m×n

i�1 � X1
2(1), X1

2(2), . . . , X1
2(m × n)( 􏼁,

X1
3(i)( 􏼁

m×n

i�1 � X1
3(1), X1

3(2), . . . , X1
3(m × n)( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X2
1(i)( 􏼁

2×m×n

i�m×n+1 � X2
1(m × n + 1), X2

1(m × n + 2), . . . , X2
1(2 × m × n)( 􏼁,

X2
2(i)( 􏼁

2×m×n

i�m×n+1 � X2
2(m × n + 1), X2

2(m × n + 2), . . . , X2
2(2 × m × n)( 􏼁,

X2
3(i)( 􏼁

2×m×n

i�m×n+1 � X2
3(m × n + 1), X2

3(m × n + 2), . . . , X2
3(2 × m × n)( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

􏽥X
1
1(i) � ⌊X1

1(i) + 50⌋ × 1012( 􏼁mod(m × n) + 1,

􏽥X
1
2(i) � ⌊X1

2(i) + 100⌋ × 1012( 􏼁mod(m × n) + 1,

􏽥X
1
3(i) � ⌊X1

3(i) + 500⌋ × 1012( 􏼁mod(m × n) + 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

V1(i) � V1
􏽥X
1
1(i)􏼐 􏼑,

V2(i) � V2
􏽥X
1
2(i)􏼐 􏼑,

V3(i) � V3
􏽥X
1
3(i)􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

􏽢X
1
1(i) � fix X1

1(i) × 104( 􏼁mod 256,

􏽢X
1
2(i) � fix X1

2(i) × 104( 􏼁mod 256,

􏽢X
1
3(i) � fix X1

3(i) × 104( 􏼁mod 256.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

6 Mathematical Problems in Engineering



􏽢X
2
1(i) � fix X1

1(i) × 216( 􏼁mod 256,

􏽢X
2
2(i) � fix X1

2(i) × 216( 􏼁mod 256,

􏽢X
2
3(i) � fix X1

3(i) × 216( 􏼁mod 256.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

X
1
1(i) � ⌈X1

1(i) × 104⌉mod 3, (14)

EDR ,DG ,DB �

CDR ,DG ,DB + MD1,D2,D3, if X1(i) � 0,

CDR ,DG ,DB − MD1,D2,D3, if X1(i) � 1,

CDR ,DG ,DB ⊕MD1,D2,D3, if X1(i) � 2.

⎧⎪⎪⎨

⎪⎪⎩
(15)

X
⌢ 1
2(i) � ⌊X1

2(i) × 104⌋mod 8 + 1. (16)

CER(i) � CER(i − 1) × 􏽢X
1
1(i) × C2R(i),

CEG(i) � CEG(i − 1) × 􏽢X
1
2(i) × C2G(i),

CEB(i) � CEB(i − 1) × 􏽢X
1
3(i) × C2B(i).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

CR(i) � CR(i − 1) × 􏽢X
2
1(i) × CER(i),

CG(i) � CG(i − 1) × 􏽢X
2
2(i) × CEG(i),

CB(i) � CB(i − 1) × 􏽢X
2
3(i) × CEB(i).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

where 􏽐 (R, G, B)odd denotes sum of the odd bit-planes
about components R, G, and B.

Step 2: iterate the SLM, CLM, and SCM (2 × m × n +

500) times with X10′ , X20′ , andX30′ , respectively. Dis-
card the first 500 elements to eliminate the effects of
transient processes.0en, two sets of new sequences are
formed, which can be expressed as follows:
Step 3: convert the componentsR, G, and B into three 1D
vectors V1, V2, and V3, and then perform pixel-level
scrambling on them according to equations (10) and (11):
0en, restore the three vectors to the matrixes C1R,

C1G, and C1B.

Step 4: generate two new sets of sequences by equations
(12) and (13) After that, reshape the sequences in
equation (12) to the matrixes M1, M2, and M3 of size
m × n:
where fix(·) indicates the function rounds the element
to the nearest integer towards minus infinity.
Step 5: fill each matrix into a square with zero elements
and separate each matrix into parts of size s × s,

respectively. Arbitrarily, select the DNA coding rule 1
in Table 1 to encode each part of C1R, C1G, C1B, M1,

M2, and M3 from steps 3 and 4. 0en, six DNA ma-
trixes named C1DR, C1DG, C1DB, MD1, MD2, and MD3
are obtained. After this, utilize equation (14) to execute
DNA calculation on these matrixes:
where ⌈ · ⌉ denotes that the element returns the smallest
integer in the infinite direction, and the elements in
(X

1
1(i))

m×n

i�1 are 0, 1, and 2. Hence, the corresponding
DNA calculations are addition, subtraction, and XOR
operations, which can be defined as follows:
Step 6: utilize equation (16) to determine the decoding
rules of equation (15). 0e DNA matrixes are decoded
to binary matrixes and further transformed into dec-
imal numbers to get three encrypted components C2R,

C2G, and C2B:
Step 7: implement multiplication on the GF(17) with
Table 5 according to equations (17) and (18):
It should be noted that the matrixes need to be con-
verted into the sequences for multiplication, and the
three components CR, CG, and CB are merged to form

Table 6: Chaotic characters of improved 1D chaotic maps.

Chaotic maps Range of bifurcation parameters Average maximum Lyapunov exponent
0e proposed chaotic maps (0, 15] 10
Ref. [15] (0, 4] 0.7
Ref. [18] (0, 10] 2
Ref. [28] [− 4, 4] 1
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the final encrypted image C. 0e flowchart of our
encryption scheme is revealed in Figure 4.

4.2. Decryption Scheme. 0e decryption procedure is the
inverse process of the encryption procedure. 0us, the steps
presented in the previous section ought to proceed in the
reverse order. However, the only distinction is that step 5
needs to apply equation (19) to determine the DNA cal-
culation mode when decrypting:

EDR ,DG ,DB �

CDR ,DG ,DB − MD1,D2,D3, if X1(i) � 0,

CDR ,DG ,DB + MD1,D2,D3, if X1(i) � 1,

CDR ,DG ,DB ⊕MD1,D2,D3, if X1(i) � 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

5. Experimental Results and Security Analysis

0e experiment is implemented by MATLAB R2016b on a
PC with an Intel Core i5, 3.4GHz CPU, 8GB memory, and
the encryption results for three color images “Female”,
“Peppers,” and “Mandrill” of size 256 × 256 are displayed in
Figure 5. 0e control parameters and initial values are set as
follows: r1 � 14.99120306595001, r2 � 14.985633002586235,

r3 � 14.978965662236302, X10 � 0.654321563325991, X20 �

0.563214562356231, and X30 � 0.456326656565231. We
specify these six elements as the key set K0. Visually, the
scheme designed in this paper has good performance. 0e
ciphered images are noise-like ones, and the decrypted
images are almost identical with the plain images.

5.1. Differential Attack Analysis. In general, the intensity of
sensitivity to the plain image can determine the ability of the
algorithm to resist differential attack. 0e measured indi-
cators are the number of pixels change rate (NPCR) and the
unified average changing intensity (UACI), which can be
defined as follows:

NPCRR,G,B �
1

M × N
􏽘

M

i�1
􏽘

N

j�1
ER,G,B(i, j) × 100%,

UACIR,G,B �
1

M × N
􏽘

M

i�1
􏽘

N

j�1

CR,G,B(i, j) − CR,G,B
′ (i, j)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

255
× 100%,

(20)

where M and N are the width and height of the image and C

and C′ are two cipher images whose plain images have only
one different pixel. Besides, ER,G,B(i, j) is used to determine
the distinction between two ciphered images, which can be
calculated by

ER,G,B(i, j) �
0, CR,G,B(i, j) � CR,G,B

′ (i, j),

1, CR,G,B(i, j)≠CR,G,B
′ (i, j).

⎧⎨

⎩ (21)

Nevertheless, Zhang [31] pointed out that these two
indexes cannot precisely measure the difference between two
images. He proposed block average changing intensity

(BACI) to quantitatively analyze the antidifferential attack
characteristic. It is a method of block calculation about
subtraction images, and each small block can be defined by

Bi �
bi1 bi2

bi3 bi4
􏼢 􏼣. (22)

Moreover, the mean for the absolute values of differences
between arbitrary two elements can be defined as

mi �
1
6

bi1 − bi2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + bi1 − bi3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + bi1 − bi4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + bi2 − bi3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐

+ bi2 − bi4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + bi3 − bi4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼑.

(23)

0en, the BACI can be calculated by

BACIR,G,B �
1

(M − 1)(N − 1)
􏽘

(M− 1)(N− 1)

i�1

mi

255
. (24)

0us, the NPCR, UACI, and BACI are used together
to analyze the sensitive property of our encryption
scheme, and the results are revealed in Table 7. It can be
found that the measured values of six different color
images are very close to the theoretical values 99.6094%,
33.4635%, and 26.7712%, respectively. In particular,
Table 7 also compares the NPCR and UACI scores on the
Lena, Mandrill, and Peppers images using our scheme
with algorithms in [29, 30]. 0is further demonstrates
that our cryptosystem has excellent ability to resist
differential attack.

5.2. Key Space. As mentioned earlier in this section, the
secret keys for our scheme consist of three control pa-
rameters (r1, r2, r3) and three initial values (X10, X20, X30),
which are all double-precision real numbers. In this paper,
we use the 64-bit double-precision format in [32] to calculate
our key space, and the total key space of our scheme can
reach (1015)6 � 1090 ≈ 2299. In addition, Table 8 exhibits the
comparison of key space between our scheme and other
chaos-based encryption algorithms. It can be seen that the
key space of our method is large enough to resist brute-force
attack.

5.3. Key Sensitivity. 0e key sensitivity refers to the degree
of variation for the corresponding ciphered image when the
initial key alters slightly. Make a minor change to X10 while
keeping other keys unchanged. For instance, X10′ � X10 +

10− 15. 0is produces a new key set K1. It is applied to
encrypt the plain images in Figure 5(a), and the ciphered
images in Figure 6(a) are displayed. 0e pixel-by-pixel
differences between Figures 5(b) and 6(a) are revealed in
Figure 6(b), which proves that their encrypted images are
completely different. Moreover, K0 and K1 are utilized to
decrypt the ciphered images in Figure 5(b), respectively.
0e decrypted images in Figure 6(c) can be acquired with
the correct key set K0, and a minor change to the security
keys will cause the failure of decryption, as shown in
Figure 6(d).
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Figure 4: Flowchart of the encryption scheme.
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Figure 5: Continued.
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In addition, Table 9 lists the average NPCR and UACI
results for the three channels of the key sensitivity test for the
plain images in Figure 5(a). It can be found that a slight change
in each key will result in the change rate of more than 99.5% for
the ciphered images. 0eir corresponding average NPCR and
UACI results are 99.6124% and 33.4714%, which are closer to
ideal than the values (NPCR� 99.6389% and UACI� 33.4189)
in [35]. 0us, the proposed scheme has high key sensitivity.

(c)

Figure 5: Encryption results: (a) original images; (b) encrypted images; (c) decrypted images.

Table 7: Plaintext sensitivity test for different color images.

Algorithms Images Channels NPCR (%) UACI (%) BACI (%)

0e proposed scheme

Female
Red 99.6109 33.5025 26.8215
Green 99.6039 33.4360 26.7813
Blue 99.6149 33.4430 26.7754

Peppers
Red 99.6005 33.4494 26.7600
Green 99.6278 33.4537 26.7353
Blue 99.6188 33.4529 26.7651

Mandrill
Red 99.5941 33.4530 26.7913
Green 99.6199 33.4472 26.7685
Blue 99.6091 33.4596 26.7405

Lena (256 × 256)

Red 99.6109 33.4783 26.7618
Green 99.6213 33.4503 26.7713
Blue 99.6004 33.4640 26.7794

Tree (256 × 256)

Red 99.6062 33.4911 26.7929
Green 99.5996 33.4628 26.7709
Blue 99.6191 33.4522 26.7487

Couple (256 × 256)

Red 99.6149 33.4617 26.7908
Green 99.6083 33.4563 26.7618
Blue 99.6114 33.4533 26.7512

Ref. [29]

Lena (256 × 256)

Red 99.5800 33.2700 —
Green 99.5600 33.3600 —
Blue 99.6400 33.5000 —

Mandrill (256 × 256)

Red 99.6200 33.4700 —
Green 99.6000 33.4800 —
Blue 99.6000 33.4500 —

Peppers (512 × 512)

Red 99.6000 33.3900 —
Green 99.6000 33.4600 —
Blue 99.6100 33.4000 —

Ref. [30]

Lena (256 × 256)

Red 99.6317 33.6783 —
Green 99.6205 33.7999 —
Blue 99.6211 33.6200 —

Mandrill (256 × 256)

Red 99.6199 33.6484 —
Green 99.6250 33.5908 —
Blue 99.6273 33.6749 —

Peppers (256 × 256)

Red 99.6202 33.6602 —
Green 99.6192 33.6575 —
Blue 99.6224 33.7314 —

Table 8: Comparison of the key space between our scheme and
other chaos-based encryption algorithms.

Encryption algorithms Key space
0e proposed scheme (1015)6 � 1090 ≈ 2299
Ref. [8] 2106
Ref. [15] 1084 ≈ 2279
Ref. [18] 2138
Ref. [33] 2298
Ref. [34] > 2208
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5.4. Histogram Analysis. 0e image histogram is an impor-
tant feature statistic of the image. A great encryption algo-
rithm theoretically makes the histogram of the encrypted
image evenly distributed. 0is prevents the adversary from
getting any useful information. Figure 7 exhibits the histo-
grams of the plain and ciphered Female, Peppers, and
Mandrill images. It can be seen that the histograms of the
ciphered images are fairly flat, and they are completely dif-
ferent from the histograms of the plain images.

Besides, the analysis of variance is a quantitative measure
for the properties of histogram. 0e smaller the calculated
variance value, the higher the uniformity of the image [36].
0e specific calculation formula is as follows:

variance(Y) �
1
n2 􏽘

n

i�1
􏽘

n

j�1

yi − yj􏼐 􏼑
2

2
, (25)

where yi and yj indicate the number of pixels corresponding
to the gray values i and j, Y represents the vector set of the
histogram and Y � y1, y2, . . . , y256􏼈 􏼉, and n denotes the total
number of gray values. Table 10 exhibits the variances of the
histograms of the color plain and ciphered images in
Figure 5. It can be discovered that the histogram variance
values of the encrypted images are much smaller than those
of the original images. Moreover, Table 11 displays the
comparison of the mean histogram variance values of the

(a) (b) (c) (d)

Figure 6: Key sensitivity test: (a) encrypted images with the key set K1; (b) the pixel-by-pixel difference between Figures 5(b) and 6(a);
(c) decrypted images from Figure 5(b) with the correct key set K0; (d) decrypted images from Figure 5(b) with the wrong key set K1.

Table 9: NPCR and UACI results for key sensitivity test.

Modified keys
Average NPCR (%) Average UACI (%)

Female Peppers Mandrill Female Peppers Mandrill
X10 + 10− 15 99.6132 99.6228 99.6164 33.4596 33.4677 33.4828
X20 + 10− 15 99.6088 99.6098 99.6062 33.4641 33.4606 33.4656
X30 + 10− 15 99.6112 99.6143 99.6124 33.4613 33.4860 33.4734
r1 + 10− 15 99.6191 99.6115 99.6072 33.4762 33.4866 33.4674
r2 + 10− 15 99.6124 99.6104 99.6120 33.4805 33.4678 33.4741
r3 + 10− 15 99.6109 99.6156 99.6089 33.4691 33.4764 33.4665
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three channels for the Lena image and the calculated vari-
ance results in [26, 36–38]. Obviously, the histogram vari-
ance values of our scheme are smaller, that is, the histograms
of the ciphered images have better uniformity.

0en, we utilize the chi-square test to validate the
uniformity for the pixel values distribution of the ciphered
images [36]. Similar to the variances of the histograms, the
smaller the result of the chi-square test, the better the
uniformity of the ciphered image. Its definition is as follows:

χ2 � 􏽘
255

i�0

fi − pi( 􏼁
2

pi

, (26)

where fi indicates the actual frequency of the pixel value i

and pi represents the predicted frequency of the pixel value i.
0e predicted frequency pi can be calculated by

pi �
m × n

256
, (27)

where m × n is the size of the image. 0eoretically, the chi-
square statistic with a significant level of 0.01 is 310.4574,
while the chi-square statistic with a significant level of 0.05 is
293.2478. Obviously, the values of the chi-square test for six
ciphered images in Table 12 are all smaller than the previous
two theoretical values. 0us, it further illustrates the effec-
tiveness of our scheme.

5.5. Correlation of Two Adjacent Pixels. As for plain images,
there are strong correlations between their adjacent pixels.

0us, the purpose of encryption is to weaken this property. In
the experiment, we randomly select 4000 pairs of adjacent
pixels from the original images and corresponding encrypted
images. 0en, compute the correlation coefficients in hori-
zontal, vertical, and diagonal directions as follows:

E(x) �
1
N

􏽘

N

i�1
xi,

D(x) �
1
N

􏽘

N

i�1
xi − E(x)􏼂 􏼃

2
,

COV(x, y) �
1
N

􏽘

N

i�1
xi − E(x)􏼂 􏼃 yi − E(y)􏼂 􏼃,

ρxy �
COV(x, y)
�����
D(x)

􏽰 �����
D(y)

􏽰 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

where E(x),D(x), and COV(x, y) indicate the mean value,
variance, and covariance, respectively. Figure 8 plots the
correlations between adjacent pixels of the plain Peppers
image, and Figure 9 shows the correlation coefficients of the
corresponding ciphered image. It can be seen from the
comparison that the encryption makes the correlation be-
tween the pixels of the image significantly whittled. More-
over, Table 13 provides the correlation coefficients for the
adjacent pixels of six color images with the size of 256 × 256
in three directions. It can be discovered that the results of the
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Figure 7: Histograms of the (a) plain images in Figure 5(a); (b) ciphered images in Figure 5(b).
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ciphered images are close to 0. Furthermore, Table 14 reveals
that our encryption scheme has superior performance
compared to some recent encryption algorithms.

5.6. Information Entropy Analysis. Information entropy is
expressed as the probability of discrete random events,
which is used to measure the randomness of a system. It can
be defined as

H(s) � − 􏽘
2n− 1

i�0
P si( 􏼁log2 P si( 􏼁􏼂 􏼃, (29)

where Psi
denotes the probability that the gray value si may

appear. For a grayscale image with data field of [0, 255], the
maximum value of information entropy is 8.0erefore, once
the calculated value is pretty close to 8, it proves that the
proposed algorithm is quite safe. We have computed the
information entropy of six different color images with the
size of 256 × 256 and their ciphered versions in Table 15.
From the table, the information entropy results of ciphered
images are approaching the ideal value 8. In addition, Ta-
ble 16 exhibits the information entropy of the original Lena
image and encrypted Lena image by utilizing our scheme
and some other encryption algorithms. It can be clearly seen
that our cryptosystem is closer to the desired state and has
better randomness.

5.7. Noise Attack Analysis. In practical applications, noise
interference is inevitable. An outstanding encryption algo-
rithm has the ability to resist noise attack. In our experiment,
the encryptedMandrill image in Figure 5(b) is contaminated
by Salt & Pepper noise, Gaussian noise, and speckle noise
with different densities, respectively. 0e simulation results
are exhibited in Figures 10–12. It can be observed that al-
though the noise is increasing, the decrypted images can still
be discerned. Moreover, we also tested the average NPCR
and UACI values for the three channels of the original
Mandrill image and deciphered Mandrill image under these
different noises. 0e results are listed in Tables 17–19. It can
be found that all the NPCR values are less than 99%, and all
the UACI values are less than 20%. Hence, the proposed
method is strongly robust against disparate noises.

5.8. Cropping Attack Analysis. Encrypted images are subject
to cropping attack during transmission and may be partially
damaged. Nevertheless, digital images allow a certain extent
of distortion on the transmission channel. As long as the
information to be conveyed by the image can be discrimi-
nated visually, it proves that the encryption algorithm has
excellent anticropping attack capability. Figure 13 displays
ciphered House image of size 256 × 256 with data cuts in
different sizes, and their corresponding deciphered images.
Still, most of the pictorial information is available from the

Table 10: Histogram variance analysis of plain and ciphered images.

Images
Plain images Ciphered images

Red Green Blue Red Green Blue
Female 168960 157950 158040 233.4375 263.3125 267.3516
Peppers 54484 64353 106880 244.1172 258.2734 223.9297
Mandrill 20770 30655 16857 220.3125 240.2109 270.2656

Table 11: Histogram variance analysis of original Lena image and encrypted Lena image.

Images Algorithms Variance
Original Lena image (512 × 512) 6390323

Encrypted Lena image

0e proposed scheme 953.7656
Ref. [26] 977.02
Ref. [36] 974.8
Ref. [37] 1077.3
Ref. [38] 1209.4

Table 12: Chi-square test of some ciphered images.

Images
Components

Results
Red Green Blue

Female 233.4375 253.3125 247.3516 Pass
Peppers 244.1172 238.2734 223.9297 Pass
Mandrill 220.3125 240.2109 240.2656 Pass
Couple (256 × 256) 234.2500 246.0313 233.3906 Pass
Tree (256 × 256) 222.5781 246.3047 235.5313 Pass
Lena (512 × 512) 245.8965 230.9863 252.1680 Pass
Airplane (512 × 512) 240.7422 257.8555 235.8145 Pass
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Figure 8: Correlation coefficients of plain Peppers image in all directions: (a) R channel; (b) G channel; (c) B channel.
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Figure 9: Continued.
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decrypted images. 0is shows that the proposed scheme can
effectively resist cropping attack.

5.9. Known Plaintext Attack and Chosen Plaintext Attack
Analysis. Since the cryptosystems whose key streams are

unrelated to the plain images are vulnerable to chosen
plaintext attack and known plaintext attack [21], we design
the initial keys of our scheme to be updated by the bit-planes
recombination of the plain images. Under the circum-
stances, we can guarantee that different images are encrypted
by diverse key streams, and the attackers cannot obtain
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Figure 9: Correlation coefficients of ciphered Peppers image in all directions: (a) R channel; (b) G channel; (c) B channel.

Table 13: Average correlation coefficients of three channels for plain and ciphered images.

Images
Plain images Ciphered images

Horizontal Vertical Diagonal Horizontal Vertical Diagonal
Female 0.9747 0.9621 0.9511 0.0078 0.0021 0.0004
Peppers 0.9647 0.9701 0.9602 0.0004 − 0.0035 − 0.0021
Mandrill 0.9188 0.8530 0.8534 − 0.0031 0.0048 0.0005
Tree 0.9406 0.9551 0.9157 − 0.0012 − 0.0046 0.0006
Couple 0.9131 0.9011 0.9375 0.0074 0.0035 0.0013
House 0.9328 0.9676 0.9114 − 0.0027 0.0047 0.0012

Table 14: Correlation coefficients of original Lena image and encrypted Lena image.

Images Algorithms
Directions

Horizontal Vertical Diagonal
Original Lena image (256 × 256) 0.9731 0.9881 0.9661

Encrypted Lena image

0e proposed scheme − 0.0034 0.0021 − 0.0003
Ref. [14] 0.0056 0.0065 − 0.0073
Ref. [19] 0.0036 0.0023 0.0039
Ref. [33] − 0.0068 − 0.0054 0.0010
Ref. [39] 0.0040 0.0011 0.0008
Ref. [40] 0.0059 − 0.0042 0.0180
Ref. [41] − 0.0168 0.0445 − 0.0022
Ref. [42] − 0.0003 − 0.0013 − 0.0066
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serviceable information by selecting certain special images.
0us, our scheme can effectively resist the known plaintext
attack and chosen plaintext attack.

5.10.MSE and PSNRAnalysis. Mean square error (MSE) is a
relatively straightforward method to measure the average
error. When evaluating an encryption algorithm, verification

Table 15: Information entropy analysis of plain and ciphered images.

Images
Plain images Ciphered images

Red Green Blue Red Green Blue
Female 6.4200 6.4457 6.3807 7.9974 7.9971 7.9971
Peppers 7.3449 7.5607 7.1003 7.9973 7.9972 7.9975
Mandrill 7.7255 7.5618 7.8031 7.9976 7.9974 7.9970
Tree 7.2104 7.4136 6.9207 7.9976 7.9971 7.9970
Couple 6.2499 5.9642 5.9309 7.9972 7.9973 7.9972
House 6.4311 6.5389 6.2320 7.9975 7.9968 7.9973

Table 16: Comparison of the information entropy of the original Lena image and encrypted Lena image.

Information entropy Red Green Blue
Original Lena image (256 × 256) 7.3140 7.6394 7.0506
0e proposed algorithm 7.9971 7.9972 7.9972
Ref. [39] 7.9278 7.9744 7.9705
Ref. [41] 7.9897 7.9877 7.9896
Ref. [43] 7.9988 7.9967 7.9990
Ref. [44] 7.9791 7.9802 7.9827

(a) (b) (c)

(d) (e) (f )

Figure 10: Experiment of Salt & Pepper noise attacks: (a) encrypted Mandrill image attacked by Pepper & Salt noise with density 0.05;
(b) encryptedMandrill image attacked by Pepper & Salt noise with density 0.1; (c) encryptedMandrill image attacked by Pepper & Salt noise
with density 0.2; (d) decrypted Mandrill image of a; (e) decrypted Mandrill image of b; (f ) decrypted Mandrill image of c.
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(a) (b) (c)

Figure 12: Continued.

(a) (b) (c)

(d) (e) (f )

Figure 11: Experiment of Gaussian noise attacks: (a) encrypted Mandrill image attacked by Gaussian noise with mean value 0 and variance
value 0.0001; (b) encrypted Mandrill image attacked by Gaussian noise with mean value 0 and variance value 0.0003; (c) encrypted Mandrill
image attacked by Gaussian noise with mean value 0 and variance value 0.0005; (d) decrypted Mandrill image of a; (e) decrypted Mandrill
image of b; (f ) decrypted Mandrill image of c.
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is performed by comparing the MSE results between plain
images and ciphered images, while also comparing the MSE
results between plain images and deciphered images [37]. In
addition, the larger the MSE value between plain images and
their ciphers, the better the encryption effect. 0e definitions
of MSE are as follows:

MSEPC �
1

M × N
􏽘

M

i�1
􏽘

N

j�1
(P(i, j) − C(i, j))

2
,

MSEP D �
1

M × N
􏽘

M

i�1
􏽘

N

j�1
(P(i, j) − D(i, j))

2
, (30)

where P(i, j) denotes plain images, C(i, j) represents ci-
phered images, and D(i, j) means deciphered images.

Peak signal-to-noise ratio (PSNR) is utilized to appraise
the distortion of images. In contrast to MSE, the smaller the
PSNR value between plain images and their ciphers, the
greater the difference.0e definitions of PSNR are as follows:

PSNRPC � 20 log10
L

������
MSEPC

􏽰 ,

PSNRP D � 20 log10
L

�������
MSEP D

􏽰 ,

(31)

where L is the maximum gray value. Table 20 shows theMSE
and PSNR results between some plain images and their
ciphered images. Obviously, the MSE results are quite large,
and the PSNR values are pretty small. Moreover, the average
MSE and PSNR values for the three channels of the Lena
image with the size of 512 × 512 are 10116.3 and 8.0935,

(d) (e) (f )

Figure 12: Experiment of speckle noise attacks: (a) encrypted Mandrill image attacked by speckle noise with density 0.00005; (b) encrypted
Mandrill image attacked by speckle noise with density 0.0001; (c) encrypted Mandrill image attacked by speckle noise with density 0.0005;
(d) decrypted Mandrill image of a; (e) decrypted Mandrill image of b; (f ) decrypted Mandrill image of c.

Table 17: NPCR and UACI values for the original Mandrill image and deciphered Mandrill image under Salt & Pepper noise.

Images Density Average NPCR Average UACI
Figures 5(a) and 10(d) 0.05 26.0681 7.7270
Figures 5(a) and 10(e) 0.1 46.2418 13.6364
Figures 5(a) and 10(f) 0.2 62.4237 18.5213

Table 18: NPCR and UACI values for the original Mandrill image and deciphered Mandrill image under Gaussian noise.

Images Mean Variance Average NPCR Average UACI
Figures 5(a) and 11(d) 0 0.0001 98.4116 8.8154
Figures 5(a) and 11(e) 0 0.0003 98.7732 11.7899
Figures 5(a) and 11(f) 0 0.0005 98.9624 12.7496

Table 19: NPCR and UACI values for the original Mandrill image and deciphered Mandrill image under speckle noise.

Images Density Average NPCR Average UACI
Figures 5(a) and 12(d) 0.00005 94.5068 8.5631
Figures 5(a) and 12(e) 0.0001 95.5780 11.3172
Figures 5(a) and 12(f) 0.0005 97.4060 19.3016
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respectively. 0ey are better than the test results
(MSE � 9081.2 and PSNR � 8.2203) of the Lena image in
[37]. In theory, the decrypted image is identical to the
original image, thus theMSE value is 0 and the PSNR value is
infinite. It can be found from Table 21 that the values of the
test are consistent with the theoretical situation.

5.11. Time Complexity Analysis. In order to analyze the time
cost, we elaborate on the computational complexity. In the
proposed scheme, the computational cost is relevant to the
encryption steps. First, the iteration of the SLM, CLM, and
SCM will produce the time complexity of Ο(3 × m × n).
0en, the time complexity of pixel-level scrambling is also

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 13: Test of image cropping attacks: (a) original House image; (b) encrypted House image; (c) encrypted House image with a 30× 90
data cut; (d) decrypted House image of (c); (e) encrypted House image with a 50× 80 data cut; (f ) decrypted House image of (e);
(g) encrypted House image with a 70× 70 data cut; (h) decrypted House image of (g); (i) encrypted House image with a 90× 60 data cut;
(j) decrypted House image of (i); (k) encrypted House image with a 110× 50 data cut; (l) decrypted House image of (k).

Table 20: MSE and PSNR values between plain and ciphered images.

Images
MSE PSNR

Red Green Blue Red Green Blue
Female (256 × 256) 10081 12935 13536 8.0959 7.0131 6.8160
Peppers (256 × 256) 8087.8 11309 11211 9.0525 7.5967 7.6344
Mandrill (256 × 256) 8698.6 7871.9 9603.6 8.7363 9.1700 8.3065
Lena (256 × 256) 10791 9139.3 1067.2 7.8004 8.5217 7.8483
Lena (512 × 512) 10683 9035.8 10630 7.8440 8.5711 7.8655
Tree (256 × 256) 8801.6 11387 9718.1 8.6852 7.5667 8.2550
Couple (256 × 256) 14005 16095 16246 6.6680 6.0638 6.0233
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Ο(3 × m × n). Subsequently, the time complexity of the
sequence conversions is Ο(6 × m × n). After DNA coding,
the time complexity of the DNA calculation determined by
the sequence generated by the SLM is Ο(3 × m × n).
Analogously, the time complexity of decoding DNA ma-
trixes is Ο(3 × m × n). Ultimately, the time complexity of
multiplication over the Galois field is Ο(3 × m × n).
0erefore, the total time complexity of our scheme is
Ο(6 × m × n). Furthermore, it can be seen from the time
complexity results in Table 22 that although our scheme has
higher time complexity than the encryption algorithms in
[36], its computational complexity is lower than that of the
algorithms in [45] and [46]. 0us, it can be proved that our
scheme is effective.

6. Conclusions

In this paper, we introduce a novel chaotic color image
encryption scheme based on DNA coding calculations and
arithmetic over the Galois field. Firstly, three 1D chaotic
maps with better chaotic properties are obtained by im-
proving the classical 1D chaotic maps, and we use them as
the secret keys for the cryptosystem. Meanwhile, the ap-
plication of plain images to update the initial values protects
our scheme from the threat of chosen plaintext attack and
known plaintext attack. In order to increase the degree of
diffusion, the scheme also adds the coding calculations of
DNA sequences and multiplication over the Galois fields
GF(17). At last, the simulation results verify that the pro-
posed algorithm has excellent performance. 0e future work
is to research the fast encryption scheme based on chaos,
which can be applied in real-time communication scenarios
such as telemedicine.
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